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Abstract: Air pollution causes premature mortality and morbidity globally, but these adverse health 
effects occur over proportionately in low- and middle-income countries. Lack of both air pollution 
data and knowledge of its spatial distribution in African countries have been suggested to lead to 
an underestimation of health effects from air pollution. This study aims to measure nitrogen oxides 
(NOx), as well as nitrogen dioxide (NO2), to develop Land Use Regression (LUR) models in the city 
of Adama, Ethiopia. NOx and NO2 was measured at over 40 sites during six days in both the wet 
and dry seasons. Throughout the city, measured mean levels of NOx and NO2 were 29.0 µg/m3 and 
13.1 µg/m3, respectively. The developed LUR models explained 68% of the NOx variances and 75% 
of the NO2. Both models included similar geographical predictor variables (related to roads, indus-
tries, and transportation administration areas) as those included in prior LUR models. The models 
were validated by using leave-one-out cross-validation and tested for spatial autocorrelation and 
multicollinearity. The performance of the models was good, and they are feasible to use to predict 
variance in annual average NOx and NO2 concentrations. The models developed will be used in 
future epidemiological and health impact assessment studies. Such studies may potentially support 
mitigation action and improve public health. 
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1. Introduction 
Epidemiological studies have shown that ambient air pollution is the single-largest 

environmental health risk worldwide [1]. Globally, outdoor air pollution exposure is re-
sponsible for 3.3 million premature deaths [2], with some estimates putting this number 
as high as 8.9 million deaths per year [3]. 

Nitrogen oxides (NOx) and nitrogen dioxide (NO2), in particular, are anthropogeni-
cally generated components of air pollution [4]. Even though NOx is primarily emitted in 
the form of NO during combustion, which is then oxidized to NO2, NO2 has often been 
used as marker of air pollution exposure in epidemiological studies to determine the ad-
verse health effects such as birth outcomes in epidemiological studies [5,6]. For example, 
exposure to NOx is associated with cause-specific mortality and myocardial infraction [7], 
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as well as adverse birth outcomes, including impaired childhood lung function [8] spon-
taneous abortion [9], preterm birth [10], low birth weight [11], fetal growth restriction [12], 
gestational hypertension, and preeclampsia [13,14]. The economic cost of these air pollu-
tion-derived health effects is also expected to decrease the global domestic product (GDP) 
by one percent by 2060 [15].  

Establishing urban air pollution monitoring systems and setting air quality standards 
are crucial in alleviating the public health challenges related to air pollution. Unfortu-
nately, air pollution monitoring is vastly lacking in Africa [16]. There are only a few epi-
demiological studies on the links between ambient air pollution and long- and short-term 
health effects in African settings. The lack of long-term ambient air pollution monitoring 
has been emphasized as a reason [17]. Few studies in Africa reported urban air pollution 
variability and explored the link between ambient air pollution and respiratory morbidity 
[18,19]. Without data on the extent of air pollution exposure, health impacts remain un-
derestimated or even unknown; this prevents the implementation of key public health 
strategies, especially those needed to protect vulnerable populations such as pregnant 
women and children [20]. 

In East Africa, in particular, common challenges to air pollution mitigation include 
growing vehicle fleets, a lack of alternative cleaner energy sources for industries, rapid 
urbanization, poor urban infrastructure, uncontrolled open burning, limited air quality 
data, weak enforcement of policies, and limited technical capacity and financial resources 
[21,22]. Typical sources of ambient air pollution are road traffic, industries, domestic fires 
for cooking or heating, and waste burning [23]. For instance, the prevalence of old, pollut-
ing vehicles coupled with poor maintenance practices has led to vehicle emission being 
the region’s main source of air pollution [24,25]. Household waste burning is also a major 
contributor to ambient air pollution [26]. More effort is urgently needed from African gov-
ernments to develop and enforce air quality standards; however, this cannot be achieved 
without access to reliable air pollution and health data [25]. 

Air pollution measurements are needed for the utilization of Land Use Regression 
(LUR), which has, consequently been lacking in African settings [27]. The LUR model is a 
tool commonly used in epidemiological studies to assess ambient air pollution exposure, 
especially at locations with limited air pollution data [28]. This is accomplished by using 
measured pollution values as a response variable with local geographical predictor vari-
ables, which are potential proxies for emission sources, such as land use, population, 
household density, or traffic intensity [28,29]. LUR models have been widely applied in 
European [28,30] and North American [31,32] cities. The European Study of Cohort for 
Air Pollution Effects (ESCAPE) is a large-scale, EU-multicenter study encompassing sev-
eral cities that has established comprehensive, well-designed LUR protocols [28]. Its meth-
odology has even been applied in some parts of Asia [33]. To the best of our knowledge, 
only a few applications of the LUR model have been performed within the African conti-
nent to estimate NOx or NO2, as well as to assess the association between long-term ambi-
ent air pollution and health effects [18,19,34]. 

This study aims to generate reliable evidence on the ambient air pollution levels 
through measurements and use these to develop LUR models to estimate the NOx and 
NO2 exposure in Adama, Ethiopia. Over 13,000 premature deaths are attributed to ambi-
ent air pollution exposure annually in Ethiopia, which is the highest among East African 
countries [35]. The LUR exposure estimate will be used in future projects to further assess 
the health impacts of air pollution. As an example, it will be used to investigate the asso-
ciation between maternal exposure during pregnancy and the subsequent health out-
comes of neonates in the Adama mother and child health cohort (ClinicalTrials.gov Iden-
tifier NCT03305991). 
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2. Materials and Methods 
2.1. Study Site 

Spanning 200 square kilometers, Adama is the fourth largest city in Ethiopia, with an 
estimated 214,000 inhabitants [36]. It is located 99 km southeast of Addis Ababa in the East 
African Rift Valley area (see Figure 1). The weather is mostly dry throughout the year, 
with a mean annual rainfall of 890 mm and mean annual temperature of 21.6 ᵒC, with 
highest precipitation in June, July, and August [37]. Adama is located along the Pan-Afri-
can Highway, connecting Djibouti with Addis Ababa. There is also a large bus station in 
the center of the city connecting the eastern and southeastern parts of the country. 

 
Figure 1. The location of Adama on the East African continent, and the air sampling measurement 
sites and land use classes included in the LUR models. 

Adama city has industrial and investment centers, clustered mainly in its western 
and eastern outskirts. A total of 144 large- and small-scale industrial operations, including 
paper printing, cement manufacturing, brick manufacturing, tomato-canning plants, cot-
tage industries, textiles, food, and beverage factories, as well as metal, plastic, and wood 
engineering facilities, are located in the southwest [38]. The Adama public transportation 
service is operated by many small vehicles like the Bajaj (a compact, three wheeled car), 
which accounts for 70% of the total vehicle fleet, and a few public buses [38]. In 2015, the 
daily traffic volume at four main intersections in Adama was between 16,000 and 32,000 
vehicles [39]. According to the Adama municipality, the total road length of the asphalt is 
95 km, with gravel roads stretching 56 km, cobblestone 170 km, red ash 36 km, and earth 
roads 740 km [38]. 
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2.2. NOx and NO2 Sampling 
Measurement sites were selected in accordance with the ESCAPE protocol to capture 

the anticipated variability of air pollution [40]. In this study, 41 individual sites were in-
vestigated in August 2018 and 42 sites in February 2019. One site from the August 2018 
campaign was lost due to an analytical error for NO2, but the values for NOx remained 
viable. Between the two campaigns, 39 sites had measurements from both periods for NOx 
and 38 sites for NO2. One site included in the August 2018 campaign could not be used in 
the February 2019 campaign, as the landowner declined participation. Additionally, we 
added two sites to the February 2019 campaign that were unavailable in the August 2018 
campaign. In total, 43 sites were included in the development of the LUR models, irre-
spective of whether they were utilized in one or both measurement campaigns. In the case 
of two measurements, we included the mean of both.  

All field samplings were performed from August 9th–14th (5 days) 2018 (wet season) 
and from February 18th–23rd (5 days) 2019 (dry season). The sampling sites were classified 
into three types: traffic (10 sites), urban background (27 sites), and regional background 
(6 sites). A traffic site is identified as an area where the air pollution level is mainly influ-
enced by vehicle emissions from road traffic (in this study, the sites were located within 
100m from a motorway or primary or secondary road). An urban background site, how-
ever, is an urban area that is not heavily influenced by nearby traffic or industrial air pol-
lution sources (sites in the city not located within 100 m from a motorway or primary or 
secondary road). Finally, a regional background site is defined as an area in which air 
pollution is not dominantly produced by any nearby sources but, rather, transported into 
the area by wind (sites located in the outskirts of the city not located close to a large in-
dustrial source or road construction site). This classification and distribution allowed us 
to choose the measurement sites representative for the air pollution levels throughout the 
city and its outskirts. Each measurement site’s location was geocoded and the altitude 
measured using a GARMIN GPSMAP64 (Garmin, Olathe, Kansas, USA) during each site 
visit. 

According to the ESCAPE protocol [40], Ogawa badge passive samplers (Ogawa & 
Company, Pompano Beach, FL, USA) were used to sample NO2 and NOx. The Ogawa 
badge contains separate filters onto which NOx and NO2 are absorbed with high effi-
ciency. In short, the Ogawa badge has a cylindrical body with two ends, which enables 
the simultaneous monitoring of NO2 and NOx. Each end holds a cellulose collection filter, 
one coated with triethanoleamine for sampling NO2 and the other coated with trieth-
anoleamine plus an oxidizing agent for sampling NOx [41,42]. The badges were deployed 
at a height of 1.9-3.8 m under an opaque shelter for protection against rain (see Figure 2). 
Care was taken so that air could circulate freely around the unit. After sampling was com-
pleted, the badges were collected, stored in a cold box, and transported to Sweden to-
gether with four blanks. The samplers were delivered within 72 h to the lab. 
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Figure 2. Photo of Ogawa badge in its rain protection from one of the NOx and NO2 sampling 
sites. 

All badges were analyzed at the Division of Occupational and Environmental Medi-
cine, Umeå University, Umeå, Sweden. The analysis method was described in detail by 
Hagenbjork-Gustafsson et al. [41]. Briefly, each filter is desorbed in ultra-pure water; after, 
the filtered extract is injected into an ion chromatography system and analyzed for nitrite. 
The nitrite concentrations in the field blanks were subtracted from the concentrations in 
the samples. The obtained nitrite concentration was then used in an adapted version of 
Fick’s law [41] to calculate the NO2 and NOx concentrations. 

2.3. Comparison to Active Measurments 
In addition to the measurements taken with passive samplers, we were granted 

access to time-resolved NO2 and NOx data collected with a Thermo Scientific NO-NO2-
NOx analyzer (model 42i) at the Ethiopian Meteorological Institute site in Adama. 

One hundred and ninety-seven Microsoft® Excel® 2016 (Microsoft, Redmond, 
Washington, USA) files containing minute-by-minute measurements of NO2 and NOx 
concentrations from the beginning of January 2017 through December 2018, as well as the 
month of January 2019, were accessed. First, duplicate files and those with cells expressing 
“NoData” were removed. Files corresponding to a 7-month period (August 2017-March 
2018) were missing data on NO2 and NOx completely, and the vast majority of 
measurements throughout August 2018- January 2019 were missing. Moreover, a 
significant number of hours and days were comprised of very few data points (Figure S1). 

When the data for a particular hour or day began with 0′s or negative values, those 
values were excluded for the calculations of hourly and daily averages. However, these 
0′s and negative values also arose sporadically and could hence not be easily omitted from 
the averaging process. This combined with a lack of data for some hours, and days, even, 
resulted in a number of final NO2 and NOx averages being negative in value, averages all 
of which were not included in further evaluations. 

Further, the quality of this data is uncertain, as there is no avilable information 
regarding calibaration of the instrument. 
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2.3.1. Diurnal Trends 
As described above, the original measurement data, recorded minute-by-minute, 

was aggregated into hourly averages. This was later used to investigate diurnal trends of 
NO2 and NOx using Microsoft® Excel® 2016 (Microsoft, Redmond, Washington, USA). 

Only 18 days throughout this time period had complete data, i.e., included 
measurements for each of the 60 min for each of the 24 h in the day. From these, days 
falling on the weekend (n = 5) were excluded due to the expected differences in the traffic 
patterns. The NO2 and NOx concentrations from the remaining days (n = 13) were then 
averaged and graphed. 

2.3.2. Yearly Concentrations 
Original data from the time-resolved measurement instrument were also aggregated 

into daily averages, which were used to graph the annual trends of NO2 and NOx concen-
trations from January 2017 to January 2019. Further, the annual averages for both pollu-
tants were calculated for the years 2017 and 2018, excluding measurements for the month 
of January 2019. Instead of using only days with complete data, as described above for the 
diurnal trends, here, all hours with ≥ 30 min of the measurements were included (1592 
values out of 1702). Similarly, all days with ≥ 5 h of the measurements (the equivalent of 
1140 min or more) were included, which totalled 103 out of 142 days. 

2.4. Geographic Predictor Variables 
A total of 59 geographical predictor variables were collected. For a full list of potential 

variables, see Table 1. In addition to these, 2 outer ring buffer variables were added for 
NO2 and 8 for NOx [40]. A full description of the outer ring buffers can be found in the 
ESCAPE protocols [40]. These variables were univariately regressed against NO2 and NOx 
concentration at measurement sites. Previously published studies have demonstrated that 
the road variables, population density, land use, and elevation were significant predictor 
variables for the NOx and NO2 concentrations [28]. We defined the expected direction of 
the geographical predictor variables prior to the statistical analysis. 

2.4.1. Land Use 
The Adama city urban land development and management office masterplan from 

2019 [43] was used to generate land use data. Four classes of land, including industrial 
areas, residential areas, water, and transportation facilities (see Figure 1), were identified 
as significant in relation to the NOx and NO2 emissions and were deemed manageable to 
adjust to the land use. This masterplan also contained areas with future land use plans. 
To replicate the conditions when our measurement campaigns were conducted, the areas 
mapped with future land use were manually adjusted using satellite images covering dif-
ferent parts of the city between 2016 and 2018. These included Worldview 2 (resolution 
0.5 m) and Worldview 4 (resolution 0.31 m) [44], which were retrieved via World imagery 
in ArcMap. Corrections to the four land use classes, therefore, were mainly implemented 
in the outskirts of the city where the masterplan and the satellite images did not corre-
spond. In addition to the land use information obtained from the masterplan, data on the 
informal settlement areas was collected and geocoded. For all land use variables, the total 
area covered in m2 was calculated for 100-, 300-, 1000-, and 3000-m buffers around the 
measurement stations and added to the final model. 
Industrial areas 

Industrial areas were considered potential sources of NO2 and NOx emissions within 
the study area. Since the masterplan´s data did not contain information about the type of 
industry, all industrial areas were assumed to contribute with equal emissions relative to 
their area. The average distance from a measurement site to the closest industrial area was 
490 m, ranging from 35 to 1487 m.  
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Residential areas 
Residential areas describe places in Adama where human activity, such as waste 

burning and cooking, is likely to contribute to elevated levels of NOx and NO2. In the 
Adama city masterplan, different types of residential areas were included: housing, mixed 
residences (those intertwined with commercial land use), and residences. Since these three 
classes were not distinguishable in the satellite images, they were combined into one res-
idential class for this study. Again, adjustments were made mainly along the outskirts of 
Adama, as new residential zones were being planned for these areas.  
Water bodies 

The water bodies included in this study are seasonal pathways where water flows 
during the rainy season. During the dry season, however, these areas are used for solid 
waste burning and dumping. Waste burning can also occur in close vicinity to these areas 
during the rainy season. Data on water bodies were obtained from the masterplan and 
needed no adjustment in relation to the satellite images.  
Transport administration areas 

This class contains bus stations and major parking lots, which are most likely associ-
ated with higher NOx and NO2 levels due to traffic intensity. A total of 16 transport ad-
ministration areas were included in our study, which were derived from the masterplan.  
Informal settlements 

A high population density, old houses, and frequent small-scale waste burning are 
features associated with informal settlements that could contribute to higher levels of NO2 
and NOx. This data was collected in the second half of 2019 by a local student with prior 
experience of collecting data with a GPS. 

2.4.2. Road Traffic 
Previous studies have often found traffic density and the road network distribution 

to be relevant variables to predict the NOx and NO2 levels [45]. The geographical distribu-
tion of Adama’s road network was accessed from OpenStreetMap [46] using a QGIS 
(QGIS Development Team (2020). QGIS Geographic Information System. Open Source 
Geospatial Foundation Project. http://qgis.osgeo.org) plugin for the desktop geographic 
information systems (GIS) application QGIS and included information about the type of 
road, which was used as a proxy for the traffic intensity. A total of 16 different classes of 
roads were available. These were further categorized into seven classes, including Motor-
way, Primary, Secondary, Tertiary, Residential, Service, and Other roads. This reclassifi-
cation process is described in detail in a recently published paper [47]. 

The GIS analysis was performed in ArcGIS version 10.5.1 (Redlands, California, 
USA). All available geographic predictor variables are shown in Table 1. 

Table 1. All the available geographic predictor variables, their expected direction of effects, and their descriptions. 

Variables 
 

Measurement 
Unit 

Expected Direction of 
Effects 

Less than 100m to motor, primary, or secondary road m + 
Inside the city center yes/no + 

Measured altitude in meters above sea level m - 
Road distance in meters within a 50, 100, 300 or 500 m radius m + 

Primary road1 distance in meters within a 50, 100, 300 or 500 m radius m + 
Motorway in meters within a 500 m radius m + 

Secondary road2 distance within a 50, 100, 300 or 500m radius m + 
Tertiary road3 distance within a 50, 100, 300 or 500m radius m + 

Residential road4 distance within a 50, 100, 300 or 500m radius  m + 
Service road5distance within a 50, 100, 300 or 500 m radius m + 



Atmosphere 2021, 12, 519 8 of 20 
 

 

Other road6in meters within a 50, 100, 300 or 500 m radius m + 
Area of residential use within 100, 300, 1000 or 3000 m radius m2 + 
Area of industrial use within 100, 300, 1000 or 3000 m radius m2 + 

Area of transportation administration7 use within 100, 300, 1000 or 3000 m 
radius 

m2 + 

Area of informal settlement within 100, 300, 1000 or 3000 m radius m2 + 
Distance to nearest primary road m - 

Distance to nearest motorway m - 
Distance to nearest secondary road m - 

Distance to nearest tertiary road m - 
Distance to nearest residential road m - 

Distance to nearest service road m - 
Distance to nearest other road m + 

Distance to nearest road m - 
Distance to nearest waterbody or creek/river m - 

Distance to nearest industry  m - 
Distance to nearest transportation administration area m - 

Primary road between 100 m and 300 m and 100 m and 500 m, respectively 
(only NOx) 

m + 

Primary road between 300 m and 500 m (only NO2) m + 
Road between 50 m and 100 m, 50 and 300 m, and 50 m and 500 m, respec-

tively (only NOx) m + 

Residential road between 100 and 300 m and 100 m and 500 m respectively 
(only NOx) m + 

Residential area between 1000 m and 3000 m 
(both NO2 and NOx) 

m + 

1 The next most important roads in a country’s system (often link larger towns.). 2 The next most important roads in a 
country’s system (often link towns.). 3 The next most important roads in a country’s system (often link smaller towns and 
villages). 4 Roads that serve as an access to housing, without function of connecting settlements. 5 Access roads to or within 
an industrial estate, camp site, business park, car park, alleys, etc. 6 Rural roads. 7 Bus stations and large parking lots. 

2.5. Land Use Regression Modeling  
The development of the LUR models followed the ESCAPE protocol [40]. A total of 

59 predictor variables were univariately tested, followed by a manual forward selection 
procedure for the multivariate model. Statistically significant variables during the uni-
variate testing were added to the multivariate model. A model that aimed to maximize 
the percentage of explained variability (R2) and minimize the error (RMSE—Root Mean 
Square Error) was selected. The variables with highest R2 were added first, followed by 
the second, and so on. Only variables with a coefficient matching the expected direction 
of effects were entered into the multivariate model. 

Furthermore, a new variable should keep the expected direction to be included. The 
addition of each new variable should also increase the model´s R2 by at least 1%; other-
wise, the variable should not be retained. After adding all variables to the multivariate 
models, only those with a p-value above 0.1 were kept in the final model. Several diagnos-
tic tests were then performed to validate the final model. Cook’s Distance was calculated 
to assess for influential observation among predictor variables. A value greater than 1 
indicated an influential observation [48]. The variance inflation factors (VIF) were calcu-
lated to test for multicollinearity in which a VIF greater than 3 was considered to indicate 
collinearity [48,49]. Spatial autocorrelation was tested with Moran’s I among residuals in 
the final model [50]. Leave-one-out cross-validation was used to internally validate the 
performance of the model [40,49]. Models with new parameter estimates were developed 
for n-1 of the measurement sites, where one measurement station was dropped at the time 
and the included variables fixed. For these models, an average adjusted R2 value and 
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RMSE value were calculated to test the internal validity. Statistical analyses were con-
ducted using IBM SPSS Statistics version 25 (IBM, Chicago, IL, USA) to develop LUR mod-
els. 

After finalizing the models, respective prediction maps for NOx and NO2 covering 
the whole study area were developed for grids with 10-m resolutions. 

3. Results 
3.1. NOx and NO2 Measurements 

A summary of the annual averaged concentrations (that is averaged concentrations 
from the two campaigns) of NOx and NO2 is shown in Table 2. The traffic measurement 
sites had the highest NOx and NO2 annual averages, 45.0 µg/m3 and 17.5 µg/m3, respec-
tively. The lowest values were found for the regional background measurement sites with 
11.0 µg/m3 of NOx and 5.0 µg/m3 of NO2. The median values for all sites of NOx and NO2 
were 24.2 µg/m3 and 12.4 µg/m3, respectively. 

There was a statistically significant difference between the mean NOx concentration 
at traffic sites compared to both urban background and regional background measure-
ment sites, as determined by one-way ANOVA (p = 0.001). The difference between urban 
background and regional background mean levels of NOx concentrations, however, were 
not statistically significant (p = 0.287). Regarding the mean level of NO2, a statistically 
significant difference was found between the mean NO2 concentration between traffic 
and regional background, as well as between urban background and regional background 
measurement sites (p = 0.002), but the difference was borderline between the traffic and 
urban background measurement sites (p = 0.081). 

Table 2. Annual mean, standard deviation (SD), median, minimum, and maximum NOx and NO2 
concentrations for each class of measurement sites. 

Air Pollutant Site Mean SD Median Minimum Maximum 

NOx (µg/m3) 

Traffic 45.0 27.3 37.9 14.6 86.5 

Urban 26.0 9.4 24.9 12.6 58.7 

Regional 15.6 3.5 15.6 10.9 20.4 

All 28.9 17.5 24.2 10.9 86.5 

NO2 (µg/m3) 

Traffic 17.5 8.9 15.6 5.5 28.8 

Urban 12.9 4.5 12.7  3.6 24.5 

Regional 6.5 1.9 6.0 5.0 10.1 

All 13.1 6.4 12.4 3.6 28.8 

NOx = nitrogen oxides. NO2 = nitrogen dioxide. 

3.2. Comparison to Active Measurements 
3.2.1. Diurnal Trends 

Figure 3 demonstrates the typical variation of air pollution concentrations 
throughout a 24-h period in Adama. Here, a significant increase in the NO2 and NOx 
concentrations between 5:00 a.m. and 8:00 a.m. is shown. A less pronounced peak is seen 
in the evening. 
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Figure 3. Diurnal trend of NO2 and NOx in Adama City, averaged from 13 days with complete 
data. 

3.2.2. Yearly Concentrations 
The daily averages of NO2 and NOx, spanning January 2017–January 2019, are 

illustrated in Figure 4. Overall, the air pollution concentrations do not appear to fluctuate 
considerably between the two years. Indeed, the average NO2 and NOx concentrations for 
2017 were 8.31 µg/cm³ and 11.20 µg/cm³, respectively, and 8.01 µg/cm³ and 11.97 µg/cm³, 
respectively, for 2018. 

 
Figure 4. Yearly concentrations of NO2 and NOx in Adama City. 
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3.3. . Land Use Regression Models 
3.3.1. LUR for NO2 

In accordance with the ESCAPE protocol [40], univariate testing of all 59 geograph-
ical predictor variables was performed; of these, 19 were statistically significant (p-value 
> 0.05). Some of the statistically significant variables contained another variable. An ex-
ample is primary roads with all buffer distances of 50, 100, 300, and 500 m being statisti-
cally significant. In such cases, the variables that had the highest correlation with the pol-
lution concentration were selected to be tested in the multivariate model. For these varia-
bles, outer ring buffers were also calculated, univariately tested, and, if found statistically 
significant, included in the multivariate model. In total, 12 variables were added to the 
multivariate model, including two outer ring buffers (Prim_500_minus_300 and 
Res_3000_minus_1000), starting with the variable with the highest adjusted R2. For varia-
bles to be kept in the model, the increase in adjusted R2 needed to add more than 1%. The 
new variable should also conform to the prespecified direction and not change the direc-
tion of the effect for the already included predictor variables. After all the variables were 
tested, only four variables remained. Based on these, the variables’ residuals between the 
actual and predicted NO2 levels were calculated for all measurement stations. The four 
remaining variables were then added to an intermediary model predicting the residuals. 
All variables had a statistical significance below 0.2, when predicting the residuals, and 
were therefore maintained. 

This preliminary model was tested for influential observations and multicollinearity. 
The test showed no influential observations with the highest Cook’s D value being 0.255, 
but the VIF values were above 3 for two of the included variables, indicating the presence 
of multicollinearity. The variable with the highest VIF value (Distance to nearest transpor-
tation administration), was therefore excluded. This new model containing the three re-
maining variables was, again, tested for influential observations and multicollinearity. 
Here, neither the influential observations, with the highest Cook’s D value being 0.223, 
nor multicollinearity were observed. The final model was 4.044 + (0.00983*Primary road 
300 m) + (2.99*10-6*Industrial area within 3000 m) + (0.0159*Road distance in meters 
within 50 m) (Table 3). This model could explain 75.2% of the variance in NO2 and had a 
RMSE of 3.03. No spatial autocorrelation was found when tested by Moran’s I with a non-
significant Z-score of 0.208 (p-value 0.835). 

Table 3. Variables and their coefficients (Beta) included in the final LUR model for NO2. 

Model Variable Beta SE p-value VIF 

Intercept 4.044 1.467 0.009  

Primary road distance in meters within 300m 0.00983 0.00141 2.62×10−8 1.123 

Industrial area in m2 within 3000m  2.99×10−6 5.23×10−7 1×10−6 1.095 

Road distance in meters within 50m 0.0159 0.00631 0.16 1.029 

LUR = Land Use Regression. NO2 = nitrogen dioxide. SE = Standard error. VIF = variance inflation 
factors. 

When testing the internal validation of the model using a leave-one-out cross-valida-
tion, the average adjusted R2 of these models was 0.75, and the RMSE was 2.99. With these 
adjusted R2 values being very similar to that of our final model (0.75), a strong internal 
validity was indicated. A prediction map of NO2 concentrations in the study area is pre-
sented in Figure 5. 
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Figure 5. Prediction map of the NO2 concentrations in a 10-m grid over Adama based on the de-
veloped LUR model. The measured levels of NO2 are presented by dots. 

3.3.2. LUR for NOx 
The NOx model followed the same procedure as the NO2 model. Univariate testing 

of the variables showed 22 statistically significant variables, of which three were outer 
ring buffers. In total, 12 variables were added to the multivariate model. Using the same 
criteria as described above, four variables were also included in the intermediary model, 
used to predict the residuals. After adding these in order of statistical significance, one 
variable (Residential area in m2 within 1000m) had a statistical significance above p = 0.2, 
the significance level set by the ESCAPE protocol [40]. This variable was excluded. The 
preliminary model was thereafter tested for influential observations and multicollinearity. 
The highest Cook’s D value was 0.38, which was well below the set limit of 1. The VIF 
value was also well below its established threshold of 3, indicating no multicollinearity. 
Thus, the preliminary model could be accepted. The final model was denoted as the fol-
lowing: 24.579 + (0.106 × Primary road distance in meters within 100m) + (−0.00502 × Dis-
tance to closest transportation administration area) + (0.0468*Road distance in meters 
within 50m) (Table 4). This model could explain 68.1% of the variance in the NOx levels 
and had a RMSE of 9.43. No residual spatial autocorrelation was found when tested by 
Moran’s I with a nonsignificant Z-score of −0.699 (p-value 0. 484 > 0.05). 
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Table 4. Variables and their coefficients included in the final LUR model for NOx. 

Model Variable Beta SE p-value VIF 

Intercept 24.579 4.614 0.000004  

Primary road distance in meters within 100m 0.106 0,0163 9.950 × 10−8 1.135 

Distance to closest administration area −0.00502 0.00135 0.000639 1.070 

Road distance in meters within 50m 0.0468 0.0200 0.0244 1.070 

LUR = Land Use Regression. NOx = nitrogen oxides. SE = Standard error. VIF = variance inflation 
factors. 

Again, the internal validity was tested with a leave-one-out cross-validation. The av-
erage adjusted R2 of these validation models was 0.56 and the RMSE was 11.45. The dif-
ference between the cross-validation adjusted R2 values and our final model´s R2 indicate 
a somewhat weaker internal validity than that of the NO2 model. Even so, this difference is 
still within the same magnitude as some of the models produced in the ESCAPE project [28]. 
A prediction map of the NOx concentrations in the study area is presented in Figure 6. 

 
Figure 6. Prediction map of NOx concentrations in a 10-m grid over Adama based on the devel-
oped LUR model. Measured levels of NOx are presented by dots. Grey marks areas were the 
model predicted zero or below. 

The partial R2 values, which is the variance explained given the other variables in the 
model, for each variable included in the two final models are presented in the supplemen-
tary materials (Tables S2 and S3). 
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4. Discussion 
In this study, the measurements of NOx and NO2 were conducted at 43 locations over 

6 days during two seasons. Based on these measurements, the LUR models were success-
fully developed for NOx and NO2. These models will be used in future epidemiological 
studies and health impact assessments in the Ethiopian city of Adama. 

4.1. LUR Models 
The LUR models developed in this study were able to explain 75.2% of the variance 

in NO2 levels and 68.1% of the variance in NOx levels, which can be considered as a good 
explanatory degree. With this, the models are suitable for use in local epidemiological 
studies. These levels of explanatory degree are also in the same magnitude as earlier mod-
els conducted in South Africa and Mauritania [18,19,34]. In Durban, South Africa, for in-
stance, a LUR model could explain 73% of the variance of the NOx levels (30). This model 
included similar geographical predictor variables as ours (major roads within 300 m, mi-
nor roads within 1000 m, and open space within 1000 m). However, the differences re-
main: the LUR model in Durban was developed in an area with numerous industrial 
sources, and Durban is a larger city than Adama. Another South African study from West-
ern Cape Province developed a LUR model based on NO2 measurements that were able 
to describe 76% of the annual variation [19]. In that study, separate models were also de-
veloped for the warm season (explaining 62% of the variance) and cold season (explaining 
77% of the variance). In addition to variables related to roads and major roads, similar to 
those in our LUR model predicting NO2 in Adama, the model also included the distance 
to bus stations and train stations, as well as grill places, within 1000 m. In Mauritania, a 
LUR model, studying NO2 levels, was able to predict 68% of the variance (39). Similar to 
our Adama model, it included road variables, but in contrast, it also included variables 
related to population density. The Mauritanian model was based on 48 h of measure-
ments, increasing the uncertainty of the results.  

To relate the results to a European setting, our LUR models for NOx and NO2 can be 
compared with the 36 models developed by ESCAPE [28], which were able to explain 55% 
to 92% of the measured NO2 and 49–91% of the measured NOx. In our final NOx and NO2 
models, we included predictor variables similar to those included in many of the models 
in ESCAPE, such as the distance to primary road, distance to the closest transport admin-
istration area, and distance to closest road and industrial area. These variables have also 
been used in other European studies to explain the spatial variability of urban air pollu-
tion [29,51]. 

Additionally, the LUR models created in Perth, Australia demonstrated stronger pre-
dictions for NOx than NO2 [52], but the opposite was seen for our final models in Adama. 
A LUR model developed for Taipei LUR showed similar results as in the Perth study, with 
a better performance for NOx (81%) compared to NO2 (74%) [53]. Similar to those used in 
our Adama model, these two studies also reported using predictor variables related to 
traffic intensity, industrial areas, and road length. Still, these study settings are quite dif-
ferent, making it difficult to know why our NO2 model performed slightly better com-
pared to the Perth and Taipei models. Possibly, the higher proportion of primary emis-
sions in NOx compared to NO2 resulted in more spatial heterogeneity for NOx. A greater 
spatial heterogeneity would require a higher level of monitoring data support for model 
predictions than with more homogeneous pollutants such as NO2. 

Our model showed that traffic, represented by the primary road and distance to the 
roads, correlates well with the estimated NOx and NO2 exposure. This is not surprising, 
considering the prevalent old and polluting vehicle fleet in the region.  

When using LUR models to predict concentrations of NOx or NO2, it is important to 
consider the limitations for the model in predicting concentrations further away from 
places where the measurements were conducted. Predictions should only be made within 
the area that is covered by the measurement points. It is also important that the data for 
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the prediction variables are complete at places where the concentrations are predicted, 
including buffer areas. 

4.2. NOx and NO2 Measurement 
In comparison to the few measurements conducted in similar African settings, our 

mean levels of NO2 (13.1 µg/m3) were higher than those measured at Kaédi, a medium-
sized town in Mauritania with a mean level of NO2 of 5.3 µg/m3 [34]. Although, lower 
compared to a study from Western Cape Province, South Africa were mean NO2 concen-
trations of 22 µg/m3 [19]. Our mean levels of NOx (29.0 µg/m3) were somewhat lower com-
pared to the mean NOx levels of 36.4 μg/m3 in Durban [18]. Even so, worth mentioning is 
that the measurement site with the highest level of NOx in Adama (86.5 μg/m3) was almost 
twice as high as that of Durban (50.9 μg/m3) [18], suggesting high local emissions at that 
site. It should also be noted that Adama is a relatively small city with NOx levels that are 
higher than those recorded in a much larger city in a high-income country, such as Perth, 
with a mean level of NOx of 18.7 µg/m3 [52]. This is likely due to the so-called super-emit-
ters [54], as Ethiopia has become a dumping ground for the world’s old cars. Even so, the 
measured levels of NO2 and NOx in Adama remain in the lower spectrum of those re-
ported in the ESCAPE project´s European cities, in which NO2 ranged between 9.0 to 58.0 
µg/m3 and NOx from 19.0 to 101.0 µg/m3 [28]. 

In our study, traffic sites had the highest mean levels of NOx (45.0 µg/m3) and NO2 
(17.5 µg/m3), whereas regional background sites had the lowest mean levels of both NOx 
(15.6 µg/m3) and NO2 (6.5 µg/m3). In comparison to the street background NO2 levels 
measured in Kaédi, 7.0 µg/m3 of NO2, our levels were more than six times higher [34]. 
However, the Kaédi measurements were conducted during the dry season only, which 
could influence their results. While we saw minimal differences between the dry and wet 
season, this might not be the case in Kaédi. Another difference between these studies is 
that the traffic intensity was described as low in Kaédi, which is not true for Adama. Fur-
thermore, there is a higher uncertainty in the Kaédi measurements, as they were only con-
ducted during a 48-h period, whereas ours were collected over 5 days. Regional back-
ground levels of NO2 were also considerably higher in Adama compared to Kaédi (2.1 
µg/m3). This could possibly be due to the extensive, episodic waste burning in Adama´s 
rural areas observed during the measurement campaigns. The fact that the ratios of 
NO2/NOx for the traffic sites were 0.39, 0.5 at the urban, and 0.46 at the regional back-
ground sites, confirmed that there likely were other NO sources, like episodic waste burn-
ing, near the regional sites. 

4.3. Comparison to Active Measurements 
4.3.1. Diurnal Trends 

The spike of NO2 and NOx concentrations demonstrated in Figure 3 exemplifies the 
contribution of traffic exhaust to the overall air pollution levels, as this is typically when 
residents undergo their morning commutes to work or school. The early increases 
between 4 a.m. to 6 a.m. is probably related to traffic passing through Adama, as local 
traffic is not likely to contribute so strongly that early. Although an increase was present 
later in the day, a similar peak was not seen. It is possible that residents commute home 
at varying hours of the afternoon and evening. Additionally, the boundary layer is 
generally lower in the morning compared to the evening, which traps more pollutants 
close to the ground, increasing the measured concentrations. 

4.3.2. Yearly Concentrations 
While some variation existed between the years 2017 and 2018, the concentrations of 

NO2 and NOx appeared to be similar throughout the measurement period (Figure 4). 
Indeed, no substantial increase or decrease of the NO2 and NOx levels were seen. Due to 
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a lack of continuous data points, however, we cannot draw conclusions relating to the 
seasonal trends (corresponding to the wet and dry seasons) based on this data. 

4.3.3. Methodological Considerations 
Comparisons of our measurements with the time-resolved data from the Ethiopian 

Meteorological Institute in Adama, featured in Figure 3 and Figure 4, warrant discussion. 
The reliability of the original data from this measuring station was likely affected by cali-
bration issues, abrupt power outages, and irregular maintenance of the samplers. Daily 
averages in particular should be interpreted carefully, as the hours available for a specific 
day (i.e., hours occurring in the middle of the night vs. hours with a high traffic volume) 
will influence how high/low the daily averages are. Additionally, a large spike was seen 
on August 10th 2018 (Figure 4). This date corresponded to the timing of our 2018 measure-
ment campaign, and we were not aware of any larger events that could explain this peak. 
Instead, it was likely caused by an isolated, unusually high local source, perhaps waste 
burning, near the active sampler. For these reasons, we emphasize that the NO2 and NOx 
data obtained from the Ethiopian Meteorological Institute in Adama only provided an 
indication of the NO2 and NOx concentrations in the area and should be interpreted with 
caution. Despite these concerns, it is important to compare our measurements from pas-
sive samplers to these available time-resolved measurements to understand the temporal 
trends in an otherwise data-sparse area. 

4.4. Strengths and Limitations 
Our study is the first air pollution model developed in Ethiopia and only among a 

few in Africa that can capture the spatial variability of NOx and NO2. It will be used to 
assess the air pollution exposure and will serve as an example for similar models in other 
areas such as Addis Ababa. 

Regarding the land use variables, we were able to collect data on several of the most 
important variables. Reliable data on informal settlements was difficult to obtain; there-
fore, a degree of uncertainty, which is difficult to quantify, is expected for this variable. 
Additionally, marketplaces were discussed at the beginning of the project as an activity 
that could potentially contribute to increased levels of NOx through combustion for cook-
ing; however, this class was not included due to lack of reliable data. A specific class to 
assess solid waste burning was not able to be incorporated due to lack of data and its 
intermittent nature. Still, water bodies were included as a proxy to capture the larger, 
more frequently used waste burning sites. The solid burning was, however, more of an 
issue in our attempt to conduct a LUR model for particulate matter with a diameter less 
than 2.5 mm (PM2.5) [47]. Data on the traffic intensity, which is considered to be important, 
was unfortunately not available. An attempt to gather this information was made using a 
local geotagger who collected data on the traffic intensity of several of roads in Adama, 
but the results were not considered representative enough for the different types of roads 
included in our study. The inclusion of variables that accurately reflect the additional land 
use practices, such as marketplaces, outdoor cooking, solid waste burning, and traffic in-
tensity, will likely improve the development of LUR models in future studies. 

The models were validated using leave-one-out cross-validation, a common valida-
tion tool for LUR models and standardized in the ESCAPE study [28]. The leave-one-out 
cross-validation method has been criticized for overestimating the predictive ability of 
LUR models, especially for models developed from a small number of measurements (less 
than 20) [55]. The RMSE error for both the NOx (9.41 µg/m3) and NO2 models were rela-
tively low compared to the ranges of the measured concentrations (11.0 to 85.1 µg/m3 for 
NOx and 5.0 to 28.8 µg/m3 for NO2), indicating the usefulness of the models [28]. Another 
possible concern is whether our measurement sites were distributed well enough 
throughout the city, as some security issues arose in accessing certain areas. With a total 
of 41 measurement sites for the campaign in August 2018 and 42 sites in February 2019, 
however, we believe that we were able to capture the variance within most of the study 
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area in relation to the identified emission sources (see Figure 1). Regarding the classifica-
tion into the different types of stations, a cruder classification compared to the ESCAPE 
protocol had to be used, based on missing information about the traffic intensity and what 
was practically possible. The samplers needed to be guarded during the measurement 
campaign, and the samplers could thereby not be placed far away from the city center. 

We originally performed three measurement campaigns, but only two were long 
enough to meet the requirements of the Ogawa protocol. When the first measurement 
campaign was launched in February 2018, Ethiopia declared a state of emergency. This 
delayed the campaign´s start and development of that measurement campaign, resulting 
in a measurement period of only 24 h; hence, it was not included in the LUR models. Still, 
the lessons learned at this time contributed to the success of the following measurement 
campaigns. 

4.5. Implications 
The annual mean level of NO2 in Adama (13.1 µg/m3) was less than the WHO annual 

guideline of 40 μg/m3 [56], even though there is no national guideline for NO2 and NOx 

exposure in Ethiopia. Still, residents could likely be subjected to harmful levels of air pol-
lution, depending on their proximity to certain roads, industries, or solid waste burning 
sites. Moreover, our LUR was shown to be a promising method to assess the spatial vari-
ation of NOx and NO2 in Adama. To date, only a few LUR models have been developed 
throughout the African continent; thus, our study adds to the application of LUR models 
for air pollution assessments. As LUR has recently started being used in low-income coun-
tries, this study is foundational to environmental epidemiology in such regions. Our mod-
els will, additionally, make a significant contribution to the evaluation of the effect of am-
bient air pollution on a variety of health outcomes in Adama through both epidemiologi-
cal studies and health impact assessments. Specifically, our LUR models will be used to 
assess the outdoor NOx and NO2 exposures of women and children in an ongoing Adama 
birth cohort, which will investigate the health effects of air pollution exposure during ges-
tation. Such epidemiological and health impact studies play an important role in motivat-
ing and supporting the development of air pollution policies and guidelines that, subse-
quently, contribute to improved public health. 

5. Conclusions 
Land Use Regression models for NOx and NO2 have been essential for the execution 

of epidemiological studies and health impact assessments in Europe and North America. 
The associations between exposure and health effects derived from such studies are 
simply not transferable to an African setting, since the air pollution sources and popula-
tion characteristics are vastly different. Thus, it is crucial to conduct similar studies in Af-
rican countries. Hindering this is the fact that air pollution data is often lacking, despite 
the health burden of air pollution falling disproportionately in this region. To address this 
gap, our study successfully developed LUR models for NOx and NO2 in Adama, Ethiopia. 
This will allow future epidemiological studies to be conducted, which will help raise 
awareness of air pollution exposure adverse health effects. Such findings can even inspire 
the creation of policies to improve the air quality and safeguard public health. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4433/12/4/519/s1. Figure S1: Number of datapoints (minutes of available data) from the Thermo 42i 
analyzer at the Ethiopian Meteorological Institute site after applying the inclusion and exclusion 
criteria, Figure S2: The partial R2 values, which is the variance explained given the other variables 
in the model, for each variable included in the final NO2 model, Figure S3: The partial R2 values, 
which is the variance explained given the other variables in the model, for each variable included 
in the final NOx model. 
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