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Abstract: The extreme values of high tides are generally caused by a combination of astronomical
and meteorological causes, as well as by the conformation of the sea basin. One place where the
extreme values of the tide have a considerable practical interest is the city of Venice. The MOSE
(MOdulo Sperimentale Elettromeccanico) system was created to protect Venice from flooding caused
by the highest tides. Proper operation of the protection system requires an adequate forecast model
of the highest tides, which is able to provide reliable forecasts even some days in advance. Nonlinear
Autoregressive Exogenous (NARX) neural networks are particularly effective in predicting time
series of hydrological quantities. In this work, the effectiveness of two distinct NARX-based models
was demonstrated in predicting the extreme values of high tides in Venice. The first model requires
as input values the astronomical tide, barometric pressure, wind speed, and direction, as well
as previously observed sea level values. The second model instead takes, as input values, the
astronomical tide and the previously observed sea level values, which implicitly take into account
the weather conditions. Both models proved capable of predicting the extreme values of high tides
with great accuracy, even greater than that of the models currently used.
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1. Introduction

Extreme tidal events strongly affect the socio-economic and environmental aspects of
many locations around the world. The Bay of Fundy, which separates the eastern Maritime
Provinces of Nova Scotia and New Brunswick, Canada, is characterized by the world’s
largest tidal ranges. High tide can be up to over 16 m higher than low tide [1]. The tides in
the Bay of Fundy are so high because of an unusual combination of factors: the shape of
the bay and the seiches. It is very important for people living in the Bay of Fundy to know
the tide heights in order to be able to move or sail along the coast safely.

The approach of a storm to the shore leads to an increase in the sea level above the
normal value. For less intense storms that cannot be qualified as hurricanes, or which do
not cross the coast, this rise is generally lower than 1 m. For very intense hurricanes, the
storm surge may exceed 5 m. On 29 August 2005, the storm surge induced by Hurricane
Katrina, exceeding 8 m in some places, caused multiple failures to various flood protection
structures of greater New Orleans area, submerging 80% of the city [2]. Due to the storm
surge, the sea penetrated 10 km inland in many areas and up to 19 km inland along bays
and rivers, devastating the coasts of Mississippi and Alabama and making Katrina one of
the most destructive natural disasters in the history of the United States.

Unlike what happens in the oceans, in the Mediterranean Sea the maximum tidal
fluctuations generally do not exceed a few tens of centimeters, except for some particular
cases, where shape and geometry of coastline play a major role along with storm events.
The most emblematic and interesting case is represented by the Venice Lagoon, where the
storm tide may overcome 1.5 m in correspondence with critical meteorological conditions,
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exposing its extraordinary historic-architectural heritage to the flooding risk. When the
storm tide exceeds 150 cm, 70% of the Historic Centre of Venice is flooded, while a storm
tide exceeding 110 cm causes the flooding of 12% of the same Historic Centre.

In order to protect Venice and its lagoon from storm tides exceeding 110 cm, the MOSE
system, consisting of 4 mobile barriers, was designed and it is nearing completion by the
Interregional Superintendency for Public Works in Veneto—Trentino Alto Adige—Friuli
Venezia Giulia of the Italian Ministry of Infrastructures. The 78 flap gates, installed at the
bottom of the inlets, allow to temporarily separate the lagoon from the sea during the
events of severe storm tide. When the system is fully operational, the mobile barriers will
be raised if the storm tide exceeds 110 cm. The procedures for activating the MOSE barriers
are still being fine-tuned in detail. However, the lifting procedure of the mobile gates is
quite complex and takes about 5-6 h in total. In order to cope with extreme storm tide
events, it is advisable to have forecast models that are accurate even with advance times
long enough to allow the MOSE (MOdulo Sperimentale Elettromeccanico) system to be
activated safely.

Currently, the prediction of extreme storm tide levels in Venice is carried out using
statistical [3] or hydrodynamic models [4]. In the last two decades, there has been a
significant increase in the use of Machine Learning (ML) algorithms in the prediction of
hydrological quantities [5-12]. Few applications so far have involved sea level prediction.
Imani et al. (2018) used the Extreme Learning Machine (ELM) for the prediction of the sea
level fluctuation at Chiayi coast, Taiwan [13]. Liu et al. (2019) developed a combined tidal
forecasting model based on the Support Vector Regression (SVR) and on the Autoregressive
Integrated Moving Average, providing a simulation of the measured tidal data at the station
of Bay Waveland Yacht Club, USA [14]. Most of the studies in the existing literature are
based on Artificial Neural Networks (ANN). Jain et al. (2007) developed a tidal prediction
model based on the Feed Forward with Levenberg-Marquardt Back Propagation neural
network, reaching a forecasting horizon of 24 h, and used it for the tide prediction on the
west Indian Ocean coasts [15]. Karimi et al. (2013) predicted the sea level fluctuation in
Darwin Harbor, Australia, based on Adaptive Neuro-Fuzzy Inference System (ANFIS)
and ANN [16]. Riazi et al. (2020) proposed a Deep Learning approach for the tide level
prediction based on the forces (e.g., astronomical forces) that affects the tide level and
applied it for the prediction of the future tides for six stations located on the Queensland
coast, Australia [17]. However, no studies based on these procedures and focused on the
extreme values of storm tides were reported in literature.

In this study, the Nonlinear Autoregressive Exogenous (NARX) neural networks
were used for the prediction of the extreme storm tide events in Venice historic center.
NARX networks are a dynamic recurrent neural networks, particularly suitable for the
prediction of time series which highlight seasonal components, of quantities relating to
natural phenomena [18]. NARX networks have so far found a fair application in some
forecasting problems of hydrological time series. Lee and Resdi (2016) developed a NARX-
based model capable of catchment-wide simultaneous prediction of river stages at multiple
gauging stations in Kemaman basin, Malaysia [19]. Guzman et al. (2017) used NARX
networks to simulate daily groundwater levels at a local scale in the Mississippi River
Valley Alluvial aquifer [20]. Rjeily et al. (2017) employed NARX network to forecast
flooding events within urban drainage systems [21]. Yang et al. (2019) applied NARX and
other recurrent neural networks to simulate the operation of three multi-purpose reservoirs
located in the upper Chao Phraya River basin, Thailand [18]. Di Nunno and Granata (2020)
used NARX network to predict the daily groundwater level fluctuation for 76 monitored
wells located in Apulia, Southern Italy [22].

Furthermore, NARX networks are able to optimize time performance in comparison
with other ANNSs [23]. In the future, this ability will allow a continuous and quick retrain
of the network with new data, in order to take into account, in the storm tides forecasting,
the effects related to the sea-level rise and subsidence which affect the Venice Lagoon.
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This study reports the updates of the research whose first results are shown in Di
Nunno et al. (2021), in which NARX networks were used to forecast tide oscillations in
19 tide gauge stations covering the entire Venetian Lagoon [24], while here the attention
focused on the extreme storm tide events in Venice historic city center.

The NARX-based models were developed with tide data collected at the Punta della
Salute tide gauge, located at the end of Canal Grande, and meteorological data collected at
the Piattaforma CNR, located outside of the Venetian Lagoon. The accuracy of the models
was assessed as the input variables and lag times varied, considering a forecasting horizon
of up to 72 h, that it is enough time to activate the MOSE barriers. Furthermore, a sensitivity
analysis to the training time series length and to the duration of the extreme tidal events
was also performed. Finally, a comparison with the prediction performed using statistical
and deterministic models was also made in order to evaluate the ability of the NARX
network to provide reliable predictions with respect to other well-known models.

In addition, Appendix A provides an ensemble modeling, which allows to evaluate the
temporally transferability of the model, and Appendix B describe the predictions obtained
with a NARX-based model that included only the lagged values of the tide level as input,
in order to assess the impact that not considering the astronomical tide as input in the
NARX modeling has on forecasting performance.

2. Materials and Methods
2.1. Study Area and Extreme Events

The Venice Lagoon is located in the Upper Adriatic and extends from the Sile river
in the north to the Brenta river in the south, covering an area of 550 km?. Only the 8% is
represented by land, including the city of Venice and many smaller islands while about
11% is permanently covered by open water and 80% consists of mudflats, tidal shallows,
and salt marshes. The lagoon is connected to the Adriatic Sea by means of three inlets: Lido,
Malamocco, and Chioggia (Figure 1). In ordinary conditions, the observed sea level in the
Lagoon is little different from that induced by the astronomical tide since meteorological
effects are small. In the case of particularly adverse weather conditions, with significant
drop pressure and strong sirocco wind, the meteorological effects become significant: if
they are in phase with a high astronomical tide, they can lead to the phenomenon of high
water, which is conventionally defined as a tide level greater than 80 cm with reference to
the Punta della Salute tide gauge. At this tide level, the flooding of the lower part of the city
begins. The storm surge may be enhanced by a severe low pressure on the upper Adriatic
and contemporary high pressure on the lower Adriatic. The situation worsens further if a
strong wind from North-East (Bora) blows in the northern Adriatic together with sirocco
wind in middle Adriatic, leading to the convergence of wind-induced marine currents.
In addition, due to the shape of the Adriatic Sea, a storm surge leads to the formation of
seiches whose amplitude is progressively decreasing [25]. The concomitant action of the
above factors can lead to extreme values of storm tide levels, as observed more and more
frequently in recent decades.

The most well-known and impressive extreme event occurred on 4 November 1966.
The storm tide level was the highest recorded, 194 cm [26]. The surge is even more
impressive since the astronomical contribution to the observed peak was less than its mean
level, so it was negative. Those days were characterized by exceptionally adverse weather
conditions that caused extensive civil and hydrogeological damage in various areas of Italy,
such as the famous flood in Florence. The sirocco wind was strong and persistent, reaching
a speed of 52 knots in Venice, of 58 knots in lower Adriatic Sea. The pressure drop was
30 hPa in 2 days. The flood has been extremely long in time: the tide level persisted over
110 cm for 22 h.

The second most severe event of exceptional high water occurred in Venice on 12
November 2019 and resulted to the flooding of almost 90% of the city. In November 2019,
there was an anomalous persistence of sirocco winds on the Adriatic Sea, which caused an
accumulation of water masses in the Venetian Lagoon. The simultaneous persistence of
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low pressure on the upper Adriatic induced a significant rise in sea level, which was about
30 cm higher than the average value of the last 25 years.

In recent years, also due to eustatism and subsidence, as well as due to climate change,
the extreme storm tide events affecting Venice have become increasingly frequent. The good
availability of data relating to water level, wind characteristics, and barometric pressure
has allowed to develop data-driven models capable of accurately predicting storm tide
levels with forecast horizons of many hours. It is shown in the following that models based
on NARX networks allow to predict even extreme events with high accuracy.
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Figure 1. Location of the Punta della Salute tide gauge (®) and Piattaforma CNR weather station (9),
with a thematic map of the Venice Lagoon [27].

2.2. NARX Model Architectures

NARX is a recurrent dynamic network composed of interconnected nodes. Each node
represents an artificial neuron that receives one or more inputs and elaborates them to
produce an output. These sums pass through a non-linear activation function. The main
advantages of the NARX networks with respect to other ANNs approaches are the faster
convergence in reaching the optimal weights of the connections between neurons and input
parameters [28] and the reduced number of the latter to calibrate and make the model
effective [20]. The defining equation for the NARX model is:

y() = F(y(t—1),y(t=2),.y(t—my) u(t =1, u(t—2), . u(t—m)) ()

where u(t) and y(t) are, respectively, the input and output values at time ¢, n,, and ny are the
input and output network layers, and f is the non-linear function, approximating by the
Feedforward Neural Network (FNN).

The NARX architectures include 3 different and sequential layers (Figure 2). The first
is the input layer, which contains the input parameters of the neural network. The second
is the hidden layer, which is the computational step between input and output. The third
is the output layer, which leads to the predicted value y(t). Moreover, the output value is
then fed back to the input values as part of the NARX architectures.

For the hidden layer, a sigmoid activation function f1 was used, while a linear acti-
vation function f, with only one neuron 1, was used for the output layer. A preliminary
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analysis was carried out to assess the optimal number of hidden nodes, which was found
to be equal to 3 (Figure 2, indicated as hy, hy, and h3). For the output layer, the weight
w and bias b of the NARX model were optimized based on the Bayesian Regularization
training algorithm. The NARX process was stopped if one of the following parameters was
reached: the maximum number of epochs, settled equal to 1000; the Levenberg-Marquardt
adjustment parameter, settled equal to 1 x 10~ '%; the error gradient was below a minimal
value, settled equal to 1 x 1077,

The Bayesian Regularization allows to achieve the best predictions in comparison
with other two training algorithms preliminarily tested, the Levenberg-Marquardt and the
Scaled Conjugate Gradient. It consists of a Gauss-Newton approximation to the Hessian
matrix, based on the Bayesian technique proposed by MacKay (1992) [29], and implemented
in the Levenberg—Marquardt algorithm, in order to reduce the probability of overfitting
and the computational overhead [30]. Despite a slow convergence with respect to the direct
application of Levenberg—Marquardt algorithm, the Bayesian Regularization algorithm
usually leads to improved forecasting [22].

A normalization of the input values was also performed, in order to have a common
range between 0 and 1 and improve the modeling performance. The water level, the
astronomical tide, the barometric pressure and the wind speed were normalized with
respect to the, respectively, maximum values along the time series, while the wind direction
was divided by 360, equal to the complete angle in degree:

« Rtige,i

tidei = T () 2)
ot = mahx(tht) ©)
i = mi&% 4)
Vtyind,i = % ®)
opind,i = “;)gg,i (6)

where i indicates the temporal step and * indicates the dimensionless form of each parameter.

The two different NARX-based models were implemented in MATLAB® 2020a envi-
ronment [31]: Model A and Model B. The two models were different in the input variables.
Both the models included the lagged values of the water level /3, (f — f;) among the inputs.

In addition, Model A considered astronomical tide fs,(t — t5), wind speed v,;,,4(t —
tz), wind direction ay;,,4(t — t;), and barometric pressure Py, (t — ;) as exogenous input
parameters, whereas Model B considered only h,(t — f;) as an exogenous input variable.
The astronomical tide hgsir(t — £4) values were computed through the following:

N
hastr = Ag + Z Ay cos(oyt —ky) (7)

n=1

where Ay is the average sea level, A, is the amplitude, o, the angular frequency, k,, the phase
delay of component 7, and N is the number of harmonics used to evaluate the astronomical
tide height. These values can be found on the Venice Municipality website [32].

It should be noted that, despite the meteorological parameters were neglected for
Model B, their influence is implicitly expressed by including previously observed water
level values, which in turn also depend on meteorological factors. Different lag time ¢,
values were considered, in order to assess the performance of the models as ¢, increases:
12,24, 48, and 72 h.
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Figure 2. Sketch of the NARX model architecture.

2.3. Evaluation Metrics

The performances of the NARX-based models were evaluated by means of three
evaluation metrics: the coefficient of determination R2, which assess how well the model
replicates observed outcomes and predicts future outcomes, the Mean Absolute Error
(MAE), which provides the average error magnitude for the predicted values, and the
Relative Absolute Error (RAE), equal to the ratio between absolute error and absolute value
of the difference between average and each measured values. These metrics are defined as:

R2—1_ (i —7)° ®)
Y (Va — i)
Yiqlfi — il
RAE = =—— ~— 10
T Ve — 7 (10

where m is the total number of measured data, f; is the predicted value for the i-th data, ;
is the measured value for the i-th data, and ¥, is the averaged value of the measured data.
The performances of the NARX-based model were computed considering only the extreme
tidal events, with h;;;, equal or greater than 110 cm.

3. Results and Discussion
3.1. Training and Testing

The NARX-based models were trained using all water level data, collected between
January 2009 and June 2012. After the training stage, the models were employed to simulate
all the storm tide events characterized by a level higher than 110 cm that occurred from
January 2009 to December 2020. Overall, 52 extreme storm tide events were identified. Of
these, 43 events are classified as very high storm tide, with sea level between 110 cm and
140 cm, and 9 events as exceptional storm tide, with storm tide higher than 140 cm.

The NARX-based model showed a very good fit for both Model A and Model B
and for all lag time (Table 1). The best results were achieved for the lower ¢,, equal to
12 h (Model A—R? = 0.950, MAE = 1.96 cm and RAE = 23.03%; Model B—R? = 0.941,
MAE =2.14 cm, and RAE = 25.13%). The prediction performance reduces as the lag time
increases, with the NARX models providing the less accurate forecasts for f, = 72 h (Model
A—R? =0.899, MAE =291 cm, and RAE = 34.25%; Model B—R? = 0.860, MAE = 3.29 cm,
and RAE = 38.75%). In Figure 3 the comparison between measured and predicted extreme
storm tide levels for both Model A and Model B, and for different lag times is reported,
highlighting a slight tendency to underestimate these extreme events. Overall, regardless
of the lag time, the NARX network-based models are able to forecast extreme storm tide
events, including the exceptional storm tides. Moreover, the model performance was not
significantly affected by the additional input parameters: Model B is only slightly less
accurate than model A. This obviously does not mean that the weather parameters have
little influence on extreme events: the fundamental influence of the weather parameters is
taken into account by means of the lagged values of the storm tide level [24].
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Table 1. Forecasting performance.
Model A
Metric ode
t,=12h t,=24h t,=48h t,=72h t,=12h t,=24h t,=72h
R? 0.950 0.923 0.911 0.899 0.941 0.905 0.860
MAE (cm) 1.96 2.46 291 291 2.14 2.55 3.29
RAE (%) 23.03 28.95 34.21 34.25 25.13 29.97 38.75
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Figure 3. Comparison between measured and predicted storm tide.
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3.2. Time Series Analysis

A further analysis was carried out on the time series related to the extreme storm tide
events, in order to evaluate the ability of NARX to provide reliable predictions in the hours
before and after the water level peaks, but also the sea level during the whole storm tide
event. As an example, the modeling of the highest storm tide in the entire investigated
period, equal to 185 c¢m, is here described. This event took place from 11 to 14 November
2019. Marked level fluctuations, with five peaks, were observed, passing from a minimum
sea level of 11 cm on 11 November 2019 to the highest peak of 185 cm on 12 November
2019, with intermediate peaks equal to 108, 85, 129, and 145 cm, classifiable, respectively,
as high storm tide (between 80 and 110 cm), very high storm tide, and exceptional storm tide.

For both Model A and Model B, and for all the tested lag times, the NARX network
has proven to be able to forecast that extreme event by accurately simulating the storm
tide trend. For the 85 cm peak, Model A provides the best prediction with the lower
ts, equal to 12 h, with an overestimation of the storm tide equal to 0.29 cm. Model B
also provides very good outcomes: the less accurate forecast was obtained for ¢, = 24 h,
with an underestimation of 3.08 cm. For the third peak, equal to 129 cm, a very effective
prediction was achieved with Model A also for t, = 72 h, with a slight underestimation
of just 0.02 cm. For the same lag time, Model B provides a very accurate forecast too,
with an underestimation of 0.61 cm. For the exceptional tide peak = 185 cm, the best
forecast was achieved with Model A and ¢, = 48 h, with an underestimation of 0.2 cm.
However, Model B also provided accurate predictions for all lag times, and the worst
forecast was obtained for t; = 24 h, with an overestimation of 5.99 cm. Following this peak,
there is a further exceptional storm tide, corresponding to a 145 cm sea level, the last of the
considered period. For the latter, the best forecasts were again achieved with Model A,
with an underestimation of 0.27 cm for ¢, = 24 h. However, accurate predictions were also
obtained with Model B, with an underestimation of 0.28 cm in the case of ¢, = 48 h.

Figure 4 reports the comparison between measured and predicted sea level for both
Model A and Model B and for the different lag times.
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3.3. Sensitivity Analysis

The sensitivity of the NARX-based models to the training time series length and to
the duration of the extreme tidal events is discussed in this section.

Model B was considered to assess the prediction accuracy as the training time series
length decreases. A total of four different training time series lengths were investigated:
overall, 42 months (from January 2009 to June 2012), corresponding to the full length time
series (which has been already considered in Section 3.1), 30 months (from January 2010 to
June 2012), 18 months (from January 2011 to June 2012), and 6 months (from January 2012
to June 2012).

Figure 5 provides a comparison between measured and predicted tide for a lag time
equal to 72 h, which is the most challenging case. The best predictions were obtained
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for the full length training time series (R? = 0.860, MAE = 3.29 cm, and RAE = 38.75%).
As expected, a performance reduction was observed as the length of the time series re-
duced (Table 2), with the worst predictions obtained with the shorter training time series
(R? = 0.820, MAE = 3.96 cm, and RAE = 40.57%).

190 — , 190 : :
i | i I
180 | o = 180 [ o =N A
iH h 2 g
2170 | = 2! E170 b= g |
g 5 kR E ey R
~ =1 = ~ =1 =1
3 160 [ o & 3 100 ol g
N & 2 Lg 21
~ 150 > .ON o 150 7 RN
= : : g : LA
= =
140 ' 140 b1
A A I o
3 130 ' 4 S0 b o %4
i 1 1 e 1 1
4 ! ' o i :
1 1 - 1 1
A 120 ' ' f,=72hours & 120 oN ' f,=72hours
1o b 2 Trc%ining time series length 1o |4 T rc{lining time series length
f ' 42 months : ' 30 months
100 I A 100 I P
100 110 120 130 140 150 160 170 180 190 100 110 120 130 140 150 160 170 180 190
Measured tide level (cm) Measured tide level (cm)
190 190
1 1 1 1
1 o 1 1 o :
180 | o1 =l A 180 [ o1 =
I g= d=l
170 = 3| 170 2 = A
e = \ =) F<
S| E g SoE g
=i I g=]
§ 160 E‘: %: -§ 160 E‘: o
2 H R 2 H 2
o 150 = | 150 F LA
= ' ! A = H 1
= 140 | ! A = 140 ! |@A
£ ! ! & !
2] b L 2] 2 -
= 130 ! AE £ 130 : .
h 1 1 < 1 1
& 120 1 5& M E t,= 72 hours & 120 E E 1, =72 hours
110 | Tra:ining time series length 110 Tra:ining time series length
! ! 18 months 43 ! 6 months
100 L P Y 100 L P
100 110 120 130 140 150 160 170 180 190 100 110 120 130 140 150 160 170 180 190
Measured tide level (cm) Measured tide level (cm)

Figure 5. Comparison between measured and predicted storm tide—Sensitivity analysis to the
training time series length.

Table 2. Forecasting performance—Sensitivity analysis to the training time series length.

Time Series Length for the Training t, (h) R? MAE (cm) RAE (%)

12 0.941 2.14 25.13

January 2009-June 2012 24 0.905 2.55 29.97
(Full length) 48 0.888 3.05 35.87

72 0.860 3.29 38.75

12 0.937 2.19 25.25

24 0.905 3.14 33.66

January 2010-June 2012 48 0.869 318 36.16
72 0.844 3.43 39.12

12 0.924 2.61 26.14

24 0.898 3.25 35.72

January 2011-June 2012 48 0.863 393 38.03
72 0.832 3.56 40.06

12 0.902 2.67 30.04

24 0.891 3.54 37.12

January 2012-June 2012 48 0.844 371 38.36

72 0.820 3.96 40.57
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However, predictions obtained even with a reduced time series length were still quite
accurate.

The prediction accuracy for extreme tidal events with different duration was evaluated
considering three different events.

Figure 6 reports the comparison between measured and predicted tide for an extreme
storm tidal event that occurred between 10 November 2012 and 14 November 2012 (indi-
cated as Event 1), with a duration of 48 h. An exceptional storm tide was recorded during this
event, with h;4, higher than 140 cm. As confirmed by the metrics, reported in Table 3, both
models A and B were able to provide accurate predictions of this event, for all lag times.
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Figure 6. Event 1, extreme storm tide event forecasting for the period 10-14 November 2012, comparison between measured
time series and predicted values: Model B, f; = 12 h (on the left), t; = 72 h (on the right).

Table 3. Forecasting performance—Events: 1, 2 and 3.

Model A Model B
Event Metric
t,=12h t,=24h t,=48h t,=72h t,=12h t,=24h t,=48h t,=72h

Event 1 R? 0.995 0.993 0.990 0.989 0.995 0.989 0.989 0.975
(length 48 ) MAE (cm) 2.01 2.66 3.35 3.56 2.04 3.53 3.44 4.68
3 RAE (%) 6.59 8.71 10.99 11.68 6.69 11.58 11.28 15.33
Event 2 R? 0.992 0.989 0.987 0.984 0.987 0.982 0.975 0.974
(length 168 h) MAE (cm) 243 2.70 3.24 3.53 2.76 3.65 4.17 4.09
8 RAE (%) 9.30 10.33 12.37 13.49 10.57 13.96 15.95 15.62
Eovent 3 R? 0.995 0.993 0.992 0.992 0.992 0.988 0.988 0.986
(length 216 h) MAE (cm) 2.46 2.85 2.75 2.95 2.90 3.26 3.46 3.30
8 RAE (%) 7.88 9.13 8.80 9.44 9.28 10.42 11.07 10.54

Figure 7 reports a second event (Event 2) which occurred between 27 October 2018
and 3 November 2018, with a duration of 168 h. The two consecutive exceptional storm tides
were measured during this period, with also two very high storm tides (hiz, higher than
110 cm) before and after the exceptional storm tides. Additionally, in this case, predictions
were very accurate, with a slight underestimation of the exceptional storm tides for Model B
and t, =72 h.

The third event (Event 3) is shown in Figure 8. It occurs between 20 December 2019
and 29 December 2019, with a duration of 216 h. During this period, one exceptional storm
tide was measured, preceded by two very high storm tides, and followed by another very high
storm tide. In this case, it is observed that both Model A and Model B are able to provide an
accurate prediction of the peaks, for all lag times.

The analysis of the investigated events indicates that the accuracy of the model is not
affected by the duration of the storm tide event (Table 3).
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Figure 7. Event 2, extreme storm tide event forecasting for the period 27 October-3 November 2018, comparison between

measured time series and predicted values: Model B, f; = 12 h (on the left), f; = 72 h (on the right).
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Figure 8. Event 3, extreme storm tide event forecasting for the period 20-29 December 2019, comparison between measured
time series and predicted values: Model B, t; = 12 h (on the left), t, = 72 h (on the right).

3.4. Comparison with Other Models

The accuracy of NARX-based models in predicting extreme events was compared with
that of two statistical models, referred as ISPRA statistical models (ISPRA-STAT2008 [33]),
and one deterministic model, referred as Shallow water Hydrodynamic Finite Element
Model (SHYFEM [4,34]).

To evaluate the prediction accuracy of the deterministic model, the results of a mod-
eling carried out in the period 1 October 2012-1 October 2013 for the tide gauge of Punta
della Salute were considered. The evaluation of the prediction accuracy for the statistical
models was instead carried out for the period 18 March 2012-30 June 2013 for the same
tide gauge [35]. The comparison was conducted based on an accuracy index, expressed as:

I=¢,+20 (11)
where ¢, indicates the mean error and 2¢ the confidence interval, with ¢ representing
the standard deviation of the errors, i.e., the differences between predicted and measured
levels.

Statistical models take into account the hourly time series of the sea level and of the
meteorological parameters, such as barometric pressure, wind speed, and wind direction
observed in the previous hours. For the first model, referred as STAT-1, the meteorological
parameters were provided by the European center ECMWE, while for the second model,
referred as STAT-2, those parameters were provided by the BOLAM limited area hydrostatic
model [36]. The SHYFEM model consists of a two-dimensional hydrodynamic model
which allows to forecast the sea level over the entire Mediterranean basin, based on the
wind speed, wind direction, and atmospheric pressure fields provided both by ECMWF
(SHYFEM 5) and BOLAM (SHYFEM 6), as for the statistical models [37]. Table 4 reports
the values of the accuracy index, showing a comparison between NARX-based models,
SHYFEM, and statistical models, and grouping the measured levels in height classes. As
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for the statistical models, the comparison was made regardless of the lag times, while for
the SHYFEM model data relating to lag times equal to 24, 48, and 72 h were available.

For hyj, in the range of 80 to 100 cm, SHYFEM model highlights mean errors which, for
ta =72h, reach values closer to 0 with respect to the NARX models (Model A—e¢;;, = —0.9 cm,
SHYFEM 6—c¢,, = —0.3 cm). However, both NARX-based models exhibit significantly nar-
rower confidence interval 2¢ in comparison with SHYFEM and statistical models. In
particular, for /4, between 80 and 100 cm, the lower value of 20 was computed for Model
A and t; =24 h, equal to 5.5 cm (Model B and ¢, = 24 h—20 = 6.1 cm). Considering the
same hy4, interval and lag time, deterministic and statistical models shows a wider confi-
dence interval, with 20 equal to 12.9, 16.8, 16.1, and 16.6 cm, respectively, for SHYFEM 5,
SHYFEM 6, STAT-1, and STAT-2. Moreover, NARX models do not show a marked increase
in 20 as the lag time increases, with 20 = 6.1 cm for Model A and ¢, = 72 h (Model B and
t; =72 h—20 = 6.2 cm). The same cannot be said for the deterministic models that highlight
a relevant increase in 20 as the lag time increases, with 20 equal to 18.5 cm (SHYFEM 5)
and 20.9 cm (SHYFEM 6) for t, =72 h.

As the storm tide level increases, statistical models exhibit a marked widening of the
confidence interval. In particular, for Kz, > 120 cm, STAT-1 and STAT-2 show 20 values,
respectively, equal to 27 and 26.2 cm. Even the deterministic models exhibit a widening
of the confidence interval. For ¢, = 24 h, 20 equal to 26.2 and 26.1 cm were, respectively,
computed for SHYFEM 5 and SHYFEM 6. As the lag time increases, instead, SHYFEM 5
and SHYFEM 6 show an opposite trend, with a narrowing of the confidence interval for the
first model (20 = 16.8 cm) and a widening of the same for the second model (2¢ = 47.0 cm).
NARX-based models instead are characterized by confidence intervals similar to those
computed for hy;4, between 80 and 100 cm. As for Model A, 20 values were equal to 5.1
and 5.2 cm, respectively, for lag times of 24 and 72 h. Model B shows a greater widening of
the confidence interval as the lag time increases, passing from 5.3 cm for t; =24 hto 7 cm
fort,; =72h.

Overall, the NARX-based models highlight good accuracy for all lag times (from
this point of view, the NARX-based models would seem to outperform those based on
different Machine Learning algorithms, such as M5P and RF [38]) and sea level with a
narrow confidence interval in comparison with the statistical and deterministic models,
confirming the ability of the NARX network to provide reliable predictions of extreme
storm tide events.

Table 4. Accuracy index grouping the measured tides by height classes: comparison between NARX, SHYFEM, and

statistical models.

I=¢y + 20 (cm)

htide (cm) ta (h) Model A Model B SHYFEM5  SHYFEM 6 STAT-1 STAT2
24 12455  —14+61 2.0+ 129 10+ 168
80-100 48 11463  —11+64 164183  —06+187  —37+161  —40+166
72 09461 09462 19+185  —03+209
24 16455  —-16+54 05+125  -36+196
101-120 48 18459 19461  -31+175 -55+248 574207 534233
72 15458  —16+66  -28+206 —68+264
24 15451 11453  -944262 —00+261
120 48 22451  -25+69  —86+212  02+148  —194427.0 —167 + 262
72 20452  -27470 —111+168 —88+470

4. Conclusions

This study assessed the ability of NARX network-based models to forecast extreme
storm tide events in Venice. A total of two models were built, including the lagged
values of the measured sea level and astronomical tide as input values. In the first one,
Model A, also the meteorological parameters related to wind features and barometric
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pressure were taken into account. The prediction accuracy of this model was very good.
Meteorological parameters are not included as input in Model B, however, their influence
is implicitly expressed by previously observed sea level values, leading to a still high
prediction accuracy.

The ability to forecast even the exceptional storm tides, linked with a narrow confidence
interval compared to different statistical and deterministic models, makes the NARX
networks a reliable tool for the extreme storm tide events forecasting in Venice. Moreover,
the limited effect of the lag time increase on the forecasting performance demonstrates the
great capability of NARX networks to predict extreme events with a forecasting horizon of
1-3 days, that allows a timely activation of the MOSE barriers.

However, it should be noted that such an approach leads to satisfactory results in
appropriately monitored sites, for which adequate datasets are available, including even
extreme events. Therefore, where sufficient data are not available, with particular reference
to extreme events, an approach based on Machine Learning algorithms cannot be used.
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Appendix A. Ensemble Model

In order to evaluate the temporally transferability of the model, a further NARX
modeling was performed. Several models were built to predict the storm tide using
different subsets for training and testing. In addition, the outcomes of each model were
combined within an ensemble model in order to provide a single final forecast of the target
values. In this case, the ensemble approach is equivalent to a cross validation for the time
series.

In particular, 10 different networks were trained for the different lag times and for
both Model A and B, the results of which were averaged to obtain the final predictions.
The temporal continuity of the training datasets was preserved, since it was a time series
modeling. After the training stage, in agreement with the NARX modeling described in
Section 3.1, the models were used for the prediction of all tidal events with level higher
than 110 cm from January 2009 to December 2020. Figure A1 illustrates the subsets used
for training and testing the different networks.

For t; = 12 h the performances achieved by each network were always high, with
R? values always higher than 0.93 for both Model A and Model B. A reduction in the
performance was observed as the lag time increases. However, R? values were still higher
than 0.76 for all network and for both Model A and Model B highlighting how, despite a
long horizon forecasting, NARX modeling was still able to provide accurate predictions.

The ensemble model exhibited very good fit for both Model A and B and for all lag
time (Table A1) with the best performances achieved for t; = 12 h (Model A—RZ =0.951,
MAE = 1.81 cm, and RAE = 21.73%; Model B—R2 = 0.951, MAE = 1.85 cm, and RAE = 22.13%).
In agreement with the training and testing stage reported in Section 3.1, as the lag time
increased, a reduction in the prediction performance was observed (for f, = 72 h, Model
A—R? = 0.882, MAE = 3.06 cm, and RAE = 36.66%; Model B—R? = 0.863, MAE = 3.25 cm,
and RAE = 38.99%). In Figure A2, the comparison between measured and predicted storm
tides for the ensemble models (both Model A and Model B) and for different lag times is


https://www.venezia.isprambiente.it/index.php?folder_id=20&lang_id=2
https://www.venezia.isprambiente.it/index.php?folder_id=20&lang_id=2

Atmosphere 2021, 12, 512

150f18

Net 1
Net 2
Net 3
Net 4
Net 5
Net 6
Net 7
Net 8
Net 9

Net 10

reported. All individual networks and the ensemble model showed absolutely comparable
performance, ensuring the temporal transferability of NARX-based models.
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Figure A1. Sketch of the ensemble model.

Table Al. Forecasting performance—Ensemble model.

T,=12h f,=24h f,=48h T,=72h
Model  Net @  MAE  RAE o2 MAE  RAE - MAE  RAE o2 MAE  RAE
(cm) (%) (cm) (%) (cm) (%) (cm) (%)
1 0942 200 2392 | 0892 282 3376 | 0840 344 4117 | 0839 317 3800
2 0943 206 2467 | 0916 263 3155 | 0888 288 3455 | 0871 303 3634
3 0955 216 2589 | 0911 272 3257 | 0877 296 3546 | 0841 315 3772
4 0940 209 2509 | 0916 252 3026 | 089 264 3163 | 0843 342 4102
5 0941 200 2399 | 0910 274 3284 | 089 268 3211 | 0880  2.88 3455
Model 6 0942 196 2344 | 0905 296 3552 | 0902  2.88 3456 | 0.832 324 3887
A 7 0954 211 2530 | 0903 298 3568 | 0877 296 3553 | 0782 385  46.13
8 0941 199 2386 | 0902 299 3580 | 0.880 293 3509 | 0.888 289 3464
9 0941 209 2503 | 0913 269 3218 | 0887 286 3426 | 088 303 3631
10 0942 206 2474 | 0906 295 3537 | 0.898 292 3495 | 0884 236 2827
Ensemble 0951 181 2173 | 0902 293 3517 | 088 283 3390 | 0882 306  36.66
1 0938 2.02 2420 | 0889  2.87 3445 | 0839 344 4123 | 0768 405 4857
2 0940 214 2566 | 0883 308 3696 | 0839 344 4123 | 0838 319 3819
3 0938 201 2413 | 0889 285 3417 | 0849 338 4050 | 0762 419  50.16
4 0941 212 2536 | 0911 272 3255 | 0.883 291 3490 | 0780 403 4833
5 0939 199 2390 | 0.899 303 3625 | 0876 298 3569 | 0820  3.62 4335
Model 6 0942 208 2496 | 0912 271 3244 | 0892 274 3284 | 0783 398  47.67
B 7 0941 210 2523 | 0902 299 3583 | 0838 318 3809 | 0774 405 4856
8 0939 199 2387 | 0900 299 358 | 0.891 282 3379 | 0840 316  37.88
9 0940 214 2567 | 0902 297 3561 | 0.897 263 3148 | 0841 311  37.64
10 0941 200 2391 | 0913 268 3214 | 0887  2.88 3453 | 0844 312 3735
Ensemble 0951 185 2213 | 0894 302 3617 | 0882 279 3342 | 0863 325 3899
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Figure A2. Comparison between measured and predicted storm tide for different lag times—

Ensemble model.

Appendix B. NARX Model with Only the Lagged Tide Level as Input Variable

In this Appendix, the predictions obtained with a third NARX-based model, indicated
as Model C, are shown. This model differs from Models A and B in the input variables. In
particular, Model C included only the lagged values of the tide level h;;,(t — t,) as input.
As an example, Figure A3 reports the comparison between measured and predicted sea
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level for the same event investigated in Section 3.2, for which Models A and B showed
good accuracy. Model C clearly failed to provide accurate predictions, leading to significant
underestimation of the highest peaks. Table A2 reports some metrics that attest to the poor
performance of Model C, with the best results for {, =12 h (R? =0.397, MAE = 17.77 cm,
and RAE = 79.22%) and the worst ones for t, = 72 h (R? = 0.310, MAE = 18.72 cm, and
RAE = 83.54%).

This further modeling shows the indispensability of the astronomical tide among the
input variables.

Measured tide Model ¢ - 12 hours

Measured tide Model C - 24 hours

Exceptional tide

Very high tide

40 40 : :
11/11/2019 12/11/2019 13/11/2019 14/11/2019
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Figure A3. Extreme storm tide event forecasting for the period 11-14 November 2019, comparison between measured time
series and predicted values: Model C.

Table A2. Forecasting performance—Model C.

Model C
Metric
t,=12h t,=24h t,=48h t,=72h
R? 0.397 0.377 0.358 0.310
MAE (cm) 17.77 18.16 18.00 18.72
RAE (%) 79.22 81.08 80.39 83.54
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