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Abstract: Chemical processing in atmospheric aqueous phases, including cloud and fog drops, might
be significant in reconciling the gap between observed and modeled secondary organic aerosol
(SOA) properties. In this work, we conducted a relatively comprehensive investigation of the
reaction products generated from the aqueous-phase photochemical oxidation of three benzene-diols
(resorcinol, hydroquinone, and methoxyhydroquinone) by hydroxyl radical (·OH), triplet excited
state (3C*) 3,4-dimethoxybenzaldehyde (3,4-DMB), and direct photolysis without any added oxidants.
The results show that OH-initiated photo-degradation is the fastest of all the reaction systems. For
the optical properties, the aqueous oxidation products generated under different reaction conditions
all exhibited photo-enhancement upon illumination by simulated sunlight, and the light absorption
was wavelength dependent on and increased as a function of the reaction time. The oxygen-to-carbon
(O/C) ratio of the products also gradually increased against the irradiation time, indicating the
persistent formation of highly oxygenated low-volatility products throughout the aging process.
More importantly, aqueous-phase products from photochemical oxidation had an increased oxidative
potential (OP) compared with its precursor, indicating they may more adversely impact health. The
findings in this work highlight the importance of aqueous-phase photochemical oxidation, with
implications for aqueous SOA formation and impacts on both the chemical properties and health
effects of OA.

Keywords: benzene-diols; oxidative potential; light absorption; secondary organic aerosol

1. Introduction

Secondary organic aerosol (SOA), an important component of fine particulate matter,
plays an important role in haze formation, air quality, human health, and global climate
change. For example, it may affect the aerosol optical properties and air quality because of
the formation of light-absorbing organics and reactive oxygen species (ROS) [1–5]. SOA
formation can take place in both gas and condensed phases. Much of the previous research
on SOA has focused on the gas-phase reactions of volatile organic compounds [6,7]. In the
last decade, an increasing number of studies have pointed out that chemical processing
in atmospheric aqueous phases [8–10], such as cloud/fog drops and aqueous aerosols, is
also an important pathway of SOA formation [8,11–16], which can also help fill the gap
between observed and modeled particulate matter (PM) properties [17].

Phenols are important precursors of aqueous-phase SOA, and can be emitted signifi-
cantly from biomass burning. Those phenols with high Henry’s law constants can partici-
pate in hydroxyl radical (OH) and organic triplet excited state (3C*) mediated aqueousphase
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reactions, resulting in a high mass yield of SOA [18–23]. Resorcinol, hydroquinone, and
methoxyhydroquinone are three representative organic compounds with near source con-
centrations up to ~50 ppbv in biomass burning plumes [24]. These benzene-diols, together
with polyfunctional groups, are ubiquitous in the atmosphere as testified by the qualitative
analysis of cloud water samples that were impacted by biomass burning [25,26], suggesting
the great possibilities of these aromatic species undertaking oxidizing reactions in aqueous
phase. A few studies have explored the chemical mechanisms of oxidation of several dihy-
droxybenzenes at the air–water interface by O3 and hydroxyl radicals [27–30]. However,
knowledge about the physical and chemical properties, as well as the biological toxicity of
the aqueous oxidation products from those species, is still limited.

In this work, we investigated the photochemical aqueous-phase oxidation of three
benzene-diols (resorcinol, hydroquinone, and methoxyhydroquinone) by hydroxyl radi-
cal (OH), triplet excited state (3C*) from 3,4-dimethoxybenzaldehyde (3,4-DMB), and by
direct photolysis without any added oxidants in bulk solutions. For each combination of
precursors with/without oxidants, we measured the decay rates, optical properties, bulk
chemical composition, and oxidative potential of the aqueous-phase products, in order
to provide useful insight into understanding the formation mechanism and impacts of
aqueous-phase processing on biomass burning emissions.

2. Materials and Methods
2.1. Aqueous-Phase Oxidation Experiments

The aqueous-phase photochemical oxidation reactions of resorcinol (RES), hydro-
quinone (HQ), and methoxyhydroquinone (MHQ) were conducted under three conditions,
namely: (A) hydroxyl radical (OH) from hydrogen peroxide, (B) triplet excited states of
organic compounds (3C*) generated from 3,4-dimethoxybenzaldehyde (3,4-DMB), and
(C) direct photolysis without any added oxidants. The oxidation was performed inside
a photoreactor (BILON-GHX-ID, BiLang Company, Shanghai, China) equipped with a
1000 W Xe lamp, which was used to simulate natural sunlit conditions. A magnetic stirrer
and a recirculating chiller were used to keep the reaction system at a constant temperature
of 25 ◦C. Six quartz cuvettes (length * outer diameter * inner diameter (mm) = 190 * 36 * 34),
each containing 100 mL of solution, were arranged equidistantly around the lamp in the
photoreactor.

We chose an initial concentration of 100 µM for the benzene-diols, 5 µM for 3,4-DMB,
and 100 µM for H2O2, considering the actual atmospheric levels of these species [31–37] and
those used in other similar experiments [12,19,38,39]. It should be noted that in this work,
10 mg/L (NH4)2SO4 was added in the aqueous solutions to mimic the ambient aerosol
composition and to act as an internal standard to quantify the organic mass measured by
the soot particle aerosol mass spectrometry (SP-AMS) [40,41] (details in Section 2.4). The
solution was also simultaneously adjusted to a pH of 5 by using sulfuric acid using sulfuric
acid. We also conducted dark control experiments under the same conditions by turning
off the Xe lamp and covering the solution vials with aluminum foil. The experimental
conditions and the analyses conducted are summarized in Table S1 in the Supplementary
Materials.

2.2. Decay Kinetics of Benzene-Diols

Each series of oxidation experiments was carried out until approximately half of the
precursors were degraded, during which the concentrations of the remaining precursor
was measured periodically by a high-performance liquid chromatograph (HPLC; Waters,
C18-WP column, 4.6× 250 mm, 5 µm) with a UV–visible spectrometer in sampled solutions.
A mobile phase of 70% acetonitrile and 30% water at a flow rate of 0.7 mL/min was used
for the isocratic elution.



Atmosphere 2021, 12, 534 3 of 13

The apparent first-order rate constant (kd) of loss of precursor was then determined by
the following equation:

ln
(
[ArOH]t
[ArOH]0

)
= −kdt (1)

where [ArOH]t and [ArOH]0 refer to the measured concentrations of precursors at times t
and 0, respectively.

2.3. Light Absorptive Properties of Products

We examined the light absorption spectra of the aqueous-phase reaction products
at different reaction times by using UV–VIS spectroscopy (UV-3600, Shimadzu, Tokyo,
Japan). Combined with the total organic carbon (TOC) content from the TOC analyzer
(Shimadzu, Tokyo, Japan), the wavelength dependent mass absorption coefficient (MAC)
of the products can be calculated based on Equation (2):

MAC =
A× ln10
b× Cmass

(2)

where A is the light absorbance measured at a certain wavelength, b is the light path length
of the liquid sample capillary waveguide, and Cmass is the TOC mass concentration.

2.4. Chemical Analyses of Products by the SP-AMS

Here, the SP-AMS employed the 70 ev electron impact ionization technique coupled
with a time-of-flight mass spectrometer (ToF-MS), and was used to determine the mass
spectrum of aqueous-phase products. The mass spectrum was a collection of 70 ev EI
ionized fragments, which represented the bulk chemical properties of all of the products.
The technical details of the SP-AMS have been described previously [18,42,43]. In this work,
we used the SP-AMS, but turned off the laser vaporizer, so the SP-AMS was the same as the
HR-AMS. The similar SP-AMS measurements were conducted by our group previously for
the characterization of aqueous-phase photochemical oxidation products [20,21]. Briefly,
during the SP-AMS measurement, a continuous flow of the reacted solution was drawn us-
ing a miniature pump at a rate of 1 mL/min, and the solution was nebulized by pressurized
argon gas to generate particles, which then passed through the diffusion drier filled with
silicon in order to remove the moisture before entering into the SP-AMS [44]. It is of note
that during this process, some products with high volatility might partition into the gas
phase; however, this process in fact mimics the water evaporation of fog/cloud droplets
in the real atmosphere. The SP-AMS analyses were conducted on OH- and 3C*-initiated
photo-oxidation experiments.

The SP-AMS data were analyzed using the Igor-based ToF-AMS Analysis Toolkit
(Squirrel v.1.57 A and Pika v1.16 A [45]). The time resolution was 1.5 min and ion fragments
with a mass-to-charge (m/z) ratio up to 300 were recorded. The directly measured organic
CO2

+ and H2O+ signals were used here by assuming no significant influences from air
or water (because we used Argon as protective gas and the particles were dried before
measurement). As for HO+ and O+ signals, we scaled them by HO+ = 0.5625 × CO2

+

and O+ = 0.009 × CO2
+ [46]. The atomic elemental ratios, including the oxygen-to-carbon

(O/C) ratio, hydrogen-to-carbon (H/C) ratio, and the carbon oxidation state (OSc; equal to
2 × O/C-H/C) of the products were calculated according to “Improved-Ambient” method
reported previously [47]. More details can be found in our previous studies [41,48].

2.5. Positive Matrix Factorization (PMF) of the Aqueous-Phase Products

PMF is typically used to resolve a limited number of factors that can reconstruct the
observed time series of organics, and each factor is a collection of species with similar
properties and atmospheric behaviors [49,50]. In this study, the PMF algorithm was em-
ployed to explore the different generations of aqueous-phase oxidation products and their
chemical properties. All ions with m/z up to 300 were used for the PMF analyses. However,
for ions with m/z > 150, only those with significantly large signal-to-noise (S/N) ratios were
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fitted because of the limited chemical resolution. In addition, the directly measured organic
data matrices, as well as the corresponding error matrices, were normalized by the sulfate
(internal standard) concentrations. The organic matrices were also pretreated following our
previous studies [10,39], including downweight of “weak” values (0.2 < S/N < 2), removal
of “bad” values (S/N < 0.2), and downweight of outliers (specific m/zs or time points that
have large influences on Q/Qexp). We explored the PMF solutions by varying the f peak
values from -1 to 1 with a step of 0.1 for 1 to 4 factors. No significant differences were found
for the same solution at different f peak values, we therefore chose the one at an f peak of 0.
Note that the four-factor solution had no appreciable improvements on the fitting results
and the mass spectra of two of the four factors were similar. A three-factor solution was
therefore chosen to be the best one. The three-factor solution was actually common for
chamber or aqueous-phase derived SOA in a few previous studies [10,51].

2.6. Oxidative Potential (OP) of Products Based on Dithiothreitol (DTT) Assay

The DTT assay measures the reactive oxygen species (ROS) via the formation of
DTT disulfide as a result of transferred electrons from DTT to oxygen [52], and the DTT
consumption rate can be used to represent the OP. In this work, for each precursor, the
OPs of the starting solution with a pure precursor (but no oxidant), and those oxidized
solutions at about a half lifetime, were quantified by DTT analysis. All of the samples were
stored at −20 ◦C in Teflon tubes under dark conditions, and the OP measurements were
conducted for no longer than a week after sampling in order to ensure the effectiveness of
results. First, 3.5 mL of the sample was incubated with 1 mL phosphate buffer (PBS) and
0.5 mL (1 mM) DTT solution in a water bath incubator (37 ◦C). During each OP analysis,
a small aliquot of the DTT and sample mixture was withdrawn at fixed time intervals (5,
10, 20, 30, 45, and 60 min), and was then mixed with trichloroacetic acid (TCA; 1% w = v)
to quench the DTT reactions. Then, 0.5 mL of 5,5′-dithiobis-(2-nitrobenzoicacid) (DTNB)
and 1 mL of Tris buffer (pH ~8.9) were added, and the remaining DTT was reacted with
DTNB to form a colored product that absorbed light at 412 nm. The light absorption of the
mixture at 412 nm was measured using a spectrophotometer (SpectraMax iD3, Molecular
Devices, San Jose, CA, USA). The rate of DTT consumption was determined using the
linear regression of a series of absorbance data versus time. Based on the average of six
duplicate measurements, a value expressed as nmol DTT/min per mL can represent the
OP of the corresponding sample.

3. Results and Discussion
3.1. Kinetic Study

The apparent first-order rate constants can be used to represent the degradation
rates of the benzene-diols, but they are dependent on the light flux, intersystem crossing
efficiency, diluted oxygen concertation, etc. Note that in this study, we mainly focused
on the analyses of aqueous-phase oxidation products, and this section only compares the
degradation rates due to the influences of different oxidants among benzene-diols under
the same experiment conditions (same precursor and oxidant concentration and the same
light flux), so the influences of other factors (light flux and intersystem crossing efficiency)
on the rate constants were not further discussed. To be close to the actual atmosphere,
our reaction conditions were under simulated natural sunlit conditions (1000 W Xe lamp),
and contained inorganic salts. In the future, explicit kinetic studies that measure second-
order rate constants [20,21,38] can be conducted in order to make the kinetic parameters
applicable over other conditions.

Figure 1 shows the degradations of RES, HQ, and MHQ under illumination and
dark conditions. It can be found that direct photolysis could occur for all three phenolic
compounds. The rate constants of direct photo-degradation were 0.022, 0.035, and 0.23 h−1

for RES, HQ, and MHQ, respectively. The largest rate constant was for MHQ, likely because
methoxy can act as an electron donor, which greatly enhances the charge density of the
benzene ring. It is noted that the addition of 3,4-DMB did not significantly accelerate their
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direct photolysis rates, likely because the formation of 3C* of phenols themselves was more
efficient than the 3C* of 3,4-DMB. OH-initiated photo-degradation was faster than the direct
photolysis and the photolysis against 3C* for RES and HQ, but the effect was not obvious
for MHQ, mainly because the degradation of MHQ was much quicker than for RES and
HQ. The rate constants for the decay of benzene-diols under different conditions varied
from 0.022 h−1 to 0.26 h−1, together with t1/2 (half-lifetime) from 154 min to 1697 min
(Table S2), generally on the same order of decay rates of benzene-diols determined in other
works [41,48,53,54].

Atmosphere 2021, 12, x FOR PEER REVIEW 5 of 13 
 

 

for RES, HQ, and MHQ, respectively. The largest rate constant was for MHQ, likely because 
methoxy can act as an electron donor, which greatly enhances the charge density of the 
benzene ring. It is noted that the addition of 3,4-DMB did not significantly accelerate their 
direct photolysis rates, likely because the formation of 3C* of phenols themselves was more 
efficient than the 3C* of 3,4-DMB. OH-initiated photo-degradation was faster than the direct 
photolysis and the photolysis against3C* for RES and HQ, but the effect was not obvious for 
MHQ, mainly because the degradation of MHQ was much quicker than for RES and HQ. 
The rate constants for the decay of benzene-diols under different conditions varied from 
0.022 h−1 to 0.26 h−1, together with t1/2 (half-lifetime) from 154 min to 1697 min (Table S2), 
generally on the same order of decay rates of benzene-diols determined in other works 
[41,48,53,54]. 

 

Figure 1. Aqueous-phase decay kinetic curves for (a) resorcinol (RES), (b) hydroquinone (HQ), and (c) 
methoxyhydroquinone (MHQ). 

3.2. Light Absorption Properties 
Atmospheric brown carbon (BrC) is a collective term for light absorbing organic 

compounds in the atmosphere; it drew our attention for its importance in scattering and 
absorbing solar radiation [53,54]. In addition to primary sources (i.e., biomass burning), BrC 
can also be produced from secondary reaction process including gas-phase and aqueous-
phase reactions [55,56]. In this work, we also investigated whether or not the aqueous-phase 
reactions of the selected precursors could produce light-absorbing species. From the UV–
VIS light absorption spectra presented in Figure S1, we can clearly observe that the aqueous-
phase photochemical reactions under all conditions increased the light absorption ability 
over its precursor, and the enhancement of light absorption increased with the increase of 
the reaction time. In particular, an obvious absorption at 450–500 nm could be found in HQ 
oxidation systems. Overall, the light absorption was wavelength dependent, which was 
high in the ultraviolet range and then decreased with the increase in wavelength for all of 
the reaction systems. 

Figure 2 presents the light absorption enhancement (the ratio of light absorption at a 
certain time relative to that of the initial solution) during oxidation in the UV and visible 
light ranges, respectively. For RES, the products from the 3C*-mediated photochemical 
oxidation appeared to generate more visible light absorbing species, while OH-mediated 
oxidation produced UV light absorbing species; for HQ, more visible light absorbing 
organics were generated too, but the species from direct photolysis instead had the strongest 
visible light absorbing ability; for MHQ, 3C*-oxidation products had a strong light 
absorption in both UV and visible light ranges. Furthermore, 400 nm was chosen as a 
representative wavelength to demonstrate the light absorbing abilities of the oxidation 
products. The MAC values at all wavelengths of all systems at their oxidation endpoints, as 
well as the MAC values at 400 nm versus the O/C ratios for the OH- and 3C*-oxidation 
experiments, are shown in Figure 3. The MAC value of the aqueous-phase products 

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ln
([M

H
Q

] t/
[M

H
Q

] 0)

16012080400
Illumination Time (min)

+ 3,4–DMB(dark)
+ 3,4–DMB 
+OH 
 Direct

 

(c)MHQ

-0.5

-0.4

-0.3

-0.2

-0.1

0.0
ln

([H
Q

] t/
[H

Q
] 0)

6004002000
Illumination Time (min)

 

(b)HQ

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

ln
([R

ES
] t/

[R
ES

] 0)

12008004000
Illumination Time (min)

 
 
 

(a)RES

Figure 1. Aqueous-phase decay kinetic curves for (a) resorcinol (RES), (b) hydroquinone (HQ), and (c) methoxyhydro-
quinone (MHQ).

3.2. Light Absorption Properties

Atmospheric brown carbon (BrC) is a collective term for light absorbing organic
compounds in the atmosphere; it drew our attention for its importance in scattering and
absorbing solar radiation [53,54]. In addition to primary sources (i.e., biomass burning), BrC
can also be produced from secondary reaction process including gas-phase and aqueous-
phase reactions [55,56]. In this work, we also investigated whether or not the aqueous-
phase reactions of the selected precursors could produce light-absorbing species. From the
UV–VIS light absorption spectra presented in Figure S1, we can clearly observe that the
aqueous-phase photochemical reactions under all conditions increased the light absorption
ability over its precursor, and the enhancement of light absorption increased with the
increase of the reaction time. In particular, an obvious absorption at 450–500 nm could be
found in HQ oxidation systems. Overall, the light absorption was wavelength dependent,
which was high in the ultraviolet range and then decreased with the increase in wavelength
for all of the reaction systems.

Figure 2 presents the light absorption enhancement (the ratio of light absorption at a
certain time relative to that of the initial solution) during oxidation in the UV and visible
light ranges, respectively. For RES, the products from the 3C*-mediated photochemical
oxidation appeared to generate more visible light absorbing species, while OH-mediated ox-
idation produced UV light absorbing species; for HQ, more visible light absorbing organics
were generated too, but the species from direct photolysis instead had the strongest visible
light absorbing ability; for MHQ, 3C*-oxidation products had a strong light absorption in
both UV and visible light ranges. Furthermore, 400 nm was chosen as a representative
wavelength to demonstrate the light absorbing abilities of the oxidation products. The
MAC values at all wavelengths of all systems at their oxidation endpoints, as well as the
MAC values at 400 nm versus the O/C ratios for the OH- and 3C*-oxidation experiments,
are shown in Figure 3. The MAC value of the aqueous-phase products decreased against
the wavelength and increased against the O/C values. This was in part due to the pro-
duction of carboxylic and carbonyl compounds from the aqueous reactions. It should also
be noted that the MAC values of our aqueous-phase oxidation products were 10 × as
high as those SOA from the gas-phase oxidation of the biomass burning emissions [57],
which highlights the potentially large impact of aqueous-phase processing on the radiative
forcing of aerosols in the real atmosphere.
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Figure 2. Variations of the light absorption enhancement (ratio of light absorption at the sampling
time to that at the starting point) with illumination time in ultraviolet (200–380 nm) and visible light
(380–600 nm) ranges, respectively.
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Figure 3. (a) Mass absorption coefficient (MAC) values as a function of the wavelength of the final
solutions and (b) MAC values at 400 nm versus the oxygen-to-carbon (O/C) ratios of the solutions
during different times of the OH- and 3C*-mediated oxidation experiments.

3.3. Chemical Properties and Evolution of Aqueous Oxidation Products

SP-AMS-measured high resolution mass spectra of the aqueous-phase oxidation
products from all six systems presented ion fragments with relatively high m/z values
during the initial stage of photochemical oxidation. For example, Figure 4 shows the mass
spectra of oxidation products during different reaction times in MHQ + OH and MHQ +
3,4-DMB systems, respectively. It can be seen that the relative abundance of large m/z ions
gradually decreased with the increase in reaction time, while the fractional contributions of
CO2

+(m/z = 44), H2O+(m/z =18), and CO+(m/z = 28) increased; the mass spectra became
similar to the pattern of the fulvic acid, which could represent highly oxidized organics [58],
and indeed the O/C ratio increased greatly with the propagation of oxidation. The mass
spectra of oxidation products from other benzene-diols showed similar chemical features
(Figures S2 and S3), indicating a generally similar oxidation mechanism, likely including
hydroxylation, oligomerization, functionalization, and fragmentation [19].
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The variations of the elemental ratios of the aqueous-phase products are shown in
Figure 5. As we can see, the O/C and OSc increased, while H/C decreased continuously
throughout the reaction, suggesting that highly oxidized products were produced consis-
tently during aqueous oxidation of all three precursors. We also used the f 44 (mass ratio of
m/z 44 to the total organics) versus f 43 (mass ratio of m/z 43 to the total organics) plot to
investigate the evolution of aqueous oxidation products (Figure S4a). In this plot, the data
points moved towards the upper left corner with the increase of oxidation. In addition,
we also used van Krevelen diagram (O/C versus H/C) to further investigate the possible
oxidation pathways. As shown in Figure S4b, the slopes were close to −1, likely indicating
oxidation similar to the pathway of the formation of carboxylic acids. The O/C value
of the aqueous-phase products from each experiment approached end values of 0.8–1.1,
which were at the same level of previously reported aqueous-phase SOA [8,59]. The OSc
of aqueous-phase products at the termination of reactions were much higher than their
precursors, further demonstrating that the aqueous-phase photooxidation is an important
source of oxygenated species in the atmosphere.

Furthermore, the PMF analysis was used to explore the chemical evolution of aqueous-
phase products. The temporal variations of the three-factor PMF solution for each experi-
ment are presented in Figure 6, and the diagnostic plots of the representative MHQ + OH
experiment are shown in Figure S5. For six series of experiments, the PMF analyses all
resolved a factor with the lowest O/C (i.e., factor 1), which might be initial (first-generation)
products; as the mass concentration of this factor continuously decreased and became very
small at the end of the experiment, indicating its fragmentation upon further oxidation.
Factor 2, with a medium O/C level, might represent intermediated products (second-
generation), as its concentration increased first then decreased afterwards; it may involve
the transformation from Factor 1 first, then fragmentation later on. Factor 3 had the highest
O/C, and its concentration persistently increased; it may involve chemical transformation
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from Factor 1 in the first stage, and then significantly from Factor 2 in later stages, as it
increased while Factor 2 decreased quickly. This factor represented the final oxidation
products (third-generation), as in the end, Factor 1 and Factor 2 almost disappeared. The
variations of PMF factors, as well as the changes of mass spectral features (Figure 4), indi-
cate that the oxidation pathway was first dominated by hydroxylation/oligomerization,
then functionalization and fragmentation in the end.
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and H/C of each factor are also shown.
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3.4. Oxidative Potential of Aqueous-Phase Products Compared with the Precursor

The presence of reactive oxygen species (ROS) or free radicals can induce oxida-
tive stress (known as oxidative potential (OP)), which is considered to be an important
mechanism for particle-associated adverse health effects [60–62]. Although previous work
has reported on the toxicity of photochemically aged SOA in the gas phase [63], little is
known about the toxicity from the SOA formed in the aqueous-phase pathway. The OPs
of the initial precursor solution and their aqueous-phase oxidation products are shown in
Figure 7.
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For the pure precursors, the OP of MHQ was the highest, followed by HQ and RES.
The products formed from the photochemical aqueous oxidation appeared to con-

sistently enhance its OP (especially for RES) under different experiment conditions (i.e.,
various kinds of oxidants). These results underscore that aqueous-phase processing led to
the production of more toxic species [64], and further investigations are therefore needed
on a broad spectrum of species and indicators of toxicity in order to better under the role
of aqueous-phase processing on particle toxicity.

4. Conclusions

In this work, we investigated the aqueous-phase photochemical oxidation of three
benzene-diols (resorcinol, hydroquinone, and methoxyhydroquinone). We found that
direct photolysis could occur in all three species. The addition of an OH oxidant could
further promote oxidation, while the addition of 3C* of 3,4-DMB had only small influences
on the photolysis rates. The optical measurements of the oxidation products showed that
aqueous-phase processing could produce strong light absorbing species, and the MAC
values of the products decreased against the wavelength and increased with the oxidation
degree of the products. The light absorption enhancement from 3C*-mediated oxidation
was more significant, especially in the visible light range. The oxygen-to-carbon (O/C) and
OSc values of the aqueous-phase products at the end of the reactions were much higher than
their corresponding precursors, demonstrating that the aqueous-phase photooxidation of
organic precursors could be an important source of oxygenated species in the atmosphere.
In addition, aqueous-phase processing also enhanced the OP of precursor in all of the tested
conditions, highlighting that aqueous-phase processing led to the formation of more toxic
species. Our results underscore the aqueous-phase photooxidation on the modification of
the chemical, optical as well as toxic properties of atmospheric organics, and also call for
more studies on other types of precursors.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12050534/s1, Table S1: Summary of experimental conditions and relevant analyses,
Table S2. Summary of the kinetic parameters of the benzene-diols precursors, Figure S1: Time-
dependent UV-Vis light absorption spectra of the reacted solutions obtained at different times during
the oxidation experiments, Figure S2: Mass spectra of (a) RES+OH and (b) RES+3,4-DMB at different

https://www.mdpi.com/article/10.3390/atmos12050534/s1
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reaction times. The H/C, O/C ratios and OSc values are also shown. The colored sticks represent
6 ion families: CxHy, CxHyO1, CxHyO2, HyO1, CxHyO3 and CxHyO4. The ion signals at m/z>100
are amplified 30 times for clarity, Figure S3. Mass spectra of (a) HQ + OH and (b) HQ+3,4-DMB at
different reaction times. The H/C, O/C ratios and OSc values are also shown. The colored sticks
represent 6 ion families: CxHy, CxHyO1, CxHyO2, HyO1, CxHyO3 and CxHyO4. The ion signals at
m/z > 100 are amplified 30 times for clarity, Figure S4. Evolution profiles of aqueous-phase SOA:
(a) f44 (mass ratio of ion signal at m/z 44 to total organic signal) vs. f43 (mass ratio of ion signal at
m/z 43 to total organic signal). (b) Van Krevelen (VK) diagram based on AMS data, in which lines
with slopes of 0, −1 and −2 represent the reaction pathways with additions of alcohol/peroxide,
carboxylic acid, and ketone/aldehyde functional group, respectively. Dashed lines are OSc values,
Figure S5. Three-factor solution for PMF analysis of OH-mediated oxidations of MHQ.
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