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Abstract: Solar radiation (Rs) is one of the main parameters controlling the energy balance at the
Earth’s surface and plays a major role in evapotranspiration and plant growth, snow melting, and
environmental studies. This work aimed at evaluating the performance of seven empirical models in
estimating daily solar radiation over 1990–2004 (calibration) and 2004–2010 (validation) at 13 Peruvian
meteorological stations. With the same variables used in empirical models (temperature) as well as
two other parameters, namely precipitation and relative humidity, new models were developed by
multiple linear regression analysis (proposed models). In calibration of empirical models with the
same variables, the lowest estimation errors were 227.1 and 236.3 J·cm−2·day−1 at Tacna and Puno
stations, and the highest errors were 3958.4 and 3005.7 at San Ramon and Junin stations, respectively.
The poorest-performing empirical models greatly overestimated Rs at most stations. The best
performance of a proposed model (in terms of percentage of error reduction) was 73% compared to
the average of all empirical models and 93% relative to the poorest result of empirical models, both at
San Ramon station. According to root mean square errors (RMSEs) of proposed models, the worst and
the best results are achieved at San Martin station (RMSE = 508.8 J·cm−2·day−1) and Tacna station
(RMSE = 223.2 J·cm−2·day−1), respectively.

Keywords: hydrometeorology; Peru; regression models; renewable energy; solar radiation; temperat
ure-based models

1. Introduction

Solar radiation reaching Earth’s surface is one of the main sources of clean and re-
newable energy, optimal use of which can reduce human dependence on fossil fuels that
contribute substantially to global warming [1,2]. The energy from Rs is the source of many
processes on our planet, to the point that human life depends on it. Rs is an important
topic in various areas of study such as hydrology [3–5], environmental science [6–9], water
resources management [10,11], water balance modeling [12,13], and plant growth mod-
eling [14–17]. This parameter is widely used in meteorological forecast models, climate
change models, and ecosystem models [18–22]. It also plays a prominent role in such impor-
tant processes as evaporation, evapotranspiration, and snowmelt. Knowing daily values of
Rs and how it changes in the long-term can help researchers (in development of theoretical
studies) and technologists (in assessment of the equipment associated with solar energy,
for example, in designing photovoltaic systems and solar panels or thermal systems).

Rs is directly measured in meteorological stations using pyranometers. In contrast to
other major meteorological parameters which are readily available (temperature, humidity,
and precipitation, for instance), the high cost and difficulty in maintenance and calibration
of pyranometers have led to a lack of reliable data for this parameter in many developing
countries, and this adversely impacts research activities which depend on it. Due to such
constraints, Rs is indirectly estimated using various methods.
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Day of the year-based methods, conventional methods (e.g., empirical models), and
new soft computing methods (e.g., Artificial Intelligence—AI) have been among the most
important and most widely used methods for estimating Rs. In day of the year-based
methods, generally sine wave functions [23], cosine wave functions [24], combined sine-
cosine wave functions [25], polynomial functions [26], or Gaussian functions [27] are
fitted to Rs values measured over a long timeframe, and no meteorological parameters
are used [28,29]. Quej et al. [1] assessed the performance of four existing models as well
as their own proposed Gaussian model in terms of estimating Rs at six meteorological
stations in Mexico and reported root mean square errors (RMSEs) ranging between 97.5
and 219.7 J·cm−2·day−1.

Empirical models are typically employed in the form of temperature-based [30–33],
sunshine-based [34,35], or hybrid models [33,36] in which the relation between inputs and
output (Rs) is based on linear and nonlinear regression analysis or polynomial functions.
Hassan et al. [20] evaluated empirical models over a 20-year time period in Egypt and
subsequently developed new models, the best of which had a mean absolute percentage
error (MAPE) of approximately 2.87%. Yildirim et al. [37] used different empirical models
for estimating Rs in three stations in Turkey and also developed new models for which
RMSE ranged between 1.183 and 1.569, respectively. In an extensive study, 732 empirical
models and 65 functional forms for estimating Rs in different parts of Africa were reviewed
by Chukwujindu [38].

Although new soft computing methods including artificial intelligence, for example,
artificial neural networks (ANN), adaptive neuro-fuzzy inference system (ANFIS), support
vector machine (SVM) and extreme learning machine (ELM), and their coupling with
relative novel optimization algorithms such as particle swarm optimization (PSO), firefly
algorithm (FA), and whale optimization algorithm (WOA) have improved the performance
of Rs estimation in recent years, they require considerable user knowledge and are also
more complex compared to empirical models [39–47]. Tymvios et al. [48] reported better
performance of ANN (seven different architectures with best RMSE = 10.15) compared
to Angstrom model (three different types with best RMSE = 13.36). Rahimikhoob [49]
compared Hargreaves-Samani and a new ANN model in a semiarid region and reported
better results for ANN model with RMSE and R2 values of 253.4 J·cm−2·day−1 and 0.89,
respectively. Behrang et al. [50] evaluated multilayer perceptron (MLP) and radial basis
function (RBF) neural networks under six scenarios in Dezful, Iran and reported MAPEs
varying between 5.21 and 12.86% and 5.56 and 12.39% for MLP and RBF, respectively.

Multilinear regression (MLR), multi-nonlinear regression (MNLR) and feed-forward
artificial neural network methods were used by Bilgili and Ozgoren [51] for modeling daily
total Rs in Adana, Turkey, with MAPE and R2 values of 9.23% and 97.5%, respectively.
Khatib et al. [52] examined performance of linear, nonlinear, fuzzy logic and ANN models
in estimating Rs at five sites in Malaysia and reported MAPEs of 8.13, 6.93, 6.71 and
5.38%, respectively. A comprehensive review of different types of ANN and different input
variables is provided by Yadav and Chandel [46].

Recently, researchers reported ability of machine learning approaches for solar radian
estimating. Kisi [53] reported a new model by fuzzy genetic model for the estimation
of solar radiation in Turkey. The provided model reported the better results during the
testing stage and outperformed the other machine learning models used. In another
study, Mohammadi and Aghashariatmadari [4] coupled support vector regression via
krill-herd optimization algorithm. They reported a satisfied result by RMSE between
3.96 and 1.98 (MJ·m−2·day−1) for new proposed model for daily solar ration in Iran.
Aybar-Ruiz et al. [54] used a coupled model via Grouping Genetic Algorithm enhanced
by an extreme learning machine (ELM) for solar radiation estimation. The results showed
that new hybrid model was more accurate than the ordinary ELM model. Ibrahim and
Khatib [55] integrated the Random Forest (RF) model by Firefly optimization algorithm
(FFA) for solar radiation estimation in Malaysia. The proposed new model (RF-FFA) was
compared to ordinary artificial neural network (ANN), hybrid ANN-FFA, and standalone
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RF model; finally, they reported satisfied results for all machine learning model used.
Capability of ANN, genetic programming (GP), and support vector machine coupled with
firefly algorithm (SVM-FFA) for predicting Rs was examined in three locations in Nigeria
with best results (RMSE = 1.866; R2 = 0.73) for SVM-FFA [56]. Accuracy of empirical, ANN,
and SVM models in estimating Rs using most influencing meteorological parameters in
India was assessed by Meenal and Selvakumar [47]. The lowest and highest RMSEs were
0.6387 (sunshine-based models) and 2.4328 (temperature-based models) for empirical mod-
els, 0.5814 (hybrid models) and 2.2197 (temperature-based models) for ANN and 0.4205
(hybrid models), and 1.1434 (temperature-based models) for SVM. Zang et al. [57] assessed
the performance of 14 day of the year-based models in 35 Chinese meteorological stations.
These included seven empirical models (six from the literature and one proposed model)
and seven machine learning models (support vector regression (SVR), Gaussian process
regression (GPR), three ANFIS models, and two ANFIS models coupled with chaotic firefly
algorithm (CFA) and whale optimization algorithm with simulated annealing and roulette
wheel selection (WOASAR)). ANFIS-CFA and ANFIS-WOASAR showed the highest accu-
racy in 19 and 15 stations, with RMSEs and MAPEs in the ranges 1.203–2.491 MJ·m2 and
4.516–18.976%, respectively. A relatively comprehensive review on application of machine
learning methods is provided by Voyant et al. [58].

The particular geographic location of Peru (on the southern hemisphere), reliance of
its economy on the agricultural industry, and the absence of a comprehensive study on Rs
estimation in this country highlight the importance of accurate estimation of this parameter
in Peru. Due to the lack of recorded sunshine hour data, the main objective of the present
study was to evaluate the performance of seven empirical models (six temperature-based
models and one temperature-precipitation based model) in estimating daily Rs values over
1990–2010 in 13 Peruvian meteorological stations. The authors also intended to develop
and validate new empirical models based on recorded meteorological data in each station
(proposed models) for improving Rs estimation if none of the available models would
prove to be suitable.

2. Materials and Methods
2.1. Study Area

Peru has a total area of 1,280,000 square kilometers, spanning from 0◦ to 18◦ S and
from 69◦ to 82◦ W, its average altitude is 2650 m above sea level, and it is bounded by
the South Pacific Ocean to the east (Figure 1). The Andes mountain range extends from
north to south and divides the country into three parts: a mountainous region with sunlit
valleys and 6000 m peaks, a narrow desert and lowland zone between the mountains and
the Pacific Ocean, and a lowland, wet, and very warm region on the eastern side of the
mountainous area. Eastern Peru is covered by tropical rainforests (Amazonia) with a very
high precipitation. With Lake Titicaca (the highest navigable lake in the world) on the
south-eastern part and along the border with Bolivia, Atacama Desert (the driest place on
Earth) along the border with Chile, and Sechura Desert on the northwest along the Pacific
Ocean coast, the country has a unique weather profile.

Peruvian economy relies on the agriculture industry. Knowing the quantity, distri-
bution, and dynamics of Rs across the country will therefore significantly contribute to
irrigation scheduling and water resources management. Accurate estimation of this param-
eter will also be useful in sustainable solar energy generation by helping in the design of
solar panels, solar thermal systems, and photovoltaic systems.

2.2. Empirical Models

Using daily recorded meteorological parameters in 13 Peruvian stations (Table 1),
performance of seven empirical models (Table 2) in estimating Rs from 1990 to 2010 was
assessed. For this purpose, measured data from 1 January 1990 to 31 December 2004
(5479 data points for each parameter) and from 1 January 2005 to 31 December 2010
(2191 data points per parameter) were used for calibration and validation of empirical



Atmosphere 2021, 12, 389 4 of 28

models, respectively. Due to the unavailability of measured radiation values, the empirical
models used were selected from among temperature-based models whose acceptable
results have been reported for various locations. Regarding data quality and assurance
procedures applied to the data for current study, neighbor stations method was use for
controlling quality of data and. In addition, some missing data (gape in data set) were fixed
by neighbor stations approach (however, missing data was less than 5% of whole data set).

Figure 1. Geographic location of the study area and meteorological stations used in this study.

Table 1. Statistical indices for climatic parameters recorded in 13 Peruvian meteorological stations
over the time period covered in this study.

Parameter CV SD Mean Max Min

Min temperature (◦C) 0.8 8.41 10.45 28.9 −17.3
Max temperature (◦C) 0.32 7 21.96 42.7 0.9
Altitude (m) 0.86 1749.49 2026 4990 17
Relative humidity (%) 0.23 15.9 68.1 99 4
Extraterrestrial Radiation
(MJ·m−2·day−1) 0.19 4.21 35.47 41.71 25.07

Solar Radiation
(MJ·m−2·day−1) 0.3 6.77 22.25 37.44 0.65

SD: standard deviation, CV: coefficient of variation.

In these models, ∆T is the difference between the highest and lowest daily tempera-
tures, Tmean is average daily temperature, Z is the altitude of the weather station, Pt is
transformed precipitation, and Ra is extraterrestrial radiation.
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Table 2. Empirical models used for estimating solar radiation.

Empirical Model Equation

Hargreaves-Samani [30] Rs = Raa(∆T)0.5

Samani [31] Rs = Ra
[
C1∆T2.5 + C2∆T1.5 + C3∆T0.5]

Annandale et al. [32] Rs = Rad
(
1 + 2.7 ∗ 10−6Z

)
∆T0.5

Chen et al. [33] Rs = Ra(e1 + e2ln(∆T))
Wu et al. [36] Rs = Ra

(
i1 + i2∆T0.5 + i3Tmean + i4Pt

)
Jahani et al. 1 [2] Rs = Ra

(
β1 + β2∆T + β3∆T2 + β4∆T3)

Jahani et al. 2 [2] Rs = Ra
(
γ1 + γ2∆T0.5 + γ3∆T1.5 + γ4∆T2.5)

3. Results
3.1. Evaluating the Performance of Empirical Models

Calibrated coefficients for the best empirical models are given separately for each
station in Table 3. According to the results of Tables 4 and 5, Wu et al. [36] model has had
the best performance in estimating Rs at Arequipa, Cajamarca, Cusco, Junin, Lima, San
Ramon, and Tacna stations with estimation errors reduced approximately by 67, 68, 83, 88,
58, 94, and 89 percent at calibration phase and 70, 70, 82, 88, 63, 93, and 88% at validation
phase in comparison with the poorest models at the aforementioned stations, respectively.
In Lambayeque, Loreto, and San Martin stations, Chen et al. [33] model has shown the best
performance with RMSE decreased by 68, 66, and 69 percent at calibration phase and by 68,
59, and 65% at validation phase, compared to the poorest models, at the above stations,
respectively. These findings indicate that there is a noticeable difference in performance
between the best and the poorest empirical models at these stations.

Table 3. Calibrated coefficients for the best empirical models for each station.

Station Best Model Model Coefficients

Tumbes Jahani et al. 2 (2017) γ1 = −0.827, γ2 = 0.644, γ3 = −0.017, γ4 = 0.000063
Cusco Wu et al. (2007) i1 = −0.456, i2 = 0.289, i3 = 0.024, i4 = −0.059
Arequipa Wu et al. (2007) i1 = −0.223, i2 = 0.243, i3 = 0.015, i4 = −0.083
Lima Wu et al. (2007) i1 = 0.444, i2 = 0.165, i3 = −0.008, i4 = −0.083
Loretto Chen et al. (2004) e1 = 0.022, e2 = 0.194
SanRamon Wu et al. (2007) i1 = −0.021, i2 = 0.15, i3 = 0.01, i4 = −0.18
Puno Wu et al. (2007) i1 = 0.136, i2 = 0.156, i3 = 0.004, i4 = −0.06
Tacna Wu et al. (2007) i1 = 0.221, i2 = 0.131, i3 = 0.004, i4 = −0.075
SanMartin Chen et al. (2004) e1 = −0.031, e2 = 0.215
Lambayeque Chen et al. (2004) e1 = 0.215, e2 = 0.238
Junin Wu et al. (2007) i1 = −0.148, i2 = 0.234, i3 = 0.006, i4 = −0.078
Cajamarca Wu et al. (2007) i1 = 0.044, i2 = 0.223, i3 = −0.015, i4 = −0.122
Huanuco Jahani et al. 1 (2017) β1 = −0.002, β1 = 0.05, β1 = 0.002, β1 = −0.000093

Table 4. Root mean square errors (RMSEs) (J·cm−2·day−1) of solar radiation estimated by empirical models in selected
meteorological stations (calibration set).

Models
Stations

Tumbes Cusco Arequipa Lima Loretto SanRamon Puno Tacna SanMartin Lambayeque Junin Cajamarca Huanuco

Hg-Sa 313.3 400.9 385.7 299 504.9 310.1 261.5 242.2 525.6 252.5 364.1 524.6 481.3
Sa 510.2 1840.5 998.4 375.2 1464.6 3969.5 1250.7 1975.1 1660 285.2 2029.3 1475.9 697.2
An 313.3 401.1 385.8 298.5 505 310.1 261.5 241.5 525.6 252.5 364.1 524.4 481.9

Chen 302 345.3 339.7 286.1 489.7 302.1 257 221.6 514.4 233.6 325.1 497 -
Wu 310.6 307.7 338.3 274 501 239.7 253.7 220 520.1 236.8 308.2 473.8 -
Ja1 - 400.5 901.7 658.3 - 413.2 534.8 - - 722.6 1553.8 691.4 371.8
Ja2 293 980.9 1026.4 296.3 1087 1738.8 269.5 972.1 589.1 282.9 2679 1087 645.9

The best values at each station are marked in bold. Hg-Sa (Hargreaves-Samani, [30] 1982), Sa (Samani, [31], An (Annandale et al. [32]),
Chen (Chen et al. [33]), Wu (Wu et al. [36]), Ja1 (Jahani et al. [2], first model), and Ja2 (Jahani et al. [2], second model).

In Puno station, Wu et al. [36] model (RMSE = 253.7 J·cm−2·day−1) and Chen et al. [33]
model (RMSE = 236.3 J·cm−2·day−1) exhibited the best performance in estimating radiation
at calibration and validation phases, respectively. In contrast to the results of Wu et al.
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(2007) and Chen et al. [33] models, Samani model has had the highest error rates at both
calibration and validation phases in Cajamarca, Cusco, Huanuco, Loreto, Puno, San Martin,
San Ramon, Tacna, and Tumbes stations. Jahani et al. 1 [2] model in Lambayeque and Lima
stations and Jahani et al. 2 [2] model in Arquipa and Junin stations led to the highest 7 error
rates at both calibration and validation phases.

Table 5. RMSEs (J·cm−2·day−1) of solar radiation estimated by empirical models in selected meteorological stations
(validation set).

Models

Stations

Tumbes Cusco Arequipa Lima Loreto SanRamon Puno Tacna San
Martin Lambayeque Junin Cajamarca Huanuco

Hg-Sa 349.1 412.1 336.7 346.6 500.6 351.1 242.4 269.6 530.6 307.6 398.8 551 478.9
Sa 546.4 1760 1025.6 480.6 1181.6 3958.4 1417.5 1845.2 1479.6 338.6 2300.7 1666.7 727.6
An 349.2 412.6 337.5 345.1 500.5 351.9 242.2 270.7 530.3 307.6 398.9 551.2 479.7

Chen 336.6 345.3 315.6 324.9 488 343.9 236.3 370.5 517.6 275 378.6 531.9 -
Wu 351.1 317.6 314.8 291.9 508 272.8 246.4 227.1 517.7 281.9 364.3 505.8 -
Ja1 - 422.5 919.5 794.9 - 412.7 539.1 - - 850.3 1801.8 773.5 367.1
Ja2 337.2 924.8 1047.9 371.5 866.9 1764 262.1 900.8 616.9 315.2 3005.7 1233.7 670.1

The best values at each station are marked in bold.

Despite the unsatisfactory performance of Jahani et al. 1 [2], Jahani et al. 2 [2],
and Samani [31] models in most stations (Tables 4 and 5), Jahani et al. 1 [2] proved
to be the best performing model in Huanuco station at both calibration and validation
phases (with RMSEs of 371.8 and 367.1 J·cm−2·day−1, respectively) and Jahani et al. 2 [2]
was the best model in Tumbes station at calibration phase (RMSE = 293 J·cm−2·day−1).
Overall, at validation phase, Wu et al. [36] model (in Tacna station) and Chen et al. [33]
model (in Puno station) were again the best, with RMSEs of 227.1 and 236.3 J·cm−2·day−1,
respectively and Samani [31] model (in San Ramon station) and Jahani et al. 2 [2] model
(in Junin station) had the poorest performance in the study area, with RMSEs of 3958.4 and
3005.7 J·cm−2·day−1, respectively.

As can be seen in Figure 2, with the exception of Jahani et al. 1 [2] model in Lam-
bayeque station and Samani [31] model in Tumbes station, the poorest performance of
empirical models in the other 11 stations has been associated with severe overestima-
tion of Rs. Another finding of this study was the similarity in performance, in terms
of estimation error, between Wu et al. [36] and Chen et al. [33] models in Arequipa and
Lambayeque stations (at both calibration and validation phases), Tacna station (calibration
phase), and San Martin station (validation phase) as the best predictive models of radi-
ation. These empirical models have been widely studied, with various results reported
at different regions. Besharat et al. [59] estimated daily Rs over 2004–2008 in Yazd, Iran
using Hargreaves-Samani [30] and Chen et al. [33] models and reported RMSEs of 71
and 85.4 J·cm−2·day−1, respectively, whereas Quansah et al. [60] reported RMSEs of 388
and 312 J·cm−2·day−1 for estimating Rs on a monthly scale using the same two models
in the city of Owabi, Ghana. Jahani et al. [2] employed Annandale et al. [32] empirical
model to estimate daily Rs at five meteorological stations in Iran and reported RMSEs
between 345 and 607 J·cm−2·day−1. Fan et al. (2018) examined the performance of 20
empirical temperature-based models for Rs estimation at 20 stations in China and reported
RMSEs in the range of 258–515 J·cm−2·day−1. Adaramola (2012) assessed performance
of seven empirical models in estimating monthly Rs over a 22-year period in Nigeria.
Angstrom-Prescott model based on sunshine hours (RMSE = 0.257 kWh·m−2·day−1) and
the relative humidity-based model (RMSE = 0.447 kWh·m−2·day−1) proved to be the most
accurate and the least accurate, respectively. Tables 4 and 5 show error rates of estimated
radiation values at model calibration and validation phases. Figure 2 depicts radiation
values estimated by the best and the poorest models at each station.
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Figure 2. Cont.
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Figure 2. Measured solar radiation versus values estimated by best and poorest empirical models in
calibration and validation sets at all stations.

3.2. Development of New Models

According to the unsatisfactory results of most existing empirical models, new models
were proposed for estimating Rs in each of the 13 stations (Table 6). In addition to the input
variables used for the seven empirical models, precipitation, and relative humidity—which
were measured at all stations—were also employed for development of the proposed solar
radiation estimator models. In addition, t * 1 and t * 2 can help generalize these models
to different locations since they represent the dimensionless nature of temperature. The
proposed models were developed on the basis of multiple linear regression analysis using
the SPSS software package, with the aim of minimizing the error between measured and
estimated radiation values. In the proposed models, RH is relative humidity and Pre refers
to the amount of precipitation; they are the ratio of ∆T to Tmax and Tmin, respectively. For
developing models, first ordinary models’ ability was analyzed by testing those models on
different regions in Peru. Then, researchers provided some new regression models by more
accuracy than the previous excited models. New proposed models were calibrated for each
region separately in calibration phase, and suitable coefficients for proposed models were
evaluated for each region. In the next phase, ability of each new model was analyzed by
investigation of test section of each model. Application of the new structure, changing
the form of parameters, and the use of precipitation and relative humidity as well as the
dimensionless parameters and have all been effective in improving the performance of
proposed models.

Table 6. New models proposed for estimating solar radiation in each station.

Station Proposed Model

Arequipa Rs = Ra
(
0.61 − 0.16RH − 0.905t1 − 0.352ln(Tmean)− 0.007Pre + 0.699ln(∆T)

)
Cajamarca Rs = Ra(1.137 − 1.079RH − 0.013(Tmean)− 0.002Pre + 0.139ln(∆T))
Cusco Rs = Ra

(
0.162 − 0.673RH + 0.366t1 + 0.04(Tmean)− 0.001Pre + 0.152ln(∆T)

)
Huanuco Rs = Ra

(
−0.293 − 0.496RH + 1.412t1 + 0.088(Tmean)− 0.001Pre − 0.293ln(∆T)

)
Junin Rs = Ra

(
−0.045 − 0.236RH + 0.006t1 − 0.011Pre + 0.35ln(∆T)

)
Lambayeque Rs = Ra

(
1.572 + 0.057RH − 2.164t1 − 0.536ln(Tmean)− 0.005Pre + 0.683ln(∆T)

)
Lima Rs = Ra

(
2.834 − 0.356RH − 2.766t1 − 0.871ln(Tmean)− 0.06Pre + 0.816ln(∆T)

)
Loreto Rs = Ra

(
−0.588 + 0.242RH − 0.4t1 + 0.068ln(Tmean) + 0.001Pre + 0.337ln(∆T)

)
Puno Rs = Ra

(
0.052 − 0.157RH + 0.009t1 + 0.002(Tmean)− 0.005Pre + 0.275ln(∆T)

)
San Martin Rs = Ra

(
−1.027 + 0.159RH − 0.257t1 + 0.245ln(Tmean) + 0.001Pre + 0.295ln(∆T)

)
San Ramon Rs = Ra

(
−0.197 − 0.185RH + 0.513t1 + 0.024(Tmean)− 0.036Pre + 0.103ln(∆T)

)
Tacna Rs = Ra

(
1.355 − 0.076RH − 1.508t1 − 0.582ln(Tmean)− 0.017Pre + 0.76ln(∆T)

)
Tumbes Rs = Ra

(
1.076 + 0.058ln(RH)− 0.472t2 − 0.507ln(Tmean) + 0.533ln(∆T)

)
Radiation values estimated by the proposed models at each station are analyzed in

the discussion part according to the following sections.
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Radiation values estimated by the proposed models at each station are analyzed in
the discussion part according to the following sections.

4. Discussion
4.1. Arequipa Station

Figure 3 depicts radiation values estimated by the model proposed at this station
(Table 7) against measured values at calibration and validation phases. Appropriate distri-
bution of points around 1:1 line in Figure 3 is indicative of satisfactory performance of the
proposed model. The lower error rates for underestimated set at calibration phase: n = 2993,
RMSE = 246.5 J·cm−2·day−1 and at validation phase: n = 1112, RMSE = 238.2 J·cm−2·day−1,
compared to overestimated set at calibration phase: n = 2484, RMSE = 341.9 J·cm−2·day−1

and at validation phase: n = 1078, RMSE = 319.6 J·cm−2·day−1, in spite of the fact that
the former contains a higher number of data points, implies better performance of the
proposed model in underestimation set. However, the average of measured radiation
values at calibration phase is approximately 25.178 MJ·m−2·day−1 at this station, and the
proposed model has performed better in case of radiation values greater than this average
(n = 2680, RMSE = 251.8 J·cm−2·day−1) compared to those lower than average (n = 2797,
RMSE = 328.9 J·cm−2·day−1). Taking 20 MJ·m−2·day−1 as a threshold value for radiation
at validation phase (Table 7), the proposed model has had a better performance when
estimating radiation values above threshold in both under- and overestimation sets, with
the maximum estimation error occurring in the overestimated, below 20 MJ·m−2·day−1

radiation values (RMSE = 559.6 J·cm−2·day−1).

Figure 3. Solar radiation estimated by proposed model at Arequipa station versus measured values
in calibration and validation sets.

Table 7. RMSEs (J·cm−2·day−1) and number of data points (proposed model) in under- and over-
estimation sets for measured solar radiation values lower or higher than 20 MJ·m−2·day−1 in
validation set.

Measured Rs Lower than 20
MJ·m−2·day−1

Measured Rs Higher than 20
MJ·m−2·day−1

Data Set Under-Estimated Overestimated Underestimated Overestimated

validation 284.4 (n = 27) 559.6 (n = 197) 236.9 (n = 1085) 234.5 (n = 881)

4.2. Cajamarca Station

If the average of measured Rs values at calibration (Mean (Rs)mea = 17.241 MJ·m−2·day−1)
and validation (Mean (Rs)mea = 16.761 MJ·m−2·day−1) phases are taken as thresholds for
analyzing the results of proposed model, there is a direct relation between the number of
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data points and magnitude of error rate in under- and overestimation sets for radiation
values lower than the above threshold and an inverse relationship for radiation values
higher than the threshold (Table 8). The model proposed for this station (Figure 4) has led to
higher error rates in overestimation set at both calibration and validation phases, although
RMSE difference between the two sets at validation phase (∆RMSE = 164 J·cm−2·day−1)
is larger than that at calibration phase (∆RMSE = 81 J·cm−2·day−1). The ratio between
error rates of over- and underestimation sets ( RMSE−estimatedset

RMSEunder−estimatedset
) for radiation values lower

and higher than the average of measured values (Mean (Rs)mea = 17.24 MJ·m−2·day−1)
are approximately 2.14 and 1.22, respectively, at model calibration phase; whereas corre-
sponding values at validation phase (Mean (Rs)mea = 16.76 MJ·m−2·day−1) are 2.6 and
1.56, respectively. It can be therefore concluded that the lowest and highest differences
in error rates of proposed model between under- and overestimation sets have occurred
at calibration phase (radiation values above average) and validation set (radiation values
below average), respectively, and this conclusion is confirmed by the results shown in
Table 8.

Table 8. RMSE values (J·cm−2·day−1) and number of data points in under- and overestimation
sets for measured solar radiation values lower or higher than mean (Rs)mea in calibration and
validation sets.

Measured Rs Lower than Mean (Rs)mea Measured Rs Higher than Mean (Rs)mea

Data Set Underestimated Overestimated Underestimated Overestimated

calibration 189.9 (n = 675) 405.5 (n = 2116) 371.9 (n = 2012) 453.3 (n = 676)
validation 188.2 (n = 200) 487.6 (n = 946) 384.3 (n = 747) 598.8 (n = 297)

Figure 4. Solar radiation estimated by proposed model at Cajamarca station versus measured values
in calibration and validation sets.

4.3. Cusco Station

Although radiation values estimated by the proposed model have an appropriate
distribution around 1:1 line (Figure 5), the results presented in Table 9 show that pre-
diction error in overestimation set is greater than that in underestimation set, despite
that the former has a lower number of data points. The proposed model has also led
to lower prediction errors when estimating radiation values higher than the average
measured radiation at both calibration phase (Mean (Rs)mea = 22.53 MJ·m−2·day−1) and
validation phase (Mean (Rs)mea = 22.66 MJ·m−2·day−1) (Table 10). However, examination
of validation phase results indicates that error rates of underestimation set for radia-
tion amounts lower and higher than average of measured radiation values are about
230.2 and 248.5 J·cm−2·day−1, respectively, and corresponding values for overestima-
tion set are about 393.1 and 257.5 J·cm−2·day−1. Better performance of the proposed
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model at validation phase for above average radiation values falling in underestima-
tion set compared to those in overestimation set is partially due to the high error rates
(RMSE = 1061.46 J·cm−2·day−1) of estimates at two particular points for which estimated
radiation values are higher than 35 MJ·m−2·day−1, whereas the maximum correspond-
ing measured value is approximately 35 MJ·m−2·day−1 which are marked by a circle in
Figure 5.

Figure 5. Solar radiation estimated by proposed model at Cusco station versus measured values in
calibration and validation sets.

Table 9. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overesti-
mation sets in calibration and validation phases using proposed model.

Data Set Calibration Validation

underestimated 242.5 (n = 3061) 244 (n = 1170)
overestimated 324 (n = 2412) 339.5 (n = 1021)

Table 10. RMSE values (J·cm−2·day−1) and number of data points belonging to each group separated
by a threshold value (mean of measured solar radiation): lower and higher than the mentioned
threshold in calibration and validation sets.

Data Set Calibration Validation

Rs < Mean (Rs)mea 326 (n = 2224) 345.4 (n = 867)
Rs > Mean (Rs)mea 246.1 (n = 3249) 251.7 (n = 1324)

4.4. Huanuco Station

At this station, overestimation set has more data points and the proposed model has
higher error rates compared to underestimation set. Average values of measured radiation
at calibration phase (15.037 MJ·m−2·day−1) and validation phase (16.247 MJ·m−2·day−1)
were used as threshold values for analyzing the results of the proposed model. At calibration
phase and for measured radiation values lower and higher than average, higher error rates
were observed in over- and underestimation sets, respectively; although the difference in error
rates between the two sets for radiation values below average (∆RMSE = 176.9 J·cm−2·day−1)
was much higher than those above average (∆RMSE = 29.8 J·cm−2·day−1). At validation
phase, for all radiation values, error rates are higher in overestimation set (Table 11). An-
other important result regarding the performance of the proposed model is the inaccurate
estimation of some of the relatively high measured Rs values (see Figure 6, in which
the mentioned values are enclosed by a blue line). At this station, maximum measured
radiation values are 34 MJ·m−2·day−1 at calibration phase and 33 MJ·m−2·day−1 at val-
idation phase. However, in 25 and 41 days, radiation values estimated by the proposed
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model are higher than the above maxima at calibration and validation phases, respectively;
and error rates for those days are about 847 and 914 J·cm−2·day−1, respectively, which
are considerable.

Table 11. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and over-
estimation sets for measured solar radiation less or higher than mean (Rs)mea in calibration and
validation phases using proposed model.

Measured Rs Lower than Mean (Rs)mea Measured Rs Higher than Mean (Rs)mea

Data Set Underestimated Overestimated Underestimated Overestimated

calibration 176.9 (n = 865) 353.8 (n = 1970) 357.3 (n = 1716) 327.5 (n = 902)
validation 174.3 (n = 248) 400 (n = 842) 333.3 (n = 644) 439.6 (n = 457)

Figure 6. Solar radiation estimated by proposed model at Huanuco station versus measured values
in calibration and validation sets.

4.5. Junin Station

Taking average values of measured radiation at calibration phase (25 MJ·m−2·day−1)
and validation phase (24.611 MJ·m−2·day−1) as thresholds for analyzing the results of
the proposed model, total error at calibration phase for radiation values below average is
about 370.8 J·cm−2·day−1, to which overestimation set (RMSE = 444.2 J·cm−2·day−1) has
contributed much more than underestimation set (RMSE = 239.6 J·cm−2·day−1). For radia-
tion values above average, however, the underestimation set (RMSE = 240.2 J·cm−2·day−1)
contributes more to the total error (RMSE = 227.5 J·cm−2·day−1) than overestimation set
(Table 12). However, validation phase results, for radiation values both above and below
measured average, indicate that a larger portion of total error of the proposed model in
either of these intervals is caused by the inappropriate performance of overestimation
sets. However, overestimation set’s contribution to the total error for radiation values
below average is much greater than that for radiation values above average (Table 12 and
Figure 7).

Table 12. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overestimation sets for measured
solar radiation less or higher than mean (Rs)mea in calibration and validation phases using proposed model.

Measured Rs Lower than Mean (Rs)mea Measured Rs Higher than Mean (Rs)mea

Data Set Underestimated Overestimated Total Data Set Underestimated Overestimated Total Data Set

calibration
239.6 444.2 370.8 240.2 194.5 227.5

(n = 1112) (n = 1489) (n = 2601) (n = 2010) (n = 860) (n = 2870)

validation
225.8 524.7 457 219.9 243.4 229.3

(n = 292) (n = 694) (n = 986) (n = 736) (n = 469) (n = 1205)
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Figure 7. Solar radiation estimated by proposed model at Junin station versus measured values in
calibration and validation sets.

4.6. Lambayeque Station

As can be seen in Figure 8, the proposed model has larger errors in overestimation
set compared to underestimation set (especially at validation phase), with the error ratio
( RMSEunder−estimated

RMSE−estimated
) being approximately 0.48 and 0.32 at calibration and validation phases,

respectively. For an accurate analysis of results and based on the distribution of points in
Figure 8, performance of the proposed model was evaluated in three intervals of measured
radiation values including below 10, between 10 and 20, and above 20 MJ·m−2·day−1,
as shown in Table 13. According to the results, 10–20 MJ·m−2·day−1 interval (29 data
points at validation phase), above 20 MJ·m−2·day−1 interval (1109 data points at validation
phase), and 10–20 MJ·m−2·day−1 interval (221 data points at calibration phase), all in
underestimation set, were the best intervals for estimating radiation by the proposed
model, with RMSEs of 61, 113 and 139 J·cm−2·day−1, respectively. Severe overestimation
of radiation in below 10 MJ·m−2·day−1 interval at both calibration and validation phases
(although with a small number of data points) is one of the most prominent weaknesses
of this model. In above 20 MJ·m−2·day−1 interval, however, the model has exhibited a
relatively consistent and appropriate performance at both calibration and validation phases
and in both under- and overestimation sets.

Figure 8. Solar radiation estimated by proposed model at Lambayeque station versus measured
values in calibration and validation sets.
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4.7. Lima Station

At this station, underestimation set is larger in size and performance of the proposed
model has been much better in underestimation set at both calibration (n = 3494) and
validation (n = 1249) phases, with RMSEs of about 160 and 99 J·cm−2·day−1, respectively.
Corresponding values for overestimation set were 347 and 421 J·cm−2·day−1 at calibration
phase (n = 1983) and validation phase (n = 942), respectively. Performance of the proposed
model can be analyzed within three radiation intervals including below 15, between 15
and 25, and above 25 MJ·m−2·day−1 (Figure 9).

Table 13. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overestimation sets in three
defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and validation phases using proposed model.

Calibration Validation

Data Set Rs < 10 10 ≤ Rs < 20 Rs ≥ 20 Rs < 10 10 ≤ Rs < 20 Rs ≥ 20

underpredicted 379 (n = 2) 139.2 (n = 221) 144.8 (n = 3180) 184 (n = 1) 60.62 (n = 29) 113.3 (n = 1109)
overpredicted 750.8 (n = 35) 462.7 (n = 565) 181.1 (n = 1474) 1088.5 (n = 16) 559 (n = 264) 200.3 (n = 772)

Figure 9. Solar radiation estimated by proposed model at Lima station versus measured values in
calibration and validation sets.

The proposed model showed a poor performance at validation phase for overesti-
mated radiation values in below 15 and 15–25 MJ·m−2·day−1 intervals, with RMSEs of
1047 and 470 J·cm−2·day−1, respectively. However, in two cases including: (1) underes-
timated radiation values in 15–25 MJ·m−2·day−1 interval and under- and overestimated
values higher than 25 MJ·m−2·day−1 at calibration phase; and (2) overestimated values
higher than 25 MJ·m−2·day−1 at validation phase, performance of the proposed model
was evaluated as relatively satisfactory (Table 14). The proposed model demonstrated
the best performance in case of underestimated radiation values in 15–25 and above
25 MJ·m−2·day−1 intervals, both at validation phase.

Table 14. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overestimation sets in three
defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and validation phases using proposed model.

Calibration Validation

Data Set Rs < 15 15 ≤ Rs < 25 Rs ≥ 25 Rs < 15 15 ≤ Rs < 25 Rs ≥ 25

underestimated 534.4 (n = 17) 151.1 (n = 1618) 159.7 (n = 1859) - 101.9 (n = 586) 95.7 (n = 663)(n = 0)
overestimated 677.6 (n = 141) 371.9 (n = 1163) 140 (n = 679) 1047.2 (n = 28) 469.7 (n = 565) 180.6 (n = 349)
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4.8. Loreto Station

The relative stability of performance between under- and overestimation sets, in terms of
error rates and the number of data points, at both calibration (∆RMSE = 31.7 J·cm−2·day−1,
∆n = 16) and validation (∆RMSE = 60 J·cm−2·day−1, ∆n = 99) phases was an advantage of
the proposed model. In three intervals of measured radiation (below 10, between 10 and
20, and above 20 MJ·m−2·day−1), error rates of radiation estimation show an upward and
a downward trend in under- and overestimation sets, respectively (Table 15).

Table 15. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overestimation sets in three
defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and validation phases using proposed model.

Calibration Validation

Data Set Rs < 10 10 ≤ Rs < 20 Rs ≥ 20 Rs < 10 10 ≤ Rs < 20 Rs ≥ 20

underestimated 143.5 (n = 34) 290.7 (n = 1024) 548.3 (n = 1670) 207.6 (n = 3) 266.2 (n = 342) 501.9
(n = 699)

overestimated 673.3 (n = 691) 426.8 (n = 1989) 103 (n = 64) 698.9 (n = 295) 416.9 (n = 797) 140.4 (n = 51)

According to Figure 10 and Table 15, however, the highest errors at both calibration
and validation phases are those of overestimation of measured radiation values below
10 MJ·m−2·day−1 and underestimation of measured radiation values above 20 MJ·m−2·day−1.
Careful examination of the results indicates that the maximum estimated radiation val-
ues at calibration and validation phases (with the exception of one point) are about
24 and 25 MJ·m−2·day−1, respectively; whereas there are 506 and 162 days with mea-
sured values greater than the aforementioned maxima at calibration and validation phases,
respectively, and radiation is therefore absolutely underestimated by the proposed model
with error rates of about 704 and 649 J·cm−2·day−1, respectively.

Figure 10. Solar radiation estimated by proposed model at Loreto station versus measured values in
calibration and validation sets.

4.9. Puno Station

Satisfactory performance of the proposed model, especially for underestimated ra-
diation values at both calibration and validation phases, is illustrated by the appropriate
distribution of points relative to 1:1 line in Figure 11. Estimation errors of the proposed
model for radiation values below and above average of measured values at calibration
and validation phases (Mean (Rs)mea = 26.5 MJ·m−2·day−1) are given in Table 16. As
can be seen, the proposed model has led to lower errors for radiation values lower and
higher than average in under- and overestimation sets, respectively. Table 17 illustrates
the performance of the proposed model in three radiation intervals (below 15, between
15, and 30, and above 30 MJ·m−2·day−1). Unsatisfactory performance for the first and
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better performance for the second and third intervals in under and overestimation sets,
respectively, are characteristics of the proposed model for this station.

Figure 11. Solar radiation estimated by proposed model at Puno station versus measured values in
calibration and validation sets.

Table 16. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and over-
estimation sets for measured solar radiation less or higher than mean (Rs)mea in calibration and
validation phases using proposed model.

Measured Rs Lower than Mean
(Rs)mea

Measured Rs Higher than Mean
(Rs)mea

Data Set Underpredicted Overpredicted Underpredicted Overpredicted

calibration 145.6 (n = 1308) 321.4 (n = 1577) 252.7 (n = 1834) 181.5 (n = 760)
validation 119.9 (n = 452) 321.8 (n = 689) 208.4 (n = 585) 192.2 (n = 465)

Table 17. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overestimation sets in three
defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and validation phases using proposed model.

Calibration Validation

Data Set Rs < 15 15 ≤ Rs < 30 Rs ≥ 30 Rs < 15 15 ≤ Rs < 30 Rs ≥ 30

underpredicted - 175.9 (n = 1981) 268.2 (n = 1166) 181.8 140 (n = 682) 228.7 (n = 354)(n = 0) (n = 1)

overpredicted 601.8 (n = 49) 288 (n = 1990) 131.2 (n = 298) 642.4 (n = 16) 285 (n = 958) 151
(n = 180)

4.10. San Martin Station

Inappropriate distribution of points relative to 1:1 line (Figure 12) indicates poor per-
formance of the proposed model at this station. Error rates of radiation estimation in under-
and overestimation sets are 524.2 and 493.4 J·cm−2·day−1, respectively, at validation phase.

Performance of this model was examined from two different perspectives: analyzing
error rates of radiation estimation for two intervals including lower and higher than average
of measured radiation values at calibration (Mean (Rs)mea = 16.568 MJ·m−2·day−1) and val-
idation (Mean (Rs)mea = 16.586 MJ·m−2·day−1) phases (Table 18), and the model’s behavior
within three radiation intervals (below 10, between 10 and 20, and above 20 MJ·m−2·day−1)
(Table 19). The results from Table 18 indicate that for radiation values lower and higher
than average, the proposed model has performed better in under- and overestimation sets,
which is confirmed by the appropriate distribution of points at the two aforementioned
sets compared to other radiation values (Figure 12).
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Figure 12. Solar radiation estimated by proposed model at San Martin station versus measured
values in calibration and validation sets.

Table 18. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and over-
estimation sets for measured solar radiation less or higher than mean (Rs)mea in calibration and
validation phases using proposed model.

Measured Rs Lower than Mean
(Rs)mea

Measured Rs Higher than Mean
(Rs)mea

Data Set Underestimated Overestimated Underestimated Overestimated

calibration 214.3 (n = 318) 524.7 (n = 2312) 563.9 (n = 2220) 221.7 (n = 616)
validation 196.9 (n = 118) 529 (n = 938) 551.4 (n = 953) 221 (n = 175)

Table 19. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overestimation sets in three
defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and validation phases using proposed model.

Calibration Validation

Data Set Rs < 10 10 ≤ Rs < 20 Rs ≥ 20 Rs < 10 10 ≤ Rs < 20 Rs ≥ 20

underestimated
169.7 310.5 (n = 919) 633 (n = 1574) 135.8 279.8 (n = 370) 620.3 (n = 689)(n = 45) (n = 12)

overestimated 632 (n = 741) 417.3 (n = 2126) 102.7 (n = 61) 645.4 (n = 345) 411.9 (n = 749) 107.2
(n = 19)

At both calibration and validation phases, increased error rates from under- to over-
estimation set in below 10 and 10–20 MJ·m−2·day−1 intervals, and reduced error rates
from under- to overestimation set in the third interval (above 20 MJ·m−2·day−1) indicate
that the proposed model has performed better for underestimated, low (below 10 and
to some extent between 10–20 MJ·m−2·day−1) radiation values and overestimated, high
(above 20 MJ·m−2·day−1) radiation values. The maximum radiation values estimated by
the proposed model at calibration and validation phases are 24.09 and 23.69 MJ·m−2·day−1,
respectively. However, there are 628 days at calibration phase (RMSE = 768 J·cm−2.day−1)
and 316 days at validation phase (RMSE = 735 J·cm−2·day−1) on which measured radiation
values are greater than the above maxima, which means an absolute underestimation of
measured radiation values higher than those maxima by the proposed model (these days
are marked by a blue ellipse in Figure 12).

4.11. San Ramon Station

It can be inferred from Figure 13 that at both calibration and validation phases, the
proposed model has performed better in underestimation sets. At validation phase, error
rates of radiation estimation are about 173.4 and 421.1 J·cm−2·day−1 in under- and overes-
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timation sets, respectively. In confirmation of the above findings, examination of the results
of Table 20 indicates that although overestimation sets have higher error rates in both above
and below 20 MJ·m−2·day−1 intervals, the difference of error rates between under- and
overestimation sets is more noticeable for radiation values below 20 MJ·m−2·day−1 com-
pared to those above 20 MJ·m−2·day−1 at both calibration (∆RMSE = 474 J·cm−2·day−1)
and validation (∆RMSE = 368 J·cm−2·day−1) phases; so that the percentage of error in-
crement from under- to overestimation sets in below 20 MJ·m−2·day−1 interval is about
180% and 78% at calibration and validation phases, respectively, and corresponding values
for above 20 MJ·m−2·day−1 interval are about 15% and 44%. Accordingly, the proposed
model has shown the best performance when estimating radiation values higher than
20 MJ·m−2·day−1, especially in underestimation sets.

Figure 13. Solar radiation estimated by proposed model at San Ramon station versus measured
values in calibration and validation sets.

Table 20. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overesti-
mation sets in two defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and
validation phases using proposed model.

Calibration Validation

Data Set Rs < 20 Rs ≥ 20 Rs < 20 Rs ≥ 20

underestimated 263.3 (n = 20) 180.5 (n = 3513) 469.1 (n = 15) 167.5 (n = 1410)
overestimated 737.5 (n = 277) 207.5 (n = 1665) 836.6 (n = 142) 241.7 (n = 624)

4.12. Tacna Station

Examining the performance of the model proposed for this station (Figure 14) reveals
that although the number of data points belonging to underestimation sets at both cali-
bration phase (n = 3310) and validation phase (n = 1661) are higher than corresponding
values in overestimation sets (n = 2169 and n = 530 at calibration and validation phases,
respectively), the former sets have less error, so that the ratio of error rates ( RMSEunder−estimated

RMSE−estimated
)

is approximately 0.61 and 0.72 at calibration and validation phases, respectively. Ana-
lyzing the results within the three selected intervals (below 15, between 15 and 25, and
above 25 MJ·m−2·day−1; Table 21) indicates that the proposed model has demonstrated
the best performance in the underestimation set of the second interval and in both under-
and overestimation sets of the third interval. On the other, the proposed model exhib-
ited the worst performance in below 15 MJ·m−2·day−1 interval at both calibration phase
(n = 63 data points, constituting 1.1% of the total data set) and validation phase (n = 22
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data points, constituting 1% of the total data set), with average error rates of about 568 and
J·cm−2·day−1, respectively.

Figure 14. Solar radiation estimated by proposed model at Tacna station versus measured values in
calibration and validation sets.

Table 21. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overestimation sets in three
defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and validation phases using proposed model.

Calibration Validation

Data Set Rs < 15 15 ≤ Rs < 25 Rs ≥ 25 Rs < 15 15 ≤ Rs < 25 Rs ≥ 25

underestimated
552.2

101.4 (n = 1453) 188.2 (n = 1854)
715.7

134.9 (n = 725) 236.9 (n = 932)(n = 3) (n = 4)

overestimated 583.2 (n = 60) 294 (n = 1111) 166.6 (n = 998) 706.5 (n = 18) 318.4 (n = 251)
165.3

(n = 261)

4.13. Tumbes Station

According to distribution of points in Figure 15, performance of the proposed model
has been much better in underestimation set. At calibration phase, underestimation set
(with 3480 data points and an RMSE of 201 J·cm−2·day−1) showed a better performance
in comparison with overestimation set (1993 data points, RMSE = 395 J·cm−2·day−1).
At validation phase, corresponding values are n = 1075 and RMSE = 167 J·cm−2·day−1

for underestimation set and n = 1110 and RMSE = 430 J·cm−2·day−1 for overestima-
tion set. Considering the distribution of points in Figure 15, performance of the pro-
posed model was analyzed within two intervals of measured radiation (below 20 and
above 20 MJ·m−2·day−1; Table 22). At calibration phase and for radiation values below
20 MJ·m−2·day−1, 608 data points from overestimation set are estimated with a high error
rate (RMSE = 649.2 J·cm−2·day−1); whereas the sharp decline in the number of data points
in underestimation set (n = 38, a 94% decrease in number) compared with overestima-
tion set has led to a 63% decrease in RMSE. Within the above 20 MJ·m−2·day−1 interval,
model performance has been almost the same in under- and overestimation sets, although
the number of data points belonging to underestimation set is about 2.5 times that of
overestimation set. At validation phase, the difference in error rates between under- and
overestimation sets at both below 20 MJ·m−2·day−1 interval (∆RMSE = 557 J·cm−2·day−1)
and above 20 MJ·m−2·day−1 interval (∆RMSE = 55 J·cm−2·day−1) has increased compared
to corresponding values at calibration phase, although the magnitude of the increment
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in the former interval (147 J·cm−2·day−1) is much greater relative to the latter interval
(54 J·cm−2·day−1).

Figure 15. Solar radiation estimated by proposed model at Tumbes station versus measured values
in calibration and validation sets.

Table 22. RMSE values (J·cm−2·day−1) and number of data points belonging to under- and overesti-
mation sets in two defined intervals of measured solar radiation (MJ·m−2·day−1) for calibration and
validation phases using proposed model.

Calibration Validation

Data Set Rs < 20 Rs ≥ 20 Rs < 20 Rs ≥ 20

underestimated 239.4 (n = 38) 200.1 (n = 3442) 146 (n = 8) 167.2 (n = 1067)
overestimated 649.2 (n = 608) 198.7 (n = 1385) 703.4 (n = 337) 222.1 (n = 773)

4.14. Spatial Distribution of Error Rates

Figure 16 illustrates the spatial distribution of error rates of Rs estimation using
existing and proposed models throughout Peru. It can be concluded from Figure 16 that
Hargreaves-Samani [30], Annandale et al. [32], Chen et al. [33], Wu et al. [36], and our
proposed model have demonstrated the best results at southern stations (Arequipa, Puno,
and Tacna), and estimation error has increased towards the northern parts of the study area,
with the largest errors in Cajamarca, San Martin, Loreto, and to some extent in Huanuco
station. The highest estimation errors of Samani [31] model occur in stations located in
central Peru (San Ramon and Junin stations); although a certain degree of error is also
observed at Cusco, Tacna, Cajamarca, San Martin, and Loreto stations. Unlike the five
above-mentioned models which exhibit the best results in the southern part of the country,
the best results of Samani [31] model are observed in the northwest, at Lambayeque and
Tumbes stations. For the Jahani et al. 1 [2] model, the best results were obtained at Huanuco
and San Ramon stations (in central part of the country) and to some extent at Cusco station
(southern Peru). Jahani et al. 2’s [2] model’s overall trend of error distribution is relatively
similar to Jahani et al. 1 [2] model, but error pattern has shifted from the marginal Lima
station towards the center of the country (San Ramon station). The model has led to better
results at Lambayeque and Tumbes in the northwest and Puno in the southwest compared
to other stations.
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Figure 16. Interpolated spatial distribution of error in solar radiation estimation at all stations using (a) Hargreaves-
Samani [30] and (b) Samani [31] models (c) Annandale et al. [32] and (d) Chen et al. [33] models (e) Wu et al. [36] and
(f) Jahani et al. 1 [2] models (g) Jahani et al. 2 [2] and (h) proposed models.

Analyzing the performance of the proposed model reveals a relatively consistent trend
in the spatial distribution of estimation error throughout the study area: in the southern
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half of the country (latitudes above 10◦ S) and from the south towards the north, estimation
error is increased so that the southernmost stations (Tacna, Puno, and Arequipa) have the
lowest errors, and the magnitude of error increases towards the north (Cusco, Lima, Junin,
and San Ramon). In the northern half (latitudes below 10◦ S), the highest error rates are
observed at Cajamarca, San Martin, and Loreto stations. In other words, error rates follow
a west-east increasing trend, probably due in part to the absence of any stations between
longitudes 70 and 78◦ W which has affected error interpolation.

5. Conclusions

In some regions of Peru, either there is a lack of weather stations equipped with
Rs measurement instruments or, in stations where required equipment is available this
parameter has not been reliably recorded. Agriculture plays a crucial role in the eco-
nomic development of Peru and the importance of accurate estimation of Rs for irrigation
scheduling, design, and installation of solar panels, photovoltaic systems, and sustainable
exploitation of renewable energy sources is self-evident. However, no study has been
conducted for estimating Rs in this country. According to the lack of sunshine hour data,
the present study assessed the performance of seven empirical models available in the
literature (six based on temperature and one based on temperature as well as transformed
precipitation), in terms of estimating daily Rs values at 13 weather stations in Peru, and
a new model was also proposed for each station. Overall, the results showed that in
most stations, Wu et al. [36] and Chen et al. [33] models have exhibited the best perfor-
mance, and Samani [31] and Jahani et al. 2 [2] models have led to the poorest results.
Analyzing the results of the poorest-performing empirical temperature-based models in-
dicates that Rs is greatly overestimated at most stations. RMSEs of proposed models in
the 13 stations are given in Table 23, according to which the worst and the best perfor-
mances are achieved at San Martin station (RMSE = 508.8 J·cm−2·day−1) and Tacna station
(RMSE = 223.2 J·cm−2·day−1), respectively.

Table 23. RMSEs (J·cm−2·day−1) of the proposed models and percentage of RMSE reduction by proposed models compared
to best, poorest, and average results of empirical models in each of the 13 selected stations at calibration (validation) set.

Percentage of RMSE
Reduction Compared to

the Average of All
Empirical Models

Percentage of RMSE
Reduction Compared to
the Poorest-Performing

Empirical Model

Percentage of RMSE
Reduction Compared to

the Best Empirical Model
RMSE (J·cm−2·day−1) Station

53 (54.2) 71.4 (73.2) 13.2 (10.7) 293.7 (281.2) Arequipa
49.6 (45.5) 74.3 (72.8) 19.9 (10.5) 379.6 (452.7) Cajamarca
57.9 (55.5) 84.7 (83.4) 8.6 (7.9) 281.3 (292.4) Cusco
38.6 (31.8) 52.8 (44.6) 11.6 (1.1) 328.8 (371.3) Huanuco
72 (71.6) 88.6 (88.3) 1.3 (3.8) 304.2 (350.6) Junin

32.6 (32.3) 69.8 (69.6) 6.7 (5.9) 218 (258.8) Lambayeque
31.1 (32.2) 62.8 (64) 10.7 (2.1) 244.7 (285.8) Lima
36.6 (30.2) 67.2 (60.2) 1.8 (3.6) 480.9 (470.5) Loreto
44.1 (48.5) 80.3 (83.5) 2.8 (0.8) 246.5 (234.4) Puno
30.3 (27.2) 69.7 (65.6) 2 (1.7) 503.8 (508.8) San Martin
76.1 (73.2) 93.7 (92.8) 3.7 (4.7) 248.5 (285.6) San Ramon
68.6 (65.5) 89.7 (87.9) 7.8 (1.7) 202.9 (223.2) Tacna
15.7 (13.3) 43.7 (40) 2 (2.6) 287 (327.8) Tumbes

Comparisons between the results of proposed models and the best results of the
empirical models at each station showed that apart from Huanuco and San Ramon—in
which error rates of proposed models were higher than Jahani et al. 1 [2] and Wu et al. [36]
models by about 1.1 and 4.7%, respectively (bold-faced in Table 23)—estimation error
has decreased in other stations. According to the results, the highest percentage of error
reduction by a proposed model compared to the average of all empirical models and to
the poorest result of empirical models were approximately 73% and 93% (both at San
Ramon station).
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As the first study to estimate Rs in Peru, the present work led to development of
models which improved Rs estimates. However, the authors would like to recommend
evaluation of artificial intelligence models such as support vector machines and extreme
learning machine or their coupling with bioinspired optimization algorithms, for example,
firefly or krill herd algorithm, for improvement of radiation estimation. Solar radiation
prediction is an essential task in atmospheric studies, hydrological forecasting, agriculture
product management, and saving energy issues. Then, knowing about a simple accurate
time series model for prediction solar radiation by available climate data is necessary for
each region. Measuring solar radiation data set is costly and having a high-quality solar
radiation data set for a whole country is a limitation of this research. In addition, calibrating
different models for different regions is another difficulty of this type study.
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