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Abstract: UV index (UVI) measurements were carried out by the hand-held instrument Solarmeter
6.5 onboard of MS Horyzont II during the cruise from Poland (Gdynia) to Spitsbergen (and back)
in the period from 2 to 21 July 2017. A method is proposed to estimate the erythemal doses and
sun-synthesized amount of vitamin D from a limited number of daily UVI observations. This study
shows that the erythema could appear in a person with Caucasian type of skin characterized by
Minimum Erythema Dose (MED) ~250 J m−2 after ~1 h exposure near the polar circle and up to few
hours in the Svalbard. During this time, it was possible to get the dose of vitamin D3 equivalent
to ~1000 IU of oral intake. The protection against UV overexposure should be applied even if UVI
values during the cruise in the Arctic were always below the World Meteorological Organization
(WMO) warning threshold of 3. To provide adequate amount of vitamin D, the exposure should be
continued until getting 1 MED, after which the vitamin supplementation (or a diet rich in vitamin D)
is necessary.

Keywords: UV radiation; solar exposure; vitamin D

1. Introduction

Ultraviolet radiation (UVR) is a part of the solar radiation usually divided into three
categories: UV-A (315–400 nm), UV-B (280–315 nm), and UV-C (100–280 nm). Participation
of UV-B in total UVR energy at the ground level depends on many factors, including the
solar zenith angle, total column ozone (TCO3), and the cloudiness level. It is much smaller
under low solar elevation and high TCO3 [1,2]. In spite of low energy of UV-B radiation, it
poses strong biological effects, being a risk factor for many diseases including skin cancer
(malignant melanoma and squamous and basal carcinomas), and other diseases [3–6]. UV-
B radiation also has beneficial effects triggering the vitamin D3 skin-mediated synthesis.
There are numerous studies showing the vitamin D importance in prevention of various
cancers such as breast, colon, prostate [7], and several other cancers [8]. In the recent
years it has been widely discussed that skin cancer prevention should be balanced with
spending time outdoors [9,10], as it may have a greater positive role than just vitamin
D synthesis [11,12]. Very recently, a link of the serum vitamin D level with severity of
COVID-19 infection is a widely discussed issue [13–15].

Overexposure to solar UV radiation may present a risk for people who spend most of
their day outdoors. Concerning outdoor activity over the seas, Feister et al. [16] conducted
measurements and simulation of a daily UV exposure of seafarers in subtropical and
tropical regions. Moreover, Modense et al. [17] measured UV exposure of fishermen
working in the Italian North Adriatic Sea. Both studies showed that there is a great
risk of overexposure in these regions. This problem concerns not only the occupational
overexposures, but it may also appear during tourist cruises, which became a popular
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way of spending leisure time in the high latitude regions (e.g., the summer Hurtigruten
Norwegian costal voyages, which contrary to whole-year cruises attract also young people).

The intensity of UVR related to potential of skin damage is expressed as dimensionless
UV index (UVI), i.e., the erythemal dose rate in mW m−2 divided by 25 m2 W−1 [18].
Several countries adopted UVI to alert people about overexposure risk and a need to apply
protective steps against overexposure [19]. It has been assumed that for cases with UVI
lower than three, it is safe to stay outdoors for an indefinite period of time. However,
Lehmann et al. [20] claimed, that a prolonged exposure to UV radiation, even in the days,
when UV Index (UVI) is 2 or lower, can pose a significant risk for people with Caucasian
type of skin.

In this paper, the overexposure risk and amount of vitamin D produced in skin-
mediated synthesis is estimated from the intra-day UVI measurements by the hand-held
instrument Solarmeter 6.5 (by Solar Light Company, Inc., Glenside, Montgomery County,
MD, USA). The UVI and temperature (to calculate unexposed skin area) measurements
were carried out on board the MS Horyzont II during the cruise from Poland (Gdynia)
to Spitsbergen (and back) in the period from 2 to 21 July 2017 (days 183–202 of the year).
The duration of exposure needed to reach the Minimal Erythemal Dose (MED) (i.e., the
minimal dose that produces a just noticeable actinic erythema on a single individual’s
previously unexposed skin-http://cie.co.at/eilvterm/17-26-068, accessed on 8 April 2021)
and the sun-synthesized daily vitamin D dose equivalent to 1000 IU (International Units)
or 2000 IU taken orally will be calculated. These threshold values are recommended from
recent national and overall guidelines for adults to keep adequate vitamin D level [21,22].
Although many countries recommend lower doses for vitamin supplementation, many
researches show, that even the daily dose of 2000 IU could not be enough to increase the
level of the serum of the 25 hydroxyvitamin D (25(OH)D) above 30 ng/mL [23,24]. The
dose needed to improve vitamin D status depends also on frequency of supplementation,
starting serum level and its deficiency.

In the polar region, UVI is expected to be usually low without risk of sunburn, and it
is difficult to get enough vitamin D3 from the sun alone. Is this always true? This problem
will be discussed in this paper. Conclusion are drawn from the study in a perspective of
on-board activities during popular tourist cruises along Norwegian and Spitsbergen fiords
and a sport activity in the vicinity of the Norwegian Sea.

2. Measurements and Methods
2.1. Observations on Board of the MS Horyzont II

Measurements were made during a cruise from Poland to Spitsbergen and back on
board of the MS Horyzont II in the period 2–21 July 2017 (days 183–202). During 2 days (190
and 191), measurements were also conducted at the Polish Polar Station Hornsund, which
is managed by the Institute of Geophysics, Polish Academy of Sciences. MS Horyzont II is
a research vessel built in 2000 (https://www.vesselfinder.com/vessels/HORYZONT-II-
IMO-9231925-MMSI-261208000, accessed on 8 April 2021).

The cruise sailed along the coasts of Poland, Germany, Denmark, Norway, and across
the Norwegian and the Barents Sea. From 6th to 17th of July (days 187–198), the ship
was located in the polar region (north of the Pole Circle ~66.6◦ N). The details of the
geographical coordinates of the measurements’ sites with measured UVI are shown in the
Appendix A (Tables A1–A3). Figure 1 illustrates these sites superposed on the ship’s route.
Smartphone applications were used to determine time of observation and the geographical
coordinates. The local time was converted into Greenwich Mean Time (GMT) and did not
change during the whole cruise. Measurements (UVI by Solarmeter 6.5 and temperature)
were made irregularly during all weather conditions (Tables A1–A3), usually between 10
a.m. and 2 p.m. GMT. As the MS Horyzont II is not a tourist ship, the UVI observer was not
always allowed to enter the open deck of the ship—especially when the weather conditions
were unstable.

http://cie.co.at/eilvterm/17-26-068
https://www.vesselfinder.com/vessels/HORYZONT-II-IMO-9231925-MMSI-261208000
https://www.vesselfinder.com/vessels/HORYZONT-II-IMO-9231925-MMSI-261208000
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show sites with the UV index (UVI) measurements. The disembarking ports are marked by red 
map pointers. The map was created with Google Maps software. 
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Solarmeter 6.5 (SM 6.5) No. 03927 was a digital hand-held radiometer to measure 

UVI (with the nominal resolution of 0.1 UVI) during the cruise. The producer recom-
mends that SM 6.5 should be used in the position with sensor oriented normal towards 
the sky. De Paula Correa et al. [25] found that the SM 6.5 provides trustworthy UVI 
measurements with the accuracy of ±5%. This type of meter was also used in our previ-
ous field campaigns [26,27] and UVI measurements also were found out to be reliable. 

Our SM 6.5, previously calibrated by Solar Light Co. (Glenside, Montgomery 
County, MD, USA), was also re-calibrated a few weeks before the cruise. This was against 
the Davis UV meter, which is a part of the Davis Weather station, during the in-
ter-comparison campaign carried out on the roof of the IG PAS main building. UV sensor 
is a part of the Davis weather station Vantage Pro2™ and its spectral characteristic re-
sembles the standard erythemal action spectrum defined by CIE—Commision Interna-
tionalle de L’Eclairage [28]. 

Davis UV meter located on the roof of IG PAS main building is regularly calibrated 
with the Brewer spectrophotometer no. 207 [29]. The comparison of the UVIs by the Da-
vis instrument versus corresponding ones by the SM 6.5, showed a good agreement be-
tween the instruments with the determination coefficient of 0.97 and the linear regression 
fit y = 0.94x + 0.45. We found that the mean value of relative error in the range of UVI up 
to ~7 was ~6%. Nevertheless, for UVI in the range up to 3 (which is observed in the polar 
area), the mean value of relative error was ~20%. Taking this into consideration, we 
should bear in mind, that measurements could be burden with larger error than provided 
5% by the producer and confirmed by other researchers for different conditions. 

  

Figure 1. Cruise logs of the MS Horyzont II during the Gdynia-Spitsbergen cruise (and back) in the
period 2–21 July 2017 (days 183–202). Points (blue—cruise to Spitsbergen, green—cruise to Gdynia)
show sites with the UV index (UVI) measurements. The disembarking ports are marked by red map
pointers. The map was created with Google Maps software.

2.2. UVI Observations

Solarmeter 6.5 (SM 6.5) No. 03927 was a digital hand-held radiometer to measure UVI
(with the nominal resolution of 0.1 UVI) during the cruise. The producer recommends
that SM 6.5 should be used in the position with sensor oriented normal towards the sky.
De Paula Correa et al. [25] found that the SM 6.5 provides trustworthy UVI measure-
ments with the accuracy of ±5%. This type of meter was also used in our previous field
campaigns [26,27] and UVI measurements also were found out to be reliable.

Our SM 6.5, previously calibrated by Solar Light Co. (Glenside, Montgomery County,
MD, USA), was also re-calibrated a few weeks before the cruise. This was against the
Davis UV meter, which is a part of the Davis Weather station, during the inter-comparison
campaign carried out on the roof of the IG PAS main building. UV sensor is a part of the
Davis weather station Vantage Pro2™ and its spectral characteristic resembles the standard
erythemal action spectrum defined by CIE—Commision Internationalle de L’Eclairage [28].

Davis UV meter located on the roof of IG PAS main building is regularly calibrated
with the Brewer spectrophotometer no. 207 [29]. The comparison of the UVIs by the Davis
instrument versus corresponding ones by the SM 6.5, showed a good agreement between
the instruments with the determination coefficient of 0.97 and the linear regression fit
y = 0.94x + 0.45. We found that the mean value of relative error in the range of UVI up to
~7 was ~6%. Nevertheless, for UVI in the range up to 3 (which is observed in the polar
area), the mean value of relative error was ~20%. Taking this into consideration, we should
bear in mind, that measurements could be burden with larger error than provided 5% by
the producer and confirmed by other researchers for different conditions.

2.3. Calculations of the Erythemal Doses

The cloud and aerosol effects on UVR are parameterized using the cloud-aerosol
modification factor (CMF), i.e., a quotient of measured UVI and corresponding hypothetical
clear-sky UVI. The latter is estimated from Allaart et al. model that allows to reconstruct
clear-sky UVIs with any time resolution based on only one TCO3 measurement [30]. Here,
the ozone data was taken from the Ozone Monitoring Instrument (OMI) observations on
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the board of Aura satellite from NASA’s Earth Observing System (EOS) (https://www.esrl.
noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp, accessed on 8 April 2021).

Precise calculations of the daily biologically weighted doses require a high resolution
of UVI values throughout the entire day. However, the frequency of the SM 6.5 measure-
ments was at best every 0.5 h (e.g., day 185 and 198) for only a few hours. Therefore, to
have more data points for the time integral (i.e., for the dose calculations) we estimated
the hypothetical clear-sky UVI values with a 5-min resolution and multiplied them by the
pertaining CMF values. CMF values taken from the linear fit between the measuring points
seems to work well in case of many intra-day SM 6.5 observations (>10). However, during
limited number of days, only a few observations were made. For such days, a persistence
of cloud-aerosol properties throughout the day is an alternative way to parameterize the
cloud-aerosol attenuation of UVR.

2.4. Model Estimates of the Vitamin D3 Intake

The amount of the sun-synthesized vitamin D3 due to the solar exposure that is
equivalent to oral intake of vitamin D3 expressed in international units (IU, IU = 40 µg of
vitamin D3) is calculated by our previous model [27,31]:

QVitD3,k (to, ∆t) = Ratek·VitD3,P (to, ∆t)·ESA·AF (1)

where QVitD3,k (to, ∆t) is the amount of sun-synthesized Vitamin D3 in IU by a person
with Fitzpatrick skin phototype “k” in the period from to to to + ∆t, Ratek is equal to
6153 IU/MEDk, VitD3,P (to, ∆t) is a personal pre-vitamin D3 dose (i.e., time and spectral
integral of the spectral UV dose rate weighted by the action spectrum of the pre-vitamin D3
synthesis in the skin, CIE 2006 [32]) per 1 m2 (J m−2) in the period from t0 to t0 + ∆t, ESA is
a geometrical area of exposed skin (m2), and AF is an age factor. According to CIE action
spectrum, the effect of UV-A on the vitamin D synthesis is negligible. However, there is a
discussion in the literature, that UV-A may disturb the vitamin D production [33]. In this
study, the doses were calculated for the person with the Fitzpatrick skin phototype 2 (as it
is the most common type of skin for North Europe), with MED2 = 250 J m−2 [34] giving the
Rate2 = 24.6 IU per 1 J m−2 of the VitD3, P (to, ∆t).

VitD3,P (to, ∆t) is calculated from the ambient (measured on a horizontal surface)
pre-vitamin D3 weighted dose multiplied by the geometrical conversion factor (GCF). In
this study, GCF was calculated from the model of Vernez et al. [35] for the upward position
with hands alongside the body.

GCF = −3.396a + 10.714b − 9.199c + 56.991 (2)

where a = ln(Vis/10) − 1.758, b = Vis/10 − 5.800, c = cosSZA3 − 0.315, Vis–visible part
of the sky from the body site surface [%], SZA–solar zenith angle. Vis for the considered
body parts was taken from the supplemented material of the paper of Vernez et al. [35].
The value of GCF was ~0.45 for different parts of the body considered (face and hands)
for SZAs corresponding to the selected hypothetical period of exposure. This value stays
in agreement with Schmalwieser [36], who showed that parts of the body, which are not
horizontally oriented to the sun, receive 20–50% of ambient exposure.

Ambient vitamin D3 dose was estimated from the measured UVI (SM6.5) multiplied
by the empirical erythema-vitamin D3 conversion factor, which was taken from tabular
values provided by Czerwińska and Krzyścin [37] and depends on SZA and TCO3. ESA
was calculated as the total skin area from the Mosteller formula for the mean value of 1.96
m2 for average Northern European woman (1.82 m2) and man (2.1 m2) (https://www.
worlddata.info/average-bodyheight.php, accessed on 8 April 2021) multiplied by the area
of uncovered skin (AUS) [38]. AUS is depended on the temperature (T) in Celsius degrees,
and it was calculated from the formula derived by Guzikowski et al. [31].

AUS = 9.8 − 0.105 T + 0.0012 T2 + 0.00186 T3 (3)

https://www.esrl.noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp
https://www.esrl.noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp
https://www.worlddata.info/average-bodyheight.php
https://www.worlddata.info/average-bodyheight.php
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Although in this formula the measured temperature should be corrected for wind
chill, here we could assume zero chill effects, for tourists, who prefer staying in windless
areas while enjoying the cruise. In this study, we present results for AUS = 10% as it was
the most frequent case of clothing within the Arctic part of the cruise. QVitD3,2 (to, ∆t)
was calculated for the 21 years old person with AF = 1 [39], assuming the most optimistic
scenario, as efficiency of vitamin D synthesis is decreasing with age. Elder people cannot
gain the recommended dose of vitamin D from the skin-mediated synthesis (or need doses
that exceed 1 MED) and should supplement it regardless their type of activity. Model 1 was
used to estimate duration of outdoor activity from the beginning of the UVI measurements
to attain 1 MED2 and the vitamin D3 dose equivalent to oral intake of 1000 IU or 2000 IU.

3. Results

The daily maximum–minimum UVI range (shaded area) from the SM 6.5 measure-
ments during the cruise and hypothetical clear-sky UVI daily maximum are shown in
Figure 2. The dashed line shows UVI estimated for the clear-sky conditions with the use of
Allaart et al. model [30]. Estimated clear-sky UVI at noon exceeded three for the observing
sites south of 70◦ N and it was always above two. Whereas the maximum of measured
UVI was rarely above two in the Arctic because of the UV attenuation by clouds and
aerosols; it only happened three times on 10, 16, and 17 July (191, 197, and 198 calendar
day), respectively. The measured UVI exceeded 4 south of ~60◦ N. Therefore, it seems that
exceeding the MED threshold and the daily vitamin D3 intake of 1000 IU in polar regions
will require prolonged outdoor activity and cannot be attained during a short sunbathing
session as it is possible in subtropical and tropical regions.
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Figure 2. The modelled clear-sky UVI (dashed line) and the daily range of the measured UVI during the cruise (the shaded area).

Temperature was above 15 ◦C for all lower latitude measuring sites (south of the
60◦ N). It dropped to about 5 ◦C in Spitsbergen (Figure 3). Low surface temperature means
use of cold protective clothing that limits vitamin D3 synthesis. Therefore, only small part
of the whole body was probably exposed, i.e., ~10% (face, palms) in Spitsbergen comparing
to about maxium 20% over the North Sea (head, neck, palms, short sleeve shirt).
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Figure 3. The deck temperature and the area of uncovered skin estimated from Equation (3) on the
assumption of zero wind chill factor.

During the cruise, there were only a few days with cloudless conditions (CMF = 1)
during the intra-day UVI measurements. CMF ~0.5 were found north of the Arctic circle
with the maximum UVR attenuation (CMF = 0.1) in the day 196 (15 July). A weak cloud-
aerosol attenuation (the CMF daily mean ~0.8) appeared at the beginning and the end of
the cruise over the Baltic Sea, i.e., in 4, 5, 19, and 20 July (185, 186, 200, and 201 days of the
year), respectively.

Lucas et al. [40] and Lehmann et al. [20] claimed that the public health messages
referring to UVI should be reconsidered. For the days with UVI of two (and even for
UVI of one in certain circumstances), for prolonged exposure time, Lehmann et al. found
that there is a risk of sunburn among people with Fitzpatrick skin phototype 1 and 2. For
hypothetical clear-sky conditions, UVI higher than two occurred on all days except the day
when MS Horyzont II was at the northernmost point of the cruise at Ny-Alesund (79◦ N).
The measured UVI > 2 appeared in three days in the Arctic (i.e., 25% of days during the
period 187–198 day of the year) and in all days when the ship was south of the polar circle.

Figure 4a shows duration of the exposure to get 1 MED2 from the ambient erythemal
exposure (i.e., GCF = 1) and when horizontally oriented to the sun parts of the body were
covered (i.e., GCF = 0.45). Figure 4b shows duration of the personal exposure equivalent
to 1000 IU and 2000 IU oral intake of vitamin D3 for AUS = 10% (only face and palms
are uncovered). Calculations of the erythemal and vitamin D3 doses were done using
intra-day UVI measurements. The time integral of the erythemal and the vitamin D3 dose
rates started at the moment of the first measurement and continued until the threshold of 1
MED2 or 1000 IU (2000 IU) was reached. It was found that the amount of 1000 IU is possible
to gain without the erythema risk. However, the amount of 2000 IU is possible to gain for
the exposure longer than that needed to get 1 MED2 on the horizontal plane. Thus, if we
consider, that parts of the body oriented horizontally to the sun are covered by clothing
and only face and palms are exposed (in this case, the personal erythemal exposure equals
the ambient erythemal exposure multiplied by GCF of about 0.45, Section 2.3.), the 2000 IU
threshold will be reached safely without the erythema risk. Time to get 1000 IU was ~1.5 h
near the polar circle and varied from ~2.5 h up to ~6 h in Spitsbergen. For the northernmost
sites during the cruise (on 195 and 196 day of the year) it was not possible to reach the 1000
IU threshold.
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Figure 4. Daily duration of solar exposure for the entire cruise resulting in the ambient (or on vertical
plane) erythemal dose of 1 MED2 (a), the personal vitamin D3 dose equivalent to 1000 IU (or 2000 IU)
vitamin D3 taken orally (b). The exposure started with the moment of the first UVI measurements.
Arrows for the 195 and 196 day of the year means the duration is longer than 7 h.

4. Discussion

For the people living in the North, the amount of vitamin D from skin-mediated
synthesis in every-day life could be not sufficient [41,42] because of low intensity of solar
radiation. Furthermore, the weather conditions are insufficient for large body area exposure,
frequently only face and hands can be exposed. Kozlov and Verhubsky [43], who examined
population from the Russian North, claimed that among others, the level of natural light
has a significant effect on the serum of the 25(OH)D. However, many researches show,
that “northerners” have sufficient level of 25(OH)D concentration in blood [44,45]. Some
researchers found that recently a decrease in 25(OH)D is observed, especially in Greenland,
but also in the northern regions of the United States and Canada (among modern Inuit
and Indians) [43,46,47]. Probably, insufficient dose of vitamin D among young and modern
“northerners” is connected with abandoning the traditional diet [46–48]. Nevertheless,
there were no evidence that the level of 25(OH)D concentration in blood was improved
after a change of diet to healthy Nordic diet, which contains large amount of fish [49].
Moreover, among vegetarians, fish-eaters, and meat-eaters, fish-eaters had lower level of
vitamin D than meat-eaters [50]. Brader et al. [49] suspect that farmed fish does not contain
much vitamin D. Furthermore, it may contain heavy metals [51], which are not neutral to
human health.

This study shows that it is possible to get the dose of vitamin D3 equivalent to 2000 IU
of oral intake, without the risk of getting sunburn, if parts of the body that are horizontally
oriented to the sun (e.g., nose or ears) are protected from the sun by clothing or sunscreens
for the Caucasian type of skin. However, the duration of such outdoor activities should
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last ~1.5 to 2 h near the polar circle and ~4 to 6 h in Svalbard. The dose of 2000 IU
due to solar exposure is hard to achieve due to the low temperature but it is possible
for people staying outdoor for several hours, e.g., natives (fishermen and hunters) and
tourists enjoying cruises around the fjords, even if only palms and face are uncovered (if
we assume that no SPF was used). Such cruises for the tourists could be beneficial for
those with insufficient level of vitamin D but cannot do harm to those who has already
sufficient vitamin D status, as the amount above the needed 25(OH)D dose is quickly
decomposed [52]. The study refers to Caucasian type of skin and assumes decreasing
ability to cutaneous vitamin D production with skin color (increasing melanin), which is a
standard approach [53,54]. However, Young et al. [55] showed that melanin offers limited
inhibition of vitamin D3 production.

Feister et al. [16] and Modense et al. [17] confirmed that there is a greater risk of an
erythema occurrence for workers during sea cruises in low and mid-latitudes even during
a short stay on the deck around midday. There exists an erythema risk for the outdoor stay
(~1 h) also near the polar circle under clear-sky conditions (for UVI = 3, see Figure 2), if we
assume that there is a possibility to uncover more parts of the body than just hands and
face. For the vertically oriented parts of the body, there is a risk of erythema occurrence
after 2 h of exposure. The calculation does not take into account the tanning effect (i.e., the
natural increase in skin protection after prolonged exposure), as we examine person with
Fitzpatrick phototype 2 (usually burns, and tans poorly). In the polar region it is possible,
that the time spend outdoors for the crew and tourists/scientists during the cruise or
outdoor activities would be long enough to receive 1 MED exposure, although it would be
possible only for clear-sky conditions.

5. Conclusions

Czerwińska and Krzyścin [27] discussed that the large amount of vitamin D can be
sun-synthesized in midlatitudes before the erythemal dose reaches the MED threshold for
the Caucasian type of skin. This is also true in polar regions during summer months. In
July it is possible to get a large amount of vitamin D during prolonged outdoor stay, with
area of uncovered skin about 10%. Although during cloudy sky conditions this may be
hard, as the wind renders it uncomfortable for most people to stay outdoors for longer
than an hour. However, prolonged outdoor stay seems more likely during tourist cruises
in windless onboard areas. Our estimations are based on the most optimistic scenario of
UV exposure by younger people with Caucasian type of skin. Although it is possible to get
the amount of vitamin D of 2000 IU, the estimations are burden with large uncertainties.
In conclusion, the scenario according to which the solar exposure should be stopped just
before sunburn or balanced with a diet (and supplementation) when the duration of such
exposure is too long [27], should be followed also in the sub-polar and polar region.
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acknowledge the data providers from National Oceanic & Atmospheric Administration (NOAA) at
the website: https://www.esrl.noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp, accessed
on 8 April 2021.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Tables A1–A3 show time of the UV observation, corresponding geographical coordi-
nates, and the measured UVI value. Table A1 shows the data collected during the cruise
from Gdynia to Spitsbergen, Table A2 during a short stay in Svalbard, and Table A3 during
the cruise back to Gdynia.

Table A1. Time, longitude, and latitude at the measuring site together with the observed UV index during the MS Horyzont
II cruise from Gdynia-to Spitsbergen in the period 2–8 July 2017 (days 183–189).

Date Hour Lat◦ N Lon◦ E UVI Date Hour Lat◦ N Lon◦ E UVI

2 July 2017 16 55.25 12.87 0.8 5 July 2017 17 62.62 4.20 0.6
3 July 2017 10 57.38 11.48 4.5 5 July 2017 18 62.78 4.20 0.4
3 July 2017 13 57.38 11.00 3.5 6 July 2017 10:30 65.52 5.85 1.7
3 July 2017 16 57.80 10.03 0.2 6 July 2017 11 65.65 5.73 1.8
4 July 2017 8 57.92 6.35 2.2 6 July 2017 11:30 65.77 5.78 1.9
4 July 2017 9 57.95 6.30 3.4 6 July 2017 12 66.27 6.12 1.6
4 July 2017 10 58.02 6.12 4 6 July 2017 16 66.48 6.32 0.6
4 July 2017 11 58.10 5.93 4.2 6 July 2017 17 66.62 6.40 0.1
4 July 2017 11:30 58.10 5.75 4.4 6 July 2017 18 66.83 6.53 0.1
4 July 2017 12 58.20 5.70 4.3 6 July 2017 20 67.25 6.82 0
4 July 2017 12:30 58.23 5.70 3.6 7 July 2017 10 69.43 8.32 1.1
4 July 2017 13 58.27 5.40 3.8 7 July 2017 11 69.55 8.42 1.5
4 July 2017 13:30 58.35 5.33 3.5 7 July 2017 12 69.78 8.55 1.7
4 July 2017 14 58.40 5.32 3.2 7 July 2017 13 69.92 8.67 1.1
4 July 2017 14:30 58.47 5.17 2.5 7 July 2017 14 70.07 8.78 0.8
4 July 2017 15 58.83 5.10 1.7 7 July 2017 16 70.35 9.00 0.5
5 July 2017 10 61.47 4.18 4 7 July 2017 17 70.52 9.12 0.2
5 July 2017 10:30 61.55 4.18 4 7 July 2017 18 70.75 9.30 0.1
5 July 2017 11 61.65 4.20 4.6 7 July 2017 19 70.90 9.42 0
5 July 2017 11:30 61.68 4.20 4 8 July 2017 0 71.65 10.02 0
5 July 2017 12 61.87 4.20 4.1 8 July 2017 10 73.32 11.42 1.2
5 July 2017 12:30 62.18 4.20 3.5 8 July 2017 13 73.77 11.83 1.4
5 July 2017 13:30 62.13 4.20 3.2 8 July 2017 14 73.95 11.98 1.1
5 July 2017 14 62.17 4.20 2.9 8 July 2017 15 74.10 12.12 0.7
5 July 2017 14:30 62.22 4.20 2.8 8 July 2017 15:10 74.10 12.12 0.9
5 July 2017 15 62.28 4.18 2.1 8 July 2017 16:30 74.37 12.38 0.3
5 July 2017 15:30 62.32 4.18 1.8

Table A2. The same as Table A1 but during the MS Horyzont II stay in Svalbard in the period 9–14 July 2017 (days 190–195).

Date Hour Lat◦ N Lon◦ E UVI Date Hour Lat◦ N Lon◦ E UVI

9 July 2017 9 76.98 15.57 0.5 11 July 2017 10 78.23 15.63 1.4
9 July 2017 10 76.98 15.57 0.5 11 July 2017 11 78.23 15.63 1.2
9 July 2017 12 76.98 15.57 0.8 11 July 2017 12 78.23 15.63 1.2
9 July 2017 13 76.98 15.57 0.7 11 July 2017 18 78.23 15.63 0.3
9 July 2017 14 76.98 15.57 0.9 12 July 2017 10 78.65 11.75 0.8
9 July 2017 15 76.98 15.57 0.5 12 July 2017 11 78.65 11.75 0.8
9 July 2017 16 76.98 15.57 0.3 12 July 2017 12 78.65 11.75 0.7
10 July 2017 7 76.98 15.57 0.8 12 July 2017 13 78.23 12.78 0.6
10 July 2017 11 76.98 15.57 2.2 12 July 2017 14 78.15 12.78 0.3
10 July 2017 13 76.98 15.57 1.5 12 July 2017 15 78.12 12.82 0.3
10 July 2017 14 76.98 15.57 1.2 12 July 2017 16 77.98 13.13 0.3
10 July 2017 16 76.98 15.57 0.7 12 July 2017 17 77.98 13.13 0.1
10 July 2017 17 76.98 15.57 0.5 13 July 2017 9 76.98 15.57 0.7
10 July 2017 18 76.98 15.57 0.3 13 July 2017 13 76.98 15.57 0.9
11 July 2017 7 78.18 14.32 0.4 13 July 2017 17 76.98 15.57 0.3
11 July 2017 8 78.22 15.58 1.4 14 July 2017 6 76.98 15.57 0.3

https://www.esrl.noaa.gov/gmd/grad/neubrew/SatO3DataTimeSeries.jsp
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Table A3. The same as Table A1 but during the MS Horyzont II cruise from Spitsbergen to Gdynia in the period 15–21 July
2017 (days 196–202).

Date Hour Lat◦ N Lon◦ E UVI Date Hour Lat◦ N Lon◦ E UVI

15 July 2017 8.5 74.10 12.12 0.2 19 July 2017 13:30 58.18 5.52 3.8
15 July 2017 14 73.12 11.25 0.2 19 July 2017 14:30 58.08 5.73 2.6
15 July 2017 19 72.43 10.37 0 19 July 2017 15 58.03 5.83 2.1
16 July 2017 10 71.10 8.90 0.4 19 July 2017 16 57.95 6.03 1.2
16 July 2017 13 69.32 8.25 2.4 19 July 2017 17 57.80 6.55 0.8
16 July 2017 16 68.98 8.00 0.4 19 July 2017 19 57.70 6.85 3.2
17 July 2017 9 66.53 6.35 1.6 20 July 2017 9 57.60 11.10 3.8
17 July 2017 9:30 66.43 6.27 1.1 20 July 2017 9:30 57.55 11.20 4.5
17 July 2017 10 66.33 6.23 1.5 20 July 2017 10 57.48 11.32 4.5
17 July 2017 10:30 66.27 6.17 2.4 20 July 2017 10:30 57.43 11.37 5.1
17 July 2017 12 66.00 5.98 1.2 20 July 2017 11 57.40 11.40 4.2
17 July 2017 13 65.87 5.90 1 20 July 2017 11:30 57.33 11.42 4.7
17 July 2017 14 65.73 5.72 1.9 20 July 2017 12 57.20 11.48 4.7
17 July 2017 16 65.43 5.60 1 20 July 2017 12:30 57.03 11.55 4.4
18 July 2017 10 62.58 4.03 1.3 20 July 2017 13 56.98 11.65 3.2
18 July 2017 11 62.43 4.02 1.2 20 July 2017 13:30 56.92 11.72 3.1
18 July 2017 12 62.23 4.02 2.8 20 July 2017 14 56.80 11.77 2.4
18 July 2017 13 62.02 4.03 2.4 20 July 2017 14:30 56.77 11.82 1.1
18 July 2017 14 61.62 5.13 1 20 July 2017 15 56.70 11.87 0.9
18 July 2017 16 61.62 4.03 0.5 21 July 2017 10 54.77 14.87 2
19 July 2017 9:30 58.68 4.57 3 21 July 2017 11 54.75 15.08 1.9
19 July 2017 10 58.60 4.72 3.3 21 July 2017 12 54.75 15.47 0.9
19 July 2017 11 58.48 4.92 4 21 July 2017 13 54.75 15.65 1
19 July 2017 11:30 58.43 5.03 4.3 21 July 2017 14 54.77 15.95 1
19 July 2017 12 58.35 5.28 4.8 21 July 2017 16 54.75 16.37 0.5
19 July 2017 12:30 58.32 5.23 4.3 21 July 2017 17 54.75 16.95 0.1
19 July 2017 13 58.25 5.37 4.1
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