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Abstract: In this paper we analyse temporal variations of the phase of a very low frequency (VLF)
signal, used for the lower ionosphere monitoring, in periods around four earthquakes (EQs) with
magnitude greater than 4. We provide two analyses in time and frequency domains. First, we analyse
time evolution of the phase noise. And second, we examine variations of the frequency spectrum using
Fast Fourier Transform (FFT) in order to detect hydrodynamic wave excitations and attenuations. This
study follows a previous investigation which indicated the noise amplitude reduction, and excitations
and attenuations of the hydrodynamic waves less than one hour before the considered EQ events
as a new potential ionospheric precursors of earthquakes. We analyse the phase of the ICV VLF
transmitter signal emitted in Italy recorded in Serbia in time periods around four earthquakes occurred
on 3, 4 and 9 November 2010 which are the most intensive earthquakes analysed in the previous
study. The obtained results indicate very similar changes in the noise of phase and amplitude, and
show an agreement in recorded acoustic wave excitations. However, properties in the obtained wave
attenuation characteristics are different for these two signal parameters.

Keywords: ionosphere; earthquakes; observations; VLF signal; signal processing; acoustic and
gravity waves

1. Introduction

In addition to periodical ionospheric changes, which can be predicted and estimated by
different models (see, for example, [1,2] and references therein), sudden events can induce
significant ionospheric disturbances and affect many contemporary technologies based
on satellite and ground-based electromagnetic (EM) signal propagation [3]. Consequently,
variations of the recorded EM signal properties can be used for detections and analyses
of influences of many phenomena on this atmospheric layer including processes which
induce different kinds of natural disasters [4–8].

In the last several decades, studies of the lower ionosphere disturbances are mostly
based on observations by very low/low frequency (VLF/LF) radio signals [9–13] and
processing of the corresponding recorded data in both the time and frequency domains.
Increases or decreases of the signal amplitude and/or phase are recorded in many stud-
ies focused on research of ionospheric disturbances induced by earthquakes [9], solar
activity [14–18], tropical cyclones [19,20], solar eclipse [21,22] etc.
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The acoustic gravity waves (AGW) are recently mentioned in association with earth-
quakes mainly as a result of the strong oscillations caused by the seismic shock (Jin et al.,
2015 [23]) or tsunami (Manta et al., 2020 [24]). But for a long period of time they were
considered as a main agent of the seismo-ionospheric coupling as the earthquake precursor
(Korepanov et al., 2009 [25]). But the main problem was the lack of convincing experi-
mental evidences of the AGW generation before earthquakes and corresponding physical
mechanism of their generation. As the possible sources the mosaic distribution of gas
emission before earthquakes was proposed (Mareev et al, 2002 [26]), or the surface thermal
anomalies (Molchanov et al., 2004 [27]). Research of AGW in the lower ionosphere is also
presented in several studies. They relate to disturbances induced by the solar termina-
tor [28], geomagnetic storms [29,30], tropical cyclones [19,31,32] earthquakes [33], solar
eclipse [34], and they are based on analyses of the VLF/LF signals.

Studies of the ionospheric changes as precursors of earthquakes report changes usu-
ally a few days before events [9,13,35]. These lower ionosphere disturbances are detected
as the solar terminator shift [13,36,37] and deviations of the time evolutions of signal char-
acteristics from values recorded during days with unperturbed conditions [5,38] (in time
domain), and as variations in the wavelet power spectrum [5,39] (in frequency domain),
and all of these changes are shown for both signal amplitude and phase. The recent analysis
presented in [33] shows reduction of the amplitude noise of the VLF signal less than one
hour before the earthquake occurred near Kraljevo, Serbia, on 3 November 2010 (the seis-
motectonic model of this event is presented in [40]), as well as excitation and attenuation
of the acoustic waves. In addition, the similar changes in the amplitude noise are also
recorded for 12 other earthquakes with different magnitudes during three whole days. It
was concluded that all considered EQs with the magnitude larger than 4 were connected
with the recorded noise amplitude reduction. However, contrary to the previous cases
this pioneer study which indicates a possible new ionospheric precursor of earthquake
is provided only for the amplitude i.e., variations of the phase, is not considered. For
this reason, in this study we extend the research presented in [33] and investigate if the
recorded changes in amplitude noise are also visible in analysis of the VLF signal phase,
and if excitations and attenuations of the acoustic and gravity waves can be visualized
from the recorded phase. We show analysis of the phase of the ICV signal emitted in Italy
and recorded in Serbia in periods around four EQs with magnitude greater than 4 which
are connected with the noise amplitude reductions in study shown in [33].

The paper is organized as follows. Descriptions of observations and data processing
are given in Section 2. Results of this study are divided in two parts: those related to
reduction of the phase noise is shown in Section 3.1 and those related to analysis of the
acoustic and gravity waves are presented in Section 3.2. Finally, conclusions of this study
are summarized in Section 4.

2. Observations and Data Processing

In this study we analyse phase of the ICV signal emitted by a transmitter located in
Isola di Tavolara, Italy (40.92 N, 9.73 E) and received in Belgrade, Serbia (44.8 N, 20.4 E)
in time periods around four EQs, considered in [33] and connected to the short-term
noise amplitude reduction. Two of these events occurred near Kraljevo, Serbia, one in the
Tyrrhenian Sea (TS) and one in the Western Mediterranean Sea (WMS) (their epicentres
are shown in map given in Figure 1). As it can be seen in Table 1, their magnitudes were
greater than 5 for two events (the first one near Kraljevo, and in the Tyrrhenian Sea) while
other two had magnitude larger than 4. These magnitudes are larger than those related to
other EQs considered in [33].



Atmosphere 2021, 12, 444 3 of 13

  5.0
°
 E   7.5

°
 E  10.0

°
 E  12.5

°
 E  15.0

°
 E  17.5

°
 E  20.0

°
 E  22.5

°
 E  25.0

°
 E

 37.5 °
 N  

 40.0 °
 N  

 42.5 °
 N  

 45.0 °
 N  

ICV

BEL

Kraljevo

TS

WMS

Figure 1. Propagation paths of the VLF signals recorded by the Belgrade receiver station (BEL) in
Serbia and emitted by the transmitters ICV in Italy. Locations of the main considered EQs are shown
as stars. One EQ occurred in the Tyrrhenian Sea (TS) and Western Mediterranean Sea (WMS), while
two EQs were near Kraljevo (their epicentres are shown by the same star).

Table 1. List of the main earthquakes considered in this study. EQ date, time t, epicentre locations
(latitude (LAT) and longitude (LON)) and magnitudes (M) are given in http://www.emsc-csem.org/
Earthquake/(accessed on 25 February 2021). The variable d denotes the distance between the EQ
epicentres and signal propagation path.

No. Date t (UTC) LAT (◦) LON (◦) d (km) M Location

Kraljevo—03/11/2010

1 2010/11/03 00:56:54 43.74 20.69 126.0 5.4 Serbia (near Kraljevo)
31 EQs until 8 UT—31 in Serbia, 3 in Italy and 1 in Bosnia and Herzegovina

Tyrrhenian Sea (TS)—03/11/2010

2

2010-11-03 17:12:30 42.4 13.35 11.4 2 Central Italy
2010-11-03 17:48:04 43.75 20.7 120.7 2.5 Serbia (near Kraljevo)
2010/11/03 18:13:10 40.03 13.2 219.1 5.1 TS
2010-11-03 18:47:23 43.73 20.67 121.7 2.1 Serbia (near Kraljevo)

Kraljevo—04/11/2010

1

2010-11-04 20:33:01 43.75 20.7 120.7 1.9 Serbia (near Kraljevo)
2010/11/04 21:09:05 43.78 20.62 114.9 4.4 Serbia (near Kraljevo)
2010-11-04 21:55:40 45.81 7.55 562.9 1.2 Northern Italy
2010-11-04 23:43:05 43.78 20.62 114.9 3.3 Serbia (near Kraljevo)
2010-11-05 00:16:14 43.74 20.64 119.6 2.8 Serbia (near Kraljevo)
2010-11-05 01:38:48 43.76 20.69 119.4 2.5 Serbia (near Kraljevo)

Western Mediterranean Sea (WMS)—03/11/2010

4 2010-11-09 16:45:13 43.59 12.36 165.9 2.3 Central Italy
2010-11-09 18:23:36 42.25 6.77 287.7 4.3 WMS

During the considered four time intervals, additional weaker EQs also occurred near
the considered signal propagation path. After the most intensive EQ (Kraljevo, 3/11/2010)
31 additional EQs occurred before 8 UT. 27 of these events were in Serbia, 3 in Italy and
1 in Bosnia and Herzegovina. Their magnitudes were lower than 3 except in one case
when it was 3.3. Because of this large number we only give common information of their
occurrences in Table 1. Processes in the lithosphere below the monitored ionospheric area
were not so intensive during the other three time intervals. For this reason all additional
EQ events are indicated in Table 1.

In this analysis, we process the 0.1-s resolution datasets. This procedure consists of
three parts: (1) phase unwrapping, (2) determination of the unwrapped phase noise, and

http://www.emsc-csem.org/Earthquake/
http://www.emsc-csem.org/Earthquake/
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(3) application of Fast Fourier Transform (FFT) to the unwrapped phase in order to examine
excitations and attenuations of the acoustic and gravity waves.

• Phase unwrapping. The recorded signal phase Pdata represents the deviation of the
signal phase with respect to the phase generated at the receiver. Because of that it
has a component of constant slope. However, this component does not affect the
presented analysis, and for this reason we did not remove it. On the other side, all
recorded values are given within a principal phase interval and for further analysis
it is necessary to unwrap it. The obtained time evolutions of the unwrapped phase
P are shown in Figure 2 where the vertical lines indicate times of EQ occurrences.
Red lines represent the main EQ considered in corresponding time periods while the
additional events listed in Table 1 are coloured in black. To visualize the magnitudes
of these additional events, we divided them in three categories: 1. magnitude below
2.5, 2. magnitudes from 2.5 to 3, and 3. magnitudes from 3 to 4. These categories are
represented by thin dotted, thin dashed and tick dotted black lines, respectively.

• Determination of the phase noise. To obtain the noise Pnoise of the unwrapped phase
P we calculate its deviation dP(t) = P(t) − Pbase(t) from the basic phase Pbase at
time t. Here, Pbase is obtained in a procedure described in [33] as the mean value
of unwrapped phase in the defined time bins around time t. Finally, noise of P is
determined as the maximum of |dP| after elimination of the largest p percent of its
values. To find this value, we first sorted the values of |dP| into an ascending array
dPas = sort(|dP|) of N members, and determined the value of the phase noise as the
value of the term that is inoise = N · (100− p)/100 in this array:

Pnoise = dPas(inoise). (1)

In this study we use p = 5% like in [33].
• Acoustic and gravity waves—excitations and attenuations. Research of the acoustic

and gravity waves in this paper is based on processing of the VLF signal phase.
We analyse their excitations and attenuations in periods around the considered EQs
using the procedure given in [33]. It is based on the application of the Fast Fourier
Transform (FFT) on fixed window time intervals (WTI) within the considered time
periods. Keeping in mind that WTI affects the maximum of observable wave period
and precision in the analysis of the observed variations we choose three WTIs of
20 min, 1 h and 3 h.
The goal of this procedure is to analyse the recorded phase in frequency domain and
connect the wave-periods for which important changes are recorded to the acoustic
and gravity waves. The acoustic cut-off τ0 and the Brunt-Väisälä τBV wave-periods
representing minimal and maximal periods for the acoustic and gravity waves, re-
spectively, are determined from the expressions:

τ0 =
4π

γ

vs

g
, τBV =

2π

NBV
, (2)

where γ = 5/3 is the standard ratio of specific heats and g = 9.6 m/s2 is gravita-
tional acceleration. The adiabatic sound speed squared v2

s = γkBT0/ma is obtained
for the gass temperature T0 = 220 K (estimated from the International Reference
Ionosphere (IRI) model [41] and assumed average mass of atoms ma ≈ 10−25 kg. The
Boltzmann constant kB is 1.3807 · 10−23 J/K. Details of this procedure can be found in,
for example, [42,43].
As it is obtained in [33] waves with periods T < τ0 = 176.7, s and T > τBV = 180.4 s,
represents acoustic and gravity modes, respectively.
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Figure 2. Time evolutions of the unwrapped phase P for the considered periods. Red lines represent
the main EQ considered in corresponding time periods. The additional events listed in Table 1 are
coloured in black. Times of the additional considered EQ events with magnitude below 2.5, from
2.5 to 3, and from 3 to 4 are represented by thin dotted, thin dashed and tick dotted black lines,
respectively.

Here we point out that during the considered time periods there are not recorded
other events which can influence the signal phase. Detailed analysis, described in [33], in-
dicated that influences of receiver, transmitter, meteorological and geomagnetic conditions,
which are suggested as the most important non-ionospheric sources of the VLF signal
variations [44], can be ignored.

3. Results and Discussions

Results of determination of the phase noise and periods of the excited and attenuated
acoustic and gravity waves are presented in Sections 3.1 and 3.2, respectively.

3.1. Signal Phase Noise

Time evolutions of deviation of the wrapped phase from its basic values dP and the
phase noise Pnoise obtained by the proposed methodology are shown in Figures 3 and 4,
respectively. As one can see, reduction of the phase noise is recorded for all four main EQ
events and it is clearly visible in the first two cases whose magnitudes are greater than 5.
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Figure 3. The same as in Figure 2 but for phase deviation dP = Pdata − Pbase.
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Figure 4. The same as in Figure 2 but for the phase noise Pnoise.
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It is worth noting that after the first EQ event near Kraljevo which occurred on
3 November 2010, additional 31 EQs occurred in areas near the considered signal prop-
agation path. Twenty nine of them occurred when the phase noise reduction is clearly
visible, while two events of weak intensities (magnitudes of 2.1 and 2.2) occurred after
increasing of the phase noise. The most intensive additional EQ had magnitude of 3.3.
However, despite the large number of accompanying earthquakes, no significant variations
were observed either in dP or in Pnoise. The absence of these variations is also noticeable
in the second case (EQ in Tyrrhenian Sea of magnitude 5.1) when three more earthquakes
(magnitudes of 2, 2.1 and 2.5) were recorded within about 1.5 h.

In the cases of the other two EQs which magnitudes were between 4 and 5, analysis of
dP and Pnoise time evolutions is not so simple like in the first two considered time intervals.
Namely, although the reductions in phase noise are recorded before and after these events,
they are not related each other. In the case of the EQ which occurred near Kraljevo on
4 November 2010 significant reduction in Pnoise is recorded several minutes before the EQ
and lasts about 20 min. This phase reduction is followed by the short-term increase in
Pnoise and additional significant decrease which yield to the second reduction lasting about
5 h. During the second reduction four additional EQs are recorded. The first one occurred
in North Italy while the other three near Kraljevo (like the main one) with magnitudes of
3.3, 2.8 and 2.5. As one can see in the bottom left panels of Figures 3 and 4, although the
small increase in noise is recorded after the second additional EQ near Kraljevo, significant
reduction which can be related with EQ events observed within a time window of about
3 h and includes the time of the last EQ.

Reduction of the phase noise begins about 1 h before the EQ in the Western Mediter-
ranean Sea but it is also possible relate it with the EQ occurred in Central Italy just before
the decrease in dP . This reduction is followed by noise increase which begins more than
a half of hour before the EQ and lasts about 1 h before the reduction is recorded again.
This event is interesting because position of the EQ epicentre is, contrary to the other
events, northern than the signal propagation path. The possible recorded time shift of the
reduction time opens a question of influence of position of the EQ epicentre with respect to
the signal propagation path. This task requires a specific statistical analysis and it will be
in focus of our forthcoming research.

By comparison with noise amplitude reduction analysed in [33] we can conclude that
the characteristics of phase reduction are the same for the first two cases: they last for
several hours, begin before and end after an EQ event, and there are not observed changes
that could be related to other earthquakes of lower intensity. In the third and fourth cases
phase noise reductions are also recorded, but they are shortly interrupted by the noise
amplifications. Also, it cannot be claimed that the strongest earthquake in the observed
period masks the potential relationship between phase noise reduction and weaker EQs.

3.2. Acoustic and Gravity Waves

In the second part of this study we analyse signal phase in frequency domain. We
apply FFT to the recorded data to research possible excitations and attenuations of the
acoustic and gravity waves that can be considered as ionospheric disturbances connected
to earthquakes.

To better visualize periods of the excited/attenuated waves we apply the same pro-
cedures like in [33]: (1) we consider three WTI of 20 min, 1 h and 3 h and, (2) in order to
better present changes for smaller and greater wave periods T, the obtained values for all
WTIs are considered for smaller and greater wave period domains separately. In this study
we showed lower periods T for the first WTI, and greater periods for all the three WTIs.
The results of the analyses for the considered four time periods are shown in Figures 5–8.
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Figure 5. Fourier amplitude of waves with period T obtained by applying FFT to the ICV signal
phase recorded in time around EQ occurred near Kraljevo on 3 November 2010 with window time
intervals (WTI) of 20 min (upper panels), 1 h (bottom left panel), and 3 h (bottom right panel) which
begin with a ∆tWS shift with respect to the EQ time.
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Figure 6. Fourier amplitude of waves with period T obtained by applying FFT to the ICV signal
phase recorded in time around EQ occurred in the Tyrrhenian Sea on 3 November 2010 with window
time intervals (WTI) of 20 min (upper panels), 1 h (bottom left panel), and 3 h (bottom right panel)
which begin with a ∆tWS shift with respect to the EQ time.



Atmosphere 2021, 12, 444 9 of 13

Kraljevo—04/11/2010

10

8

T (min)

6

WTI=20 min

4

2
0

2

∆t
ws

 (h)

4

6

50

0

100

A
F
 (

o
)

30
25

T (min)

20
15

WTI=1 h

10
5

0

2

∆t
ws

 (h)

4

6

0

100

300

200

A
F
 (

o
)

80

T (min)

60

40

WTI=3 h

20
0

∆t
ws

 (h)

2

4

400

200

0

A
F
 (

o
)

Figure 7. Fourier amplitude of waves with period T obtained by applying FFT to the ICV signal
phase recorded in time around EQ occurred near Kraljevo on 4 November 2010 with window time
intervals (WTI) of 20 min (upper panels), 1 h (bottom left panel), and 3 h (bottom right panel) which
begin with a ∆tWS shift with respect to the EQ time.
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Figure 8. Fourier amplitude of waves with period T obtained by applying FFT to the ICV signal
phase recorded in time around EQ occurred in the Western Mediterranean Sea on 9 November 2010
with window time intervals (WTI) of 20 min (upper panels), 1 h (bottom left panel), and 3 h (bottom
right panel) which begin with a ∆tWS shift with respect to the EQ time.
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Similarly to the analysis of the noise amplitude shown in [33], excitations are recorded
in periods when phase noise is reduced at several values of T which are smaller than 1.5 s:

• Kraljevo—03/11/2010: 0.2 s, 0.23 s, 0.47 s (weak increase of the Fourier amplitude),
0.7 s and 1.4 s.

• Tyrrhenian Sea—03/11/2010: 0.23 s, 0.35 s, 0.47 s, 0.7 s and 1.4 s.
• Kraljevo—04/11/2010: 0.23 s, 0.35 s, 0.7 s and 1.4 s;
• Western Mediterranean Sea—09/11/2010: 0.23 s, 0.35 s, 0.47 s (during the first time

period when noise reduction is recorded), 0.7 s and 1.4 s.

As one can see, the common periods are 0.23 s, 0.35 s, and 1.4 s while waves at
period of 0.47 s are exited in three cases whereby these excitations are weak in the first
case, while in the forth case they are recorded only for one of two periods of phase noise
reduction. Excited waves at 0.2 s are recorded only for the first considered EQ event.
Because the obtained values are lower than calculated maximum period of the acoustic
waves (τ0 = 176.7) we can conclude that acoustic waves are excited in periods when noise
reduction occurs.

Although the previous results related to the noise reductions and excitations of the
acoustic waves are very similar as those shown in analysis of the amplitude, there is a
difference in wave attenuation. Namely, the Fourier amplitude for several discrete values
before the reduction time are reported in [33]. In this study, these peaks are not recorded.
In addition, in all four considered periods attenuations are clearly visible at all periods T
(except those values for which excitation is recorded) for phase while these attenuations
are much less pronounced in the case of the amplitude for time period around Kraljevo
EQ on 3 November 2010. Recent results obtained for the Kumamoto M7.2 earthquake on
15 April 2016 in Japan [45] are in close correlation with our results, so we can suppose that
registered oscillations are the acoustic gravity waves of the same origin as is described
in this paper. A similar correlation of our results can be also found in their comparison
with data presented in analysis of the M7.8 earthquake with the epicenter in Nepal on
25 April 2015 [46].

4. Conclusions

In this paper we analysed the VLF signal phase in time periods around four earth-
quakes which magnitude were greater than 4. The goal of this study was to extend analyses
of reductions of the noise amplitude of VLF signals, excitations and attenuations of the
acoustic and gravity waves presented in [33] to the corresponding analyses of the phase of
the VLF signal. We analysed data recorded by the receiver located in Belgrade, Serbia for
VLF signal emitted by the ICV transmitter in Italy.

The obtained results of this study can be summarised as follows:

• In the cases of EQs with magnitudes greater than 5, a multi-hour noise reductions
was observed. As in the case of the amplitude, they begin before the earthquake. In
these cases, no changes that could be related to other earthquakes of lower intensity
were observed.

• In the cases of EQs with magnitudes between 4 and 5, phase noise reductions are
also recorded, but they are shortly interrupted by the noise amplifications. Specific
reductions are potentially related to different EQs, i.e., it cannot be claimed that the
strongest earthquake in the observed period masks the potential relationship between
phase noise reduction and weaker EQs.

• Because the recorded phase reductions are very similar like those in the case of the
amplitude the choice of the signal characteristic which can be used in the correspond-
ing studies depends only on the quality of the recorded data and do not affect the
results of study.

• Excitations of the acoustic waves are recorded for all four periods. The obtained
wave-periods are below 1.5 s which is in agreement with results obtained in analysis
of the amplitude.
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• Attenuations of the acoustic and gravity waves are recorded continuously with wave-
period except for those T corresponding to wave excitations. This result does not
agree with those obtained when analysing amplitude variations where attenuations
are primarily recorded for discrete values of wave periods, while similar continuous
attenuations are much less pronounced.
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over Belgrade, observed using remote sensing and in situ methods during the partial solar eclipse of 20 March 2015. J. Atmos. Sol.
Terr. Phys. 2018, 171, 250–259. [CrossRef]

23. Jin, S.; Occhipinti, G.; Jin, R. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth Sci. Rev.
2015, 147, 54–64. [CrossRef]

24. Manta, F.; Occhipinti, G.; Feng, L.; Hill, E.M. Rapid identification of tsunamigenic earthquakes using GNSS ionospheric sounding.
Sci. Rep. 2020, 10, 1–10. [CrossRef]

25. Korepanov, V.; Hayakawa, M.; Yampolski, Y.; Lizunov, G. AGW as a seismo-ionospheric coupling responsible agent. Phys. Chem.
Earth 2009, 34, 485–495. [CrossRef]

26. Mareev, E.A. Mosaic source of internal gravity waves associated with seismic activity. Seism. Electromagn. Lithosphere Atmos.
Ionos. 2002, 335–343. [CrossRef]

27. Molchanov, O.; Fedorov, E.; Schekotov, A.; Gordeev, E.; Chebrov, V.; Surkov, V.; Rozhnoi, A.; Andreevsky, S.; Iudin, D.; Yunga, S.;
et al. Lithosphere-atmosphere-ionosphere coupling as governing mechanism for preseismic short-term events in atmosphere and
ionosphere. Nat. Haz. Earth Syst. Sci. 2004, 4, 757–767. [CrossRef]
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