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Abstract: In this study, National Centers for Environmental Prediction (NCEP) Final (FNL) oper-
ational global analysis data and meteorological observation data from 2013 to 2017 were used to
evaluate the impact of seasonal changes and different circulation classifications on the dynamical
downscaling simulation results of Weather Research and Forecasting (WRF) in the Pearl River Delta
(PRD) region. The results show that the dynamical downscaling method can accurately simulate
the time variation characteristics of the near-surface meteorological field and the hit rates of a 2-m
temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind direction are 92.66%, 93.98%,
26.78%, and 76.78%, respectively. The WRF model slightly underestimates the temperature and
relative humidity, and overestimates the wind speed and precipitation. For precipitation, the WRF
model can better simulate the variation characteristics of light rain and heavy rain, with the proba-
bility of detection are 0.59 and 0.69, respectively. For seasonal factors, the WRF model can conduct
a perfect simulation in autumn and winter, followed by spring, while summer is vulnerable to
extreme weather, so the result of the simulation is relatively poor. The circulation type is an important
parameter of downscaling assessment. When the PRD is controlled by high pressure, the simulated
results of WRF are good, and when the PRD is affected by low pressure or extreme weather, the
simulation results are relatively poor.

Keywords: dynamical downscaling; WRF; season; circulation classification

1. Introduction

Global Climate Models (GCMs) may be sufficient for describing large-scale circulations
and climate [1], but it is difficult for them to reproduce regional and local circulations
and climate. When GCMs focus on the regional climate, they generally exhibit several
problems, such as an output with a low spatial resolution, the inability to clearly describe
the climate distribution difference in the basin region, and a limited ability to simulate
extreme weather events. Moreover, these limitations are further amplified in areas with
a complex topography, irregular coastline, and uneven soil cover, where the thermal and
dynamic mechanical cycles are greatly affected by the heterogeneity of the surface.

High-resolution meteorological data are required for regional and local climate re-
search, wind energy assessment, the hydrological and land surface model (LSM), and
the land surface data assimilation system. The fifth Intergovernmental Panel on Climate
Change (IPCC) report also highlighted the regional characteristics and differences of cli-
mate change, so the downscaling of regional climate data has become an urgent and
promising topic [2]. Current downscaling approaches, which represent a bridge linking
coarse-resolution meteorological data (e.g., reanalysis and GCMs data) and high-resolution
meteorological data [3], include statistical downscaling of GCMs outputs and dynamical
downscaling using RCMs (Regional Climate Models) nested with GCMs [4,5]. The basic
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principle of statistical downscaling is appropriate choice of transfer functions and predictor
variable, determine the empirical relationship between large-scale climate elements and
local climate elements, and then apply this empirical relationship to GCMs output. The
advantage of statistical downscaling is less computation, which can facilitates the ensem-
bles of climate realizations generation [6]. Dynamical downscaling based on RCMs has a
clear physical basis and is unaffected by observational data. The global reanalysis data
provide initial conditions and boundary conditions for RCMs. RCMs can preserve the
large-scale characteristics of GCMs, and meanwhile integrate the local weather and the
complex terrain information (such as mountains, coastlines, etc.) to improve the resolution
of reanalysis data [1]. Dynamical downscaling needs more computer time than statistical
downscaling. With the progress of computing speed, dynamic downscaling is easier to
implement, and it has been widely used in the Pearl River Delta (PRD) region [7,8].

With more accurate information on land surface inhomogeneity, RCMs can reproduce
the local circulation and climate well. The Weather Research and Forecasting (WRF) model
includes a wide range of physical parameterizations, and various data (e.g., data from
GCMs or weather prediction model and reanalysis data) can be employed as the driving
field for WRF, making WRF one of the most widely used RCMs. Dynamical downscaling
studies using WRF include the assessment of downscaling results, comparing results from
different model resolutions, the impact of different physical parameterizations, the effect of
initial conditions (e.g., sea surface and soil temperature) and large-scale circulations [9,10]
on WRF simulations, ensemble methods with initial condition perturbing or different initial
data to reduce the uncertainties in the initial conditions, and data assimilation research [11].

Guo et al. (2017) use a high-resolution RCMs ensemble to study the extreme precipita-
tion in China, they found the downscaling method can better simulate the local variation
characteristics of precipitation [12]. Qiu et al. (2017) use WRF to downscaling European
Centre for Medium-Range Weather Forecasts Re-Analysis-Interim (ERA-interim) data,
and they find the result of dynamical downscaling have overall comparable accuracy in
temperature and precipitation to ERA-interim data, and are more accurate in extreme
events [13]. However, the performance of dynamical downscaling displays differences
in different regions and seasons [14]. Meteorological simulation faces more challenges in
complex terrain regions [15,16]. The existing reanalysis data often have a low resolution,
which cannot accurately reflect the changes of temperature and precipitation caused by the
regional climate in areas with a complex terrain, and the description of the extreme climate
state often exhibits large deviations. Therefore, the dynamical downscaling is a suitable
method to obtain the characteristics of regional climate change with a higher resolution
than reanalysis data.

The Pearl River Delta (PRD) is located in the south of China. With a complex terrain
and distribution of land and sea, and a high degree of urbanization, local and regional
circulations are complex. In this study, dynamical downscaling of the National Centers
for Environmental Prediction (NCEP) Final (FNL) Operational Global Analysis data in
PRD was carried out. The performance of WRF dynamical downscaling was evaluated by
comparing the observation data of meteorological stations, including 2-m temperature (T2),
2-m relative humidity (RH2), 10-m wind speed (WS) and wind direction (WD), precipitation
(PRE), and the extreme climate index. The impacts of season and weather conditions on
WRF dynamical downscaling were investigated.

2. Data and Method
2.1. WRF Model Design

The WRF model is a next-generation mesoscale numerical weather model and has been
increasingly used as RCM. The effort to develop WRF has been a collaborative partnership,
principally among the National Center for Atmospheric Research (NCAR), the NCEP, and
other research institutions and universities, it has two dynamical cores: Advanced Research
WRF (ARW) and nonhydrostatic mesoscale model (NMM) [17]. WRF-ARW v3.8 was used
in this study. Many studies discussed the impact of different physics parameterizations
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on dynamical downscaling [18,19]. It was difficult to determine an optimal combination
of parameterization schemes [9]. The physical parameterizations used in this study were
the WRF Single-Moment 6–class (WSM6) microphysics scheme, the Kain–Fritsch (KF)
cumulus parameterization scheme, the Rapid Radiative Transfer Model (RRTM) longwave
and Dudhia shortwave radiation parameterization scheme, the Yonsei University (YSU)
planetary boundary layer parameterization scheme, and the Noah LSM parameterization
scheme, which have been widely applied in PRD [20,21] and other regions [22,23].

WRF was configured so that it had two nested domains, in order to reduce the er-
rors of boundary effects: An outer domain (D01) with a horizontal resolution of 25 km
(140 × 100 grid points) covering southern China, most of the Indochina Peninsula, and the
South China Sea, and an inner domain (D02) with a 5 km resolution (100 × 100 grid points)
covering the Pearl River Delta (PRD) region and surrounding areas (Figure 1a). Vertically,
there were a total of 35 full η levels extending to the model top at 50 hPa, with 16 levels
below 2 km. The model integration covers five years from 2013 to 2017. The model simula-
tion was re-initialized every month using a 24-h spin-up, with time-steps of 150 and 30 s
for domains D01 and D02, respectively.
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Figure 1. Two nested domains of the Weather Research and Forecast (WRF) (a), and the terrain and
40 meteorological stations in the inner domain (b).

The WRF model relies on a driving field established by reanalysis, GCM data, and
so on to provide initial lateral and surface boundary conditions for RCMs, and transmits
the weather background information to RCMs. Nevertheless, for long-playing or large
domain simulations, the result of the simulation by RCM may exhibit differences from
the driving field. Previous studies show that there are many methods that can solve this
problem, which involve frequent re-initialization, analysis nudging, spectral nudging, and
scale-selective bias correction [24]. In this study, we used analysis nudging to reduce the
deviation of the driving field, as some studies have pointed out that interior nudging can
retain large-scale information from the driving filed and improve the model effect [10].
When the driving field is not significantly coarser than the model resolution, analysis
nudging is sufficient for improving the performance of the numerical model [25].

2.2. Meteorological Data

NCEP FNL data, based on 1◦ × 1◦ available operationally every 6 h, were used as the
driving filed for WRF with analysis nudging. They were obtained from the Global Data
Assimilation System (GDAS), which collects observational data from the Global Telecom-
munications System (GTS), ground-based observations, aircraft, and satellite observations,
and other sources, for many analyses.

Daily ground meteorological observation data, including T2, RH2, WS, WD, and PRE,
were acquired from the National Meteorological Information Centre (NMIC) to evaluate the
performance of WRF. The study area includes 40 meteorological stations. The distribution
of meteorological stations is shown in Figure 1b.

Except for conventional meteorological elements, the performance of extreme weather
and climate is an important indicator of successful dynamic downscaling. In the early
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21st century, The World Meteorological Organization (WMO) and the World Climate
Research Program (WCRP) jointly established the Climate Change Monitoring and Index
Expert Group (ETCCDI), and they proposed a set of unified criteria for climate change
monitoring, i.e., extreme climate indices. There are 27 extreme climate indices, including
16 extreme temperature indices and 11 extreme precipitation indices, which form the core
of extreme climate indices [26]. In this study, five extreme temperature indices and five
extreme precipitation indices (Table 1) were selected to further study the performance of
WRF dynamic downscaling for regional extreme weather. The extreme climate indices
observed were calculated based on hourly ground meteorological observation data.

Table 1. Definitions of 10 extreme weather event indices.

ID Indicator Name Definitions UNITS

TXx Max Tmax Monthly maximum value of daily maximum temperature ◦C

TNx Max Tmin Monthly maximum value of daily minimum temperature ◦C

TXn Min Tmax Monthly minimum value of daily maximum temperature ◦C

TNn Min Tmin Monthly minimum value of daily minimum temperature ◦C

DTR Mean diurnal temperature range The diurnal range of temperature in a day ◦C

SDII Simple daily intensity index Annual total precipitation/rainy days mm/day

R10 Number of heavy precipitation days The number of days precipitation ≥ 10 mm in all year day

R20 Number of very heavy precipitation days The number of days precipitation ≥ 20 mm in all year day

R95t Contribution rate of extreme
precipitation

The sum of extreme precipitation (the number of days
precipitation ≥ the 95th percentile) as a percentage of all

annual precipitation
%

Rx1day Maximum daily precipitation Annual maximum daily precipitation mm

2.3. Model Evaluation

Although previous studies revealed that dynamical downscaling have overall com-
parable accuracy in near-surface meteorological elements [13], the comparison between
NCEP FNL data, WRF simulation results, and the observations is important to conclude
the interest to perform downscaling with WRF. Thus, this paper simply compares the effect
of WRF dynamical downscaling and NCEP FNL data.

Many dynamical downscaling studies have evaluated simulated results using gridded
observations [9]. As most gridded observations have difficulty in describing the local and
regional climate characteristics due to a low resolution [27], and lose some important
local information when interpolated from site observations, site observations were used to
evaluate the performance of WRF dynamical downscaling.

There are some uncertainties when directly comparing model outputs with obser-
vations as modeled variables represent the average in a model grid, while observations
represent the state at a specific point. However, it is difficult to solve the problem at present.
On the other hand, the dominant (e.g., land use and soil type) or average (e.g., topography
and vegetation fraction) land surface properties are used in a model grid and land surface
properties are smoothed by horizontal spatial discretization, so the nearest grid point may
not be the most suitable one for representing the observations, resulting in “representative-
ness error” [28]. “Representativeness error” is not the focus of this paper, and the error was
treated in a simple way in this study. We use Nearest Neighbor Interpolation to choose the
nearest grid point to the observation stations was selected to evaluate the performance of
WRF. A correction of the daily average temperature was made using a constant lapse rate
of 6 K km−1 to compensate for the elevation differences between the observation site and
the nearest model grid [29]. No corrections were applied to other meteorological elements
due to the complex relationships between them and land surface properties.
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Six standard statistical indices: the correlation coefficient (R), the root mean square
error (RMSE), the hit rate (HR), the standard deviation (STD), the index of agreement (IA),
and the mean bias (MB), were used for model evaluation [30]. The selection of HR is related
to the standard value, and the criteria values of HR for T2, RH2, WS, and WD are 2 ◦C,
10%, 1 m s−1, and 30◦ [23]. For PRE, another three classified statistical indices, including
the probability of detection (POD), the false alarm rate (FAR), and the Heidke skill score
(HSS), are used to verify a forecast against an observation of a binary event (yes or no).
POD and FAR values vary between 0 and 1, and HSS values vary between −1 and 1. The
ideal POD, FRA, and HSS are 1, 0, and 1, respectively [31]. The formulae for these statistical
parameters are shown in Table 2.

However, there is no clear domestic or foreign criterion about how the size of these
values indicates the reliability of the simulation results. Some researchers have pointed out
in evaluations of simulation studies on ground elements that when IA is relatively large,
RMSE < STDo and STDo is relatively close to STDf, and the mean simulation or prediction
results are considered to be more reliable [32].

Table 2. The formulae of standard statistical indices employed in this study.

Designation TAG Formula

Correlation Coefficient R
1
N ∑N

i=1(Fi−F)(Oi−O)√
1
N ∑N

i=1(Fi−F)
2
√

1
N ∑N

i=1(Oi−O)
2

Root Mean Square Error RMSE

√
1
N

N
∑

i=1
(Fi −Oi)

2

Hit Rate HR Nm(|Fi−Oi |≤S)
N × 100%

Standard Deviation STD

√
1
N

N
∑

i=1
(xi − x)2

Index of Agreement IA 1− ∑N
i=1(Fi−Oi)

2

∑N
i=1(|Fi−O|+|Oi−O|)2

Mean Bias MB 1
N

N
∑

i=1
(Fi −Oi)

Probability of Detection POD A
A+B

False Alarm Rate FAR C
A+C

Heidke Skill Score HSS 2(AD−BC)
B2+C2+2AD+(B+C)(A+D)

In these formulae, F and O are the simulated and observed value, respectively; F and O are the average simulated
and observed values, respectively; x is the observed or simulated value; x is the average observed or simulated
value; N is the number of samples; Nm is the number of samples satisfying the conditions; S is the standard value;
A is the number of samples with rain in both the simulated and observed value; B is the number of samples
with no rain in the simulated value, but rain in the observed value; C is the number of samples with rain in the
simulated value, but no rain in the observed value; and D is the number of samples with no rain in both the
simulated and observed value.

2.4. Circulation Classification

The impact of the circulation type on WRF dynamical downscaling is an important
research object in this study. The circulation type can be classified by the grid data of the
sea level pressure, potential height, or wind field. At present, there are five commonly
used classification methods, which are correlation methods, cluster analysis, principal
component analysis, the fuzzy method, and the nonlinear method [23], and this study is
based on European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim
sea level pressure re-analysis data collected at 08:00 Beijing time every day during 2013
to 2017. T-mode principal component analysis (PCA) combined with the K-means cluster
approach was used to identify circulation types, and this method has been widely used in
previous studies [33]. According to the criterion function, nine circulation types (CT1–CT9)
were identified (Figure 2).
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Figure 2. The mean sea level pressure and frequency of different circulation types from 2013 to 2017
in Pearl River Delta.

Different circulation types correspond to different meteorological characteristics. With
the occurrence frequency of 16.05%, CT1 mainly appears in spring and summer. The PRD
lies behind the weak high pressure. For CT2, the occurrence frequency is 8.82%, and it
mainly appears in winter. The PRD is controlled by cold anticyclone, and the prevailing
wind direction (PWD) is east wind. CT3 accounts for 13.03%, and it mainly appears in
spring and winter. The PRD is located at the edge of the cold anticyclone, and the PWD is
northeasterly wind. CT4 mainly appears in summer. The PRD is affected by typhoons or
tropical cyclones, and the PWD is southwesterly wind. CT5 mainly appears in autumn and
winter. The PRD is located at the front of the cold anticyclone, and the PWD is northeasterly
wind. CT6 accounts for 8.54% and mainly appears in autumn. The PRD is affected by
typhoons or tropical cyclones, and the PWD is east wind. CT7 accounts for 11.61% and
mainly appears in summer. The PRD is located at the north of the weak depression, and the
PWD is southwesterly wind. CT8 was accounts for 11.01%, and mainly appears in spring.
The PRD lies behind the weak anticyclone, the PWD is southeasterly wind. For CT9, the
occurrence frequency is 9.37% and it mainly appears in autumn. The PRD is located at the
northern anticyclone front edge, the PWD is northeasterly wind.

3. Results and Discussion
3.1. Overall Performance

Table 3 shows the standard statistical indices for WRF and FNL results comparing
observed daily average meteorological elements. It should be pointed out that daily average
values of WRF are calculated by hourly simulated values, while only four times (00:00,
06:00, 12:00, and 18:00 UTC) for FNL daily average values. To evaluate WRF and FNL data,
observed daily average values are calculated by hourly values and 6-h interval values,
respectively. As can be seen from the table, temporal variation of temperature in FNL data
is similar with observed data, with the R of 0.81. However, the MB of T2 reaches −2.71 ◦C,
and HR of T2 is only 64.23%. Compare with T2, the statistical indices of RH2, WS, and
WD are more complex, and the WS is obviously overestimated with the MB of 1.82 m s−1.
Previous studies have also proved that the surface wind speed of FNL data is 33% higher
than the observed value [19]. For WRF results, the R values of T2 and RH2 are 0.98 and
0.88 (p < 0.05), respectively, and 0.99 and 0.94 for IA. The IA of T2 meets the statistical
benchmark for the temperature (≥0.8) [34]. The performance of T2 and RH2 is better than
that of WS and PRE. WRF slightly underestimates T2 and RH2, with the MB of −0.21 ◦C
and −0.48%, respectively. The difference in the simulated and observed STDs of T2 and
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RH2 is neglectable, which implies that WRF can well-reproduce the dispersion degree of
T2 and RH2. Compared to the temperature and humidity, the variation characteristics of
the wind field are more complex, and the error is relatively large. The RMSEs of WS and
WD reach 1.70 m s−1 and 69.79◦, and the HRs are 26.78% and 76.78%, respectively. Though
the IA of WS meets the statistical benchmark (≥0.6) suggested by previous study [34], WRF
significantly overestimates WS based on variance analysis (p < 0.05), with MB is 1.50 m s−1.
Moreover, the observed STD of WS is smaller than the simulated STD, indicating that
WRF overestimates the fluctuation range of WS. With rapid urbanization, the default land
use could not well depicture the urban areas, leading the underestimation of frictional
weakening effect on WS [35]. On the other hand, the WRF model simulation of the low-
level wind speed also displays a large system deviation. Both of them may lead to a certain
overestimation of WS [36]. The mechanisms affecting precipitation are the most complex.
Overall, WRF can simulate the variation characteristics of PRE, with an R of 0.54, which
passes the significance test (p < 0.05). According to R and IA, the performance of the daily
PRE is the worst in five meteorological elements. The RMSE of PRE reaches 18.81 mm,
and the WRF significant overestimates PRE, with an MB of 5.26 mm. Table 4 shows the
classified statistical indices of PRE, and we can see that the WRF model can distinguish
no rain, light rain, and heavy rain well, with a POD of 0.59, 0.59, and 0.69, respectively.
However, WRF does not well-reproduce moderate rain, with a low POD (0.27) and a high
FAR (0.81). The HSS for the situation of no rain, light rain, and heavy rain or above is
relatively high. All of these indicate that WRF model is good at simulating precipitation
for below of light rain and above of heavy rain, but a worse performance for moderate
rain. This is similar to previous studies [37]. Generally, the statistical indices of FNL data
are inferior as compared to the WRF dynamical downscaling, which is similar to previous
studies [38]. The WRF model can well-simulate the characteristics and average values of
near-surface meteorological fields in the PRD region, especially for T2 and RH2.

The probability density function (PDF) is a better test of the model performance than
the mean or standard deviation alone [30]. Figure 3 shows the PDF of simulated (FCT)
and observed (OBS) T2, RH2, WS, and PRE. The maximum occurrence frequency of T2
focuses on 25–30 ◦C in the PRD region, with a value of more than 40%. WRF perfectly
reproduces the occurrence frequency of T2 in different ranges. The maximum occurrence
frequency of RH2 focuses on 80–85% in the PRD region, with a value of 25.6%. The PDF of
simulated RH2 is basically the same as that of the observed RH2. However, WRF obviously
overestimates the occurrence frequency of RH2 during 80–90%, and underestimates the
occurrence frequency of RH2 during 70–80% and more than 90%. For WS, the PFDs act as a
single peak value wave for both simulation and observation. However, some differences in
PFDs between the simulation and observation can be detected. The maximum occurrence
frequency of observed WS during 0–1 m s−1 reaches 45.07%, but only 8.00% for simulated
WS. WRF underestimates (overestimates) the occurrence frequency of WS less (more)
than 2 m s−1. For PRE, the WRF model can roughly simulate the characteristics of the
precipitation frequency, the maximum occurrence frequency focuses on 0.1–9.9, and the
observed value is 45.7%. The model simulation underestimates the precipitation for no
and light rain (≤9.9), but overestimates the precipitation for above moderate rain (≥10).
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Table 3. Standard statistical indices of WRF and Final (FNL) results comparing observed daily
averaged 2-m temperature (T2), 2-m relative humidity (RH2), wind speed (WS), wind direction (WD),
and precipitation (PRE) during 2013–2017.

R RMSE HR/(%) STDf * STDo * IA MB

T2
WRF 0.98 1.15 ◦C 92.66 5.97 ◦C 6.03 ◦C 0.99 −0.21 ◦C

FNL 0.81 4.67 ◦C 64.23 5.99 ◦C 6.00 ◦C 0.86 −2.71 ◦C

RH2
WRF 0.88 5.17% 93.98 10.27% 10.59% 0.94 −0.48%

FNL 0.74 8.32% 80.84 10.57% 10.56% 0.85 0.02%

WS
WRF 0.82 1.70 m s−1 26.78 1.30 m s−1 0.74 m s−1 0.60 1.50 m s−1

FNL 0.32 3.16 m s−1 47.74 2.60 m s−1 0.75 m s−1 0.29 1.82 m s−1

WD
WRF \ 69.97◦ 76.78 \ \ \ \
FNL \ 89.42◦ 59.50 \ \ \ \

PRE WRF 0.54 18.81 mm \ 21.43 mm 10.61 mm 0.59 5.26 mm
* The subscript f and o represent simulated and observed standard deviations.

Table 4. Classified statistical indices of PRE during 2013–2017.

Precipitation Grade POD FAR HSS

No rain (<0.1 mm) 0.59 0.11 0.59

Light rain (0.1–9.9 mm) 0.59 0.38 0.28

Light to moderate rain (5.0–16.9 mm) 0.29 0.75 0.10

Moderate rain (10.0–24.9 mm) 0.27 0.81 0.10

Moderate rain to heavy rain (17.0–37.9 mm) 0.45 0.76 0.23

Heavy rain or above (>25 mm) 0.69 0.73 0.33
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In order to test the extreme climate by a downscaling simulation, the simulated
extreme weather indices were compared with the observed values, and the MB and per-
centage of MB between the simulated and observed values were calculated (Table 5). For
an extreme temperature, the MB basically meets the criteria value of T2 in HR (<2.0 ◦C),
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indicating that WRF dynamical scaling at an extreme temperature is acceptable. The MB
and its percentage error of DTR are 2.0 ◦C and 11.9%, respectively. The WRF model can
well-reproduce the daily variation range in temperature in the PRD region. For five extreme
temperatures, the MB of TNx is the smallest, while the MB of TNn is the largest. WRF can
better reproduce an extreme high temperature than an extreme low temperature. This may
be related to the following factors. Generally, a high temperature usually occurs in sunny
weather, while a low temperature is usually accompanied by cold air and precipitation.
The uncertainty of cloud and precipitation may result in temperature error. It is worth
noting that simulated temperature extremes exhibit obvious cold deviation, especially for
extremely low temperatures, and they are larger than the cold deviation of the average
temperature (Table 5). Previous studies have proposed that this may be related to the lack
of some physical processes, such as the urban canopy effect of anthropogenic heat [39].
Due to the obvious urbanization characteristics in the PRD region and the influence of the
obvious urban heat island effect, the temperature at night is increased by anthropogenic
heat. However, the influence of the urban canopy and anthropogenic heat ignored in this
paper results in cold deviation of the simulated temperature. The smaller the temperature,
the weaker the turbulent mixing, resulting in more obvious cold deviation for extremely
low temperatures.

For PRE, a relatively large error in extreme precipitation simulation can be detected.
The percentage errors of R10 and R20 are 81.5% and 142.5%, respectively, which implies
that WRF significantly overestimates extreme precipitation. The percentage error of R95t
is only 22.9%. The observed average annual precipitation in the PRD region from 2013 to
2017 is 2003.0 mm, but the simulated average annual precipitation is 45.4% higher than the
observed value. The SDIIs of observed and simulated values are 11.6 and 17.5 mm day−1,
respectively. Previous studies also found the overestimation of extreme precipitation for
WRF [40]. Overestimation of the shortwave radiation and relevant convective available
potential energy in southeastern China may be one of the reasons for the precipitation
overestimation [41]. Generally, the performance of extreme temperature and precipitation
in the PRD region is comparable to previous studies [42].

Table 5. The comparison of extreme weather indices for simulation and observation data collected
during 2013–2017 over Pearl River Delta.

Indicator Name OBS * FCT * MB Percentage Error

TXx 36.6 ◦C 35.7 ◦C −1.0 ◦C −2.6%

TNx 28.1 ◦C 26.9 ◦C −0.6 ◦C −6.1%

TXn 9.3 ◦C 8.7 ◦C −1.2 ◦C −4.2%

TNn 4.4 ◦C 2.3 ◦C −2.1 ◦C −47.6%

DTR 16.8 ◦C 18.8 ◦C 2.0 ◦C 11.9%

SDII 11.6 mm day−1 17.5 mm day−1 5.9 mm day−1 50.6%

R10 63.8 day 115.8 day 52.0 day 81.5%

R20 29.2 day 70.8 day 41.6 day 142.5%

R95t 74.2% 91.2% 17.0% 22.9%

RX1day 81.8 mm 204.1 mm 122.3 mm 149.5%
* OBS and FCT represent observed and simulated values, respectively.

3.2. The Performance in Different Seasons

Table 6 shows the statistical indices for simulated and observed daily average meteo-
rological elements in different seasons. Overall, we can see that the WRF model has the
best simulation effect on T2, followed by RH2, and a relatively large error for the wind and
precipitation simulation.
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Table 6. Statistical indices for simulated and observed daily averaged T2, RH2, WS, WD, and PRE
during different seasons.

T2 RH2 WS WD PRE

MAM

R 0.96 0.85 0.61 \ 0.37
RMSE 1.32 ◦C 4.7% 1.70 m s−1 60.81◦ 30.3 mm

HR/(%) 86.96 96.09 28.91 68.26 \
STDf * 3.75 ◦C 7.81% 1.09 m s−1 \ 32.13 mm
STDo * 4.25 ◦C 8.39% 0.61 m s−1 \ 12.11 mm

IA 0.97 0.91 0.46 \ 0.40
MB 0.43 ◦C −1.58% 1.46 m s−1 \ 5.10 mm

JJA

R 0.74 0.77 0.80 \ 0.68
RMSE 1.03 ◦C 4.40% 1.56 m s−1 67.78◦ 18.21 mm

HR/(%) 96.96 97.39 34.78 72.17 \
STDf * 1.00 ◦C 4.54% 1.19 m s−1 \ 18.52 mm
STDo * 1.46 ◦C 6.55% 0.62 m s−1 \ 11.69 mm

IA 0.81 0.84 0.55 \ 0.66
MB −0.31 ◦C 1.38% 1.35 m s−1 \ 12.08 mm

SON

R 0.98 0.85 0.90 \ 0.68
RMSE 1.02 ◦C 5.43% 1.76 m s−1 76.66◦ 11.46 mm

HR/(%) 97.14 93.41 25.27 80.88 \
STDf * 3.91 ◦C 9.57% 1.48 m s−1 \ 14.70 mm
STDo * 3.98 ◦C 10.04% 0.79 m s−1 \ 8.73 mm

IA 0.98 0.92 0.61 \ 0.73
MB −0.52 ◦C −0.48% 1.55 m s−1 \ 3.73 mm

DJF

R 0.96 0.89 0.87 \ 0.77
RMSE 1.18 ◦C 6.01% 1.78 m s−1 73.72◦ 4.99 mm

HR/(%) 89.58 88.91 17.96 86.03 \
STDf * 3.74 ◦C 12.75% 1.32 m s−1 \ 6.53 mm
STDo * 3.60 ◦C 12.75% 0.86 m s−1 \ 7.71 mm

IA 0.97 0.94 0.60 \ 0.86
MB −0.44 ◦C −1.25% 1.63 m s−1 \ 0.03 mm

* The subscript f and o represent simulated and observed values.

For T2 and RH2, the STD differences in all seasons of the T2 and RH2 simulation and
observation can be ignored, which indicates that the WRF simulation can better show the
dispersion degree of temperature and humidity. Seasonally, the T2 simulation result slightly
overestimates the observation value in spring, with the MB of 0.43 ◦C, and other seasons’
simulations underestimate the T2, but their numerical biases are small. This may be related
to the complex spring rainfall period in PRD and it can be seen from Table 6 that the
model has a poor simulation of spring precipitation, which may indirectly affect the model
simulation result of T2. For the summer, it is also shown in Table 6 that the simulation result
error in summer is relatively large for T2 and RH2, compared with other seasons, with R
values of 0.74 and 0.77, respectively. Davis et al.’s (2002) studies indicate that this may be
related to the systematic error of the cumulus parameterization scheme [43]. The PRD in
summer is susceptible to the influence of the typhoon and tropical storm, and this kind of
cumulus scale is generally small, while the energy spectrum gap between the scale and
mesoscale of cumulus described in the scheme of cumulus convection parameterization
used in the WRF model is larger than that of the real atmosphere, with larger errors, so it
will have a certain influence on the simulation results. Furthermore, the particularly strong
moisture transport of PRD in the summer is also one of the factors that caused the MB
overestimation of RH2.

For wind, most of the correlation coefficients (except spring) meet R > 0.8, which
indicates that the WRF model can accurately simulate the seasonal variation characteristics
of the wind speed. In terms of individual seasons, the R and IA in spring and summer are
lower than in autumn and winter, but the HR (RMSE) is higher (lower) than in autumn and
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winter. One of the reasons for this result may be that extreme weather frequently occurs in
spring and summer, and the weather situation is unstable and wind frequency is higher
when the number of samples is larger. In autumn and winter, the weather situation is
stable, the wind frequency is lower, and the sample number is smaller than in spring and
summer, which may cause certain random error, making the HR relatively poor. The results
of Analysis of Variance (ANOVA) show that the simulation values of WRF are significantly
overestimated all year. This is similar to previous studies [44]. There are many reasons
for the simulation overestimation of WS. The YSU parameterization scheme selected in
this study has a better simulation effect on WRF than other schemes, but it also leads to
strong mixing of the simulated turbulence, which leads to overestimation of the surface
wind speed in the model [45]. On the other hand, some studies have also proved that the
surface wind speed of FNL data is 33% higher than the observed value, so the higher wind
speed of FNL data as a driving field may also lead to the simulation overestimation of
wind speed in the WRF model [19].

It can be seen from Table 6 that the WRF model can roughly simulate the seasonal
characteristics of precipitation by comparing the observed values, and the simulated STD
displays a large deviation from the observed values, which indicates that the WRF model
overestimates the fluctuation range of precipitation. From the perspective of the season, the
WRF model seriously overestimates the precipitation of the whole year, and the deviation
of spring is large. This may be related to the fact that, in spring, the PRD is in the pre-flood
season in southern China, and the subtropical high moves northward, making the cold
and warm air flow converge in south China. This superimposes the influence of the low-
altitude southwest jet over south China, resulting in the complexity of rainfall, which leads
to the simulation deviation. In summer, although the simulation effect is relatively good,
R and IA are 0.77 and 0.86, respectively, but MB also reaches 12.08 mm, which seriously
overestimates the precipitation in summer. As mentioned in the above section, the PRD is
very vulnerable to typhoons and tropical storms in the summer, and most of the summer is
rainstorm and above. This also indirectly explains why the simulation effect in winter is
relatively good, because there is less rainfall and a lower rainfall intensity in winter.

Based on the above research on the progress of the simulation value and observation
value of the daily average variation of each meteorological element in the four seasons, the
WRF model can preferably simulate the characteristics of various meteorological elements
in different seasons. The simulation results of autumn and winter are the best, followed by
spring, and in summer, the PRD is vulnerable to extreme weather, such as typhoons and
tropical storms, so the simulation effect is relatively poor.

3.3. The Performance in Different Circulation Types

Table 7 shows the statistical indices for simulated and observed daily average meteo-
rological elements in different circulation types.

For T2 and RH2, the simulations of nine circulation types all meet the statistical
benchmark (IA > 0.8) [34], and their MBs have small values, indicating that the WRF
model could basically simulate the temperature and relative humidity characteristics of
different circulation types. However, relative to other types of circulation, the simulation
results under CT1, CT4, and CT7 are relatively poor. CT1 mainly appears in the spring
and summer, during the pre-flood period in south China. The confrontation of warm and
cold air flow in the pre-flood period leads to small-scale weather, such as cold fronts, shear
lines, and so on, which easily leads to temperature fluctuation and a range of extreme
precipitation. Previous studies show that the error of the WRF model for the simulation
of this kind of weather system is relative large [46]. CT4 and CT7 mainly appear in the
summer. The PRD is mainly affected by typhoons or tropical cyclones under CT4, and
affected by weak low pressure under CT7. Generally, WRF dynamical downscaling has
relatively poor performance under weather conversion (CT1) or cloudy and rainy weather
(CT4 and CT7) due to the dynamic or physical process defects of the model itself [47]. The
large error of FNL data in such weather also passes to downscaling simulations.
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The WS simulation of WRF for different circulation types is more complicated. Ac-
cording to the MB in Table 7, WRF overestimates the wind speed of all circulation types,
and the simulation values of all STDs are larger than the observed values, indicating
that WRF overestimates the wind speed and fluctuation range under all circulation types.
Previous studies also reported that WRF overestimates near-surface wind speed, which
maybe relate to the error of physical parameterization schemes [16]. Another may be due
to the high level of urbanization distribution in the PRD, but the urban canopy parameters
are not considered in this paper, which makes the WRF model underestimate the friction
weakening effect of the city on WS [45]. In different circulation types, WRF model can better
reproduce the wind field variation characteristics under CT2, CT4, CT5, CT6, and CT9, with
R exceeding 0.80. For CT2, CT5, and CT9, the isobar is relatively dense (Figure 2) which
results in large pressure gradient and wind speed. The CT4 and CT6 are mainly controlled
by typhoons or tropical cyclones, the wind speed is also large. In large background wind,
mesoscale model can well reproduce time variation characteristics of wind speed (high R),
while brings large RMSE and MB, and vice versa [48]. CT3 (CT7) is located at the rear of
anticyclone (cyclone), and easy to produce small-scale motion which leading wind field to
complex. CT1 and CT8 appears in spring, which is affected by the pre-flood period in south
China, there are a lot of wind shear lines which cause the wind field more complex. Above
of that make the simulation results of CT1 and CT8 are relatively poor. Generally, WRF
model overestimates the WS in all circulation types. When the pressure gradient in the
PRD is large (CT2, CT5, CT9) or controlled by typhoon (CT4, 6), the wind speed is relatively
large, WRF can well reproduce time variation characteristics, but brings large absolute
error. When PRD located at the rear of anticyclone (CT3), cyclone (CT7) or controlled by
pre-flood period (CT1, CT8), the weather situation becomes complex, the performance of
WRF is affected [47].

For PRE, when the circulation types are CT2, CT3, CT5, and CT9, the PRE simu-
lation meets the statistical benchmark (IA > 0.6) [34]. CT2, CT5, and CT9 is control by
high-pressure and CT3 locate at edge of high-pressure (Figure 2), and the deviation of MB
is relatively small which indicates that the model can better simulate PRE under these
types. For CT1, CT4, CT6, CT7, and CT8, their MB plus deviations are large, which indicates
that the model seriously overestimates the PRE under there five circulation types. The PRD
is affected by pre-flood season of south China (CT1 and CT8), controlled by typhoons or
tropical cyclones (CT4 and CT6) or rear of weak depression (CT7), resulting in frequent
severe convective weather, and increased extreme precipitation. WRF model has poor
simulation on this kind of precipitation [37,47]. Above of those leads to the deviation of
those circulation types simulation result. The simulated STD of the four circulation types
displays a large deviation from the observed values, which indicates that the WRF model
overestimates the fluctuation range of precipitation. Vuillaume and Hearth (2018) pointed
out that there are variations of different circulation types, an optimized physical parame-
terization schemes maybe change with different weather types [49]. Overall, compared
with other meteorological factors, the simulated precipitation are relatively poor for all
circulation types, and there is a large deviation of MB when PRD affected by pre-flood
period in south China (CT1 and CT8) or control by low-pressure (CT4, CT6, and CT7), but
the deviation of MB when PRD is control by high-pressure (CT2, CT3, CT5, and CT9) is
relatively small, and the effect of R and IA is relatively good.

According to the movement of the subtropical anticyclone, the evolution of the weather
situation in the PRD can be divided into four steps. In spring, the cold southward air
converges with the subtropical anticyclone in the PRD. The cold and warm current are
equally strong, forming strong wind easily. This circulation leads to temperature reduction
and heavy rain, affecting the simulation effect of WRF (CT1 and CT8). At the end of spring,
the subtropical anticyclone rises to the north, the PRD main at the rear of weak high (CT3)
or weak depression (CT7). WRF can well reproduce the meteorological fields (T2, RH2,
PRE) in these weather situations. However, for wind field, the northward movement of
the subtropical high produces a lot of wind shear lines, which makes the result of WS



Atmosphere 2021, 12, 409 13 of 16

simulation more complicated. In summer, the South China Sea monsoon begins to break
out. The monsoon’s northward movement is affected by land uplift and other factors,
which brings a large continuous rainfall in the PRD. In this period, the PRD is affected
typhoons or tropical cyclones easily, and WRF is prone to producing a large error due to
uncertainty of cloud microphysical simulation (CT4 and CT6). In autumn and winter, the
subtropical anticyclone begins to move southward. The PRD is mainly controlled by high
pressure (CT2, CT5, and CT9), the weather situation tends to be stable. WRF can well
reproduce stable weather.

Table 7. Statistical indices for simulated and observed daily averaged T2, RH2, WS, WD, and PRE
for different circulation types.

CT1 CT2 CT3 CT4 CT5 CT6 CT7 CT8 CT9

T2

R 0.86 0.91 0.94 0.76 0.95 0.94 0.80 0.94 0.97
RMSE (◦C) 1.02 1.44 1.20 1.10 1.3 1.05 1.03 1.19 1.12

HR (%) 96.25 82.61 90.34 95.38 91.29 96.79 96.70 92.04 91.81
STDf (◦C) * 1.32 2.96 3.16 1.27 3.38 2.24 1.01 2.66 4.15
STDo (◦C) * 1.81 2.72 3.44 1.64 3.57 2.66 1.59 3.21 4.42

IA 0.89 0.93 0.97 0.85 0.97 0.95 0.83 0.96 0.98
MB (◦C) −0.15 −0.80 0.13 −0.22 −0.28 −0.43 −0.27 0.11 −0.21

RH2

R 0.77 0.87 0.83 0.80 0.86 0.84 0.78 0.79 0.84
RMSE (%) 4.07 6.82 5.38 4.99 6.22 4.45 3.99 3.94 6.11

HR (%) 99.32 84.47 93.28 93.08 87.88 97.44 99.53 0.99 90.64
STDf (%) * 4.16 10.85 8.82 5.92 10.25 6.50 4.11 5.19 8.96
STDo (%) * 6.22 12.73 9.14 7.71 10.91 8.01 6.11 6.43 10.93

IA 0.83 0.91 0.91 0.86 0.91 0.90 0.84 0.88 0.90
MB (%) 0.37 −2.58 −0.96 1.97 −2.81 1.09 0.91 −0.09 −1.13

WS

R 0.69 0.88 0.73 0.82 0.90 0.84 0.80 0.61 0.87
RMSE (m s−1) 1.67 2.12 1.38 1.37 1.85 1.53 1.85 1.49 1.87

HR (%) 30.72 4.97 32.35 51.54 11.74 42.31 22.64 38.31 14.62
STDf (m s−1) * 1.10 1.17 0.88 1.31 1.24 1.47 1.29 1.04 1.33
STDo (m s−1) * 0.50 0.80 0.53 0.76 0.86 0.73 0.70 0.53 0.80

IA 0.43 0.50 0.50 0.67 0.58 0.63 0.52 0.47 0.56
MB (m s−1) 1.44 2.04 1.24 1.09 1.75 1.21 1.65 1.24 1.72

WD RMSE (◦) 53.29 48.06 57.14 114.80 73.57 116.82 53.47 50.91 57.29
HR (%) 68.60 96.27 71.85 59.32 92.05 71.79 75.94 64.18 89.47

PRE

R 0.52 0.69 0.69 0.60 0.78 0.61 0.44 0.60 0.81
RMSE (mm) 18.77 5.58 6.09 22.53 3.95 14.39 43.44 9.75 6.47
STDf (mm) * 18.15 4.11 7.50 21.31 5.91 16.38 44.88 10.53 10.62
STDo (mm) * 12.40 7.51 7.92 13.49 5.89 9.08 12.41 10.33 9.65

IA 0.60 0.73 0.82 0.61 0.88 0.66 0.36 0.75 0.83
MB (mm) 10.09 −0.58 0.39 14.66 −0.05 6.35 14.40 2.73 0.99

* The subscript f and o represent simulated and observed values.

Generally, when the PRD is located at the center or rear of the high pressure, the
atmospheric junction is relatively stable, and the WRF simulation effect is better. When the
PRD is controlled by low pressure or affected by typhoons and other factors, the pressure
gradient is large, and the atmospheric junction is unstable, so the simulation effect is
relatively poor.

4. Conclusions

In this study, NCEP FNL operational global analysis data were used as the driving
field of the regional climate model WRF to carry out numerical experiments of dynamic
downscaling in the Pearl River Delta region during the five years of 2013–2017. The
simulation results and observation data were compared and analyzed, and the simulation
ability of the WRF model for the regional climate was evaluated. The main conclusions are
as follows:

1. Overall, the WRF model can very well simulate the change characteristics of 2-m
temperature and 2-m relatively humidity, with HR (hit rate) values of 92.66% and 93.98%,
respectively. The results of variance analysis show that the 10-m wind speed simulated by
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the WRF model was significantly overestimated. The precipitation simulation is relatively
poor, WRF overestimates the annual precipitation, and it can be seen from the statistical
indicators that WRF has a good simulation effect for light rain and below, while the
simulation for moderate rain exhibits a large deviation.

2. For extreme weather, the WRF model can well-reproduce the characteristics of
temperature variation. For five extreme temperature indices, the MB (Mean Bias) of TNX
(monthly maximum value of daily minimum temperature) is smallest, while the TNn
(monthly minimum value of daily minimum temperature) is the largest, which indicate
WRF model can better reproduce extreme high temperature than extreme low temperature.
The result of precipitation simulation is relatively poor and WRF seriously overestimates
the extreme rainfall.

3. The simulation performance of the WRF model has obvious seasonal differences.
Overall, the WRF model produces the best simulation results in autumn and winter,
followed by spring, while the summer results are relatively poor. The simulation of different
meteorological factors shows that the WRF model can better reproduce the variation
characteristics of 2-m temperature and 2-m relatively humidity in different seasons. For
10-m wind speed and precipitation, the WRF model overestimates the wind speed and
rainfall in each season. The autumn and winter have a relatively good simulation effect,
which is due to the stable weather pattern. However, in spring, WRF can well-reproduce
the characteristics of 2-m temperature and 2-m relatively humidity, for 10-m wind and
precipitation, the Pearl River Delta is affected by the flood season in southern China, the
result of simulation is relatively poor. In summer, due to the influence of extreme weather,
the deviation of all meteorological factor simulation is large.

4. The circulation type is an important parameter of downscaling assessment. When
the Pearl River Delta region is located at the center or rear of the high pressure, the WRF
simulation effect is better. When the Pearl River Delta region is under the control of
low pressure or extreme weather, the atmospheric pressure gradient is large, and the
atmospheric junction is unstable, so the simulation effect is relatively poor.

In general, the dynamical downscaling method can certain extent improve the resolu-
tion and accuracy of meteorological elements in the Pearl River Delta region. This paper
analyzes the influence of different extreme weather and different seasons on dynamical
downscaling. At the same time, there is less researches focusing on the impact of weather
classification on dynamic downscaling in the Pearl River Delta region, which is studied in
this paper. Limited by computing resources, this paper only studies the impact of meteo-
rological conditions, but lacks the research on the impact of model errors on dynamical
downscaling. In the future, it is still necessary to study the impact of other factors on
dynamical downscaling, such as the influence of different reanalysis data and using more
detailed parameterization scheme.
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