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Abstract: The impacts of Arctic sea ice on the interannual variability of winter extreme low tem-
perature (WELT) in Northeast China (NEC) and the associated atmospheric circulation patterns
are explored in this study based on meteorological observation and the National Centers for Envi-
ronmental Prediction-National Center for Atmospheric Research (NCEP/NCAR) reanalysis data.
Results show that WELT in NEC has prominent interannual variability. We further use ±0.8 standard
deviation as the threshold to select the years of frequent and rare extreme low temperature anomalies.
Using composite analysis, we find that there are significant negative geopotential height anomalies
at 500 hPa over NEC and positive geopotential height anomalies along the Arctic region, which
represent the intensification of the East Asian trough (EAT) and the negative Arctic Oscillation (AO)
phase in the years of more frequent WELT. The opposite characteristics are detected in the years of
rare WELT. Furthermore, we determine that the Barents-Kara Seas are key sea ice regions in Arctic
area. In the years of frequent WELT, the decrease of autumn Barents-Kara Seas sea ice and the
positive sea surface temperature anomaly can last until the following winter, which is conducive to
the intensification of anticyclonic anomalies in Ural regions and the northward extension of Ural
ridge (UR). The northerly flow in front of UR guides the cold air penetrating southward from polar
regions. Moreover, the anomalous cyclone over East Asia deepens the EAT. The northerly wind
behind EAT guides the cold air to the NEC region, causing the wintertime low temperature there.
The almost opposite situation occurs in the years of rare WELT.

Keywords: winter extreme low temperature; Northeast China; interannual variability; atmospheric
circulation; sea ice

1. Introduction

Northeast China (NEC) is one of the most important grain production bases in China.
Under the global climate change in the past decades, its regional economic and social
development faces multiple challenges. In terms of NEC climate variation, most researchers
focused on the warming in NEC, especially in winter [1,2]. However, Eurasia including
NEC has experienced frequent cold winters and extreme snowfall events recently [3].
It is necessary to study the winter extreme low temperature (WELT) and improve the
forecasting skills for winter low temperature disasters in order to reduce its impact on
agriculture and the economy.

The factors affecting WELT in NEC are complex. Previous studies generally focused
on the factors such as sea temperature [4], weather systems in the troposphere such as
the Siberian high [5] and EAT [5], atmospheric teleconnections between middle and high
latitudes such as the North Atlantic Oscillation (NAO) [6] or the AO [2], as well as the
polar vortex [7,8]. However, research on the role of Arctic sea ice loss is still limited.

Arctic sea ice decreases have enhanced Arctic warming [9,10], and affected climate
variation in the mid-latitude area through atmospheric circulation [11,12]. The wintertime
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cold extremes which have occurred more frequently in midlatitudes of Northern Hemi-
sphere in recent decades might have their origin in the rapidly warming Arctic [13–16]. For
example, the abnormal reduction of Arctic sea ice in autumn and winter leads to wintertime
cold temperatures in Eurasian areas [17–20]. Moreover, some studies suggested that the
reduction of autumn Arctic sea ice and the rise of sea surface temperatures over Arctic and
North Atlantic may be the main factor to induce the wintertime cooling trend in northern
Eurasia [3,21,22]. In particular, Wu et al. (2011) found that the autumn-winter Arctic sea
ice concentration and concurrent sea surface temperature anomalies are responsible for the
Siberian high variation and surface air temperature anomalies over the mid-high latitudes
of Eurasia in boreal winter [3]. The anomalous ice cover over the Barents-Kara Seas in late
autumn can excite a stationary Rossby wave thermally generated by anomalous turbulent
heat fluxes, which can reinforce the Siberian high and further cause colder conditions
over the far east of Eurasia [6]. The aforementioned results indicated that the autumn
Arctic sea ice loss is a potential precursor to affect the ensuing winter temperatures in
East Asia. Although most studies on Arctic sea ice loss and extreme cold temperatures in
mid-latitudes focused on the on the Eurasian or North American areas [23], the issue on
whether and how the sea ice affecting the wintertime NEC temperatures remain unclear.

In this study, we explore the influence of Barents-Kara Seas sea ice loss on WELT in
NEC and mainly address three questions: (1) The temporal and spatial characteristics of
WELT in NEC during 1979–2015; (2) The atmospheric circulation features affecting WELT
in NEC; and (3) The effects of Barents-Kara Seas sea ice on the atmospheric circulation and
WELT in NEC. The rest of the paper is organized as follows. The data and methods are
described in Section 2. In Section 3, we firstly illustrate the features and trends of WELT in
NEC. Then, we show the atmospheric circulation anomalies associated with WELT in NEC.
We further provide the possible mechanism on how sea ice concentration (SIC) anomalies
over the Barents-Kara Seas affect WELT in NEC. Finally, a summary and discussion are
presented in Section 4.

2. Data and Methods

In this study, the daily minimum and maximum temperatures in 673 stations of NEC
are provided by the National Meteorological Information Center, China Meteorological
Administration. The detailed locations of the 673 stations are shown in Figure 1. The SIC
data covering the period 1979–2015 was derived from the Gridded Monthly Sea Ice Extent
and Concentration Version 2.0, which was provided by the National Sea Ice Data Center
(NSIDC) [24]. Its horizontal resolution is 0.25◦ × 0.25◦. The atmospheric variables include
the zonal, meridional winds and the geopotential height. They are on 2.5◦ × 2.5◦ horizontal
grids and can be obtained from the NCEP-NCAR [25].

Figure 1. Locations of the 673 stations in Northeast China (NEC) in this study.

In this study, we concentrate on the wintertime (December-January-February, DJF)
variation of three temperature indices defined by the World Meteorological Organization
(WMO) (Table 1), which have been shown to be most sensitive to climate change in previous
studies [26,27]. The three indices are cold nights (TN10p), cold days (TX10p) and coldest
temperature (TNn) in winter, representing the frequency and intensity of WELT events,
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respectively (Table 1) [28]. In terms of the methods, the Empirical Orthogonal Function
(EOF) analysis was used to extract the dominant mode of WELT in NEC. We also used the
composite analysis to investigate the characteristics of atmospheric circulation and the key
areas of sea ice in cold and warm years. In order to eliminate the effects of global warming,
all data used in this paper were detrended, and the anomalies were calculated by removing
the climatology over 1981–2010. The significance of the correlation was evaluated using
the two-tailed Student’s t-test.

Table 1. Definitions of winter extreme low temperature (WELT) indices from the World Meteorologi-
cal Organization (WMO).

Acronym Indicator Definitions Unit

TN10p Cold nights Days when daily minimum temperature is smaller than
the 10th percentile threshold in winter days

TX10p Cold days Days when daily maximum temperature is smaller
than the 10th percentile threshold in winter days

TNn Coldest
temperature

The minimum temperature of daily minimum
temperature in winter

◦C

3. Results
3.1. Spatial and Temporal Characteristics of WELT in NEC

In order to study the spatial distribution of WELT, we firstly calculated the standard
deviation of the three extreme low temperature indices listed in Table 1 during the period
of 1979–2015. Figure 2 shows that NEC is characterized by a relatively uniform distribution
of low temperature in both frequency (Figure 2a,b) and intensity (Figure 2c). In addition,
the maximum values of the standard deviation are mainly located in the center of the NEC
area (Figure 2).

Figure 2. The distribution of standard deviation (shaded) of (a) TN10p (unit: days), (b) TX10p (unit: days), and (c) TNn
(unit: ◦C) in eastern China during the 1979–2015 winters. The black box is the NEC region (35◦ N–55◦ N, 110◦ E–135◦ E).

Furthermore, EOF analysis was performed to extract the leading mode of the three
extreme low temperature indices (TN10p, TX10p, and TNn) between 1979–2015 (Figure 3).
The first EOF mode of TN10p, TX10p, and TNn show consistent patterns in NEC area
(Figure 3a–c), similar to those shown in Figure 2. The first mode of the three indices all
contributed more than 60% of the total variability (Figure 3a–c). The correlation coefficients
between the first principal component (PC1) and their corresponding regional average time
series of NEC (black dotted line in Figure 3d–f) all exceeded 0.8, confirming the first leading
mode in reflecting the low-temperature variation of NEC area. In addition, we used the 9-
year moving average to get the interdecadal variation of regional average time series of NEC
(red solid line in Figure 3d–f), and the interannual variation is obtained by subtracting the
interdecadal variation from the original time series of NEC (blue solid line in Figure 3d–f).
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From the variance contribution of interdecadal and interannual components, it was revealed
that all the three indices show a dominant interannual variation (Figure 3d–f). Therefore,
we explored the interannual component (IA) of WELT in NEC. The IA component of
three indices displays a significantly close relationship (Figure 4) and we chose TN10p
(TN10p_IA) as the representative index in the following study.

Figure 3. First mode of EOF for (a) TN10p (unit: days), (b) TX10p (unit: days), and (c) TNn (unit: ◦C)
in NEC winters of 1979/80–2015/16, respectively. (d–f) Same as (a–c), but for PC1 (bar). Standardized
time series of regional-mean (d) TN10p, (e) TX10p and (f) TNn in NEC (black dotted line) as well as its
interdecadal component (the 9–year moving average, red solid line) and the interannual component
(blue solid line) from 1979 to 2015.

Figure 4. Standardized IA components of TN10p (black line), TX10p (red line) and TNn (blue line).
The gray dashed lines represent ±0.8 standard deviations. The solid orange (green) dots denote
positive years above 0.8 standard deviations or negative years below −0.8 standard deviations.
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We selected the years in the positive phase of TN10p_IA (TN10p_IAP; indicating more
frequent cold nights) and the negative phase of TN10p_IA (TN10p_IAN; indicating less
frequent cold nights) based on threshold of ±0.8 standard deviation. Statistically, seven
positive years and seven negative years were obtained, respectively (Table 2).

Table 2. Years with TN10p_IAP and TN10p_IAN phases of TN10p_IA.

Phase Years

TN10p_IAP 1983 1984 1985 1999 2000 2010 2012

TN10p_IAN 1988 1998 2001 2003 2006 2013 2014

Figure 5 shows the composite TN10p, TX10p and TNn anomalies for TN10p_IAP and
TN10p_IAN years, respectively. The frequency indices (TN10p and TX10p) in TN10p_IAP
years are positive in NEC, and the value in central NEC is higher than in other areas within
NEC (Figure 5a,c). Opposite features are detected in TN10p_IAN years (Figure 5b,d). On
the other hand, the low temperature intensity index (TNn) shows an obvious cooling over
the NEC area in TN10p_IAP years (Figure 5e), while a prominent warming occurs during
TN10p_IAN years (Figure 5f). Again, the three indices are consistent with more frequent
cold nights and days indicating a more severe cold intensity, as shown in Figure 4.

Figure 5. Composite anomalies of TN10p (unit: days), TX10p (unit: days), and TNn (unit: ◦C) in
(a,c,e) TN10p_IAP and (b,d,f) TN10p_IAN years. The dotted region indicates significance at the 95%
level from the t test.

3.2. Atmospheric Circulation Patterns Affecting WELT in NEC

During the years of frequent WELT, NEC is occupied by significant negative geopo-
tential height anomalies at 500 hPa with a central value exceeding −30 gpm (Figure 6a),



Atmosphere 2021, 12, 386 6 of 12

denoting the strengthening of EAT [29]. Further to the north, positive geopotential anoma-
lies extend along the Barents-Kara Seas (Figure 6a), indicative of a weaker polar vortex.
The anomalous geopotential distribution represents the negative AO phase, which is con-
sistent with the cold extremes in northwestern North America [30]. Opposite geopotential
anomalies and AO phase occur during years of rare WELT (Figure 6b). We further plotted
the composite vertical section of geopotential anomalies along 120◦ E for the TN10p_IAP
(Figure 6c) and TN10p_IAN (Figure 6d) years, respectively. For TN10p_IAP years, the
height dipole with negative height anomalies in NEC and positive height anomalies in
the polar region is statistically significant, whose center is located at around 250–300 hPa
(Figure 6c). However, the northern part of the height dipole is not significant, although the
positive height anomalies are prominent in NEC (Figure 6d).

Figure 6. Composite maps of (a) height anomalies (shaded, unit: gpm) and wind anomalies (vector,
unit: m/s) at 500 hPa in TN10p_IAP years, (c) The latitude-pressure sections of geopotential height
anomalies (unit: gpm) along 120◦ E in TN10p_IAP years. (e) U200 anomalies (shaded, unit: m/s)
and Westerly jet in climate (black line, unit: m/s). (b,d,f) same as (a,c,e), but for TN10p_IAN years.
The dotted region indicates significance of shading at the 95% level from the t test.

Previous studies have reported that the upper zonal westerly and jet stream are closely
related to changes in vertical movements, radiation and temperature variations [31]. The
zonal wind anomalies in the upper troposphere (200 hPa) during the years of TN10p_IAP
and TN10p_IAN are shown in Figure 6e,f, respectively. In TN10p_IAP years, easterly
anomalies are found to the north of NEC, while westerly anomalies occur to the south of
NEC (Figure 6e). The NEC region is located to the center of a cyclonic shear. Similarly, there
is a cyclonic zonal wind anomaly in the west of Eurasia. The weakening of the westerly
wind in the upper troposphere is conducive to the transition of the atmospheric to the
meridional circulation. The above features at 200 hPa are generally opposite but not robust
during TN10p_IAN years (Figure 6f). The above circulation patterns at 200 hPa and 500
hPa were further confirmed using the correlation analysis (Figure 7).
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Figure 7. Correlation coefficient of the (a) U200 (shaded) and (b) Z500 (shaded) with TN10p_IA series. The dotted region
indicates significance at the 95% level from the t test.

During the years of frequent WELT, the negative AO phase and the weakening of west-
erly wind in the upper troposphere are usually accompanied by weakened zonal circulation
between middle-high latitudes, which is conducive to the southward movement of polar
cold air. At the same time, the UR is strengthened obviously (Figure 6a), which is beneficial
to the transportation of cold advection in front of UR to NEC. Almost the opposite situation
happens in the years of rare low temperature. Furthermore, we calculated the influence of
temperature advection, vertical motion and radiative cooling on the temperature of NEC
in the years of frequency low temperature and rare low temperature, respectively (not
shown). The result shows that the temperature advection plays a dominant role in the
winter temperature of NEC.

We analyzed the distribution of winter vertical velocity anomaly over the Barents-Kara
Seas and found that it averaged between 70◦ N and 85◦ N and in NEC averaged between
35◦ N and 45◦ N. Also, the longitude range of Barents-Kara Seas and NEC regions are
from 10◦ E to 100◦ E and 100◦ E to 140◦ E, respectively. The mean current was ascending
over Barents-Kara Seas (Figure 8a) and sinking over NEC in TN10p_IAP years (Figure 8c).
This kind of distribution of vertical velocity anomaly is beneficial to the maintenance
of the positive height anomalies over Barents-Kara Seas and negative height anomalies
over NEC (Figure 6a) [32]. However in TN10p_IAN years, the situation is not significant
(Figure 8b,d).

Figure 8. Vertical velocity anomaly (shaded, unit: 10−3 Pa s−1) in averaged over Barents-Kara Seas (70◦ N–85◦ N) in (a)
TN10p_IAP years and (b) TN10p_IAN years. (c,d) is the same as (a,b), but for NEC (35◦ N–45◦ N). The dotted region
indicates significance at the 90% level from the t test.
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Figure 9 shows the interannual variation of wintertime AO index (AOI) and TN10p_IA.
The variations of AOI and TN10p_IA are opposite in certain years. The correlation coef-
ficient between them is −0.37, with a t test significance of 95%. Therefore, this indicates
that AO might play an important role in the variation of WELT in NEC, as suggested
in Figure 6c,d. When AO is in a positive phase, less WELT occurs in NEC. However, the
negative phase of AO is beneficial to the occurrence of WELT in NEC [33].

Figure 9. Standardized IA component of TN10p (TN10P_IA, blue line) and AO index (AOI, red line).
The gray dashed lines represent ±0.8 standard deviation. The solid orange (green) dots denote the
positive or negative years of TN10P_IA (AOI) above 0.8 or below −0.8 standard deviation.

3.3. Effects of Arctic Sea Ice on Atmospheric Circulation Affecting the WELT in NEC

In this section, we explore the potential effect of Barents-Kara Seas sea ice on the
atmospheric circulation affecting WELT in NEC. In order to determine the key area of
sea ice affecting WELT in NEC in TN10p_IAP and TN10p_IAN years, we illustrate the
composite autumn (September-October-November, SON) Arctic SIC of the two periods,
respectively (Figure 10). The key sea ice area is mainly distributed in the Barents-Kara
Seas both in TN10p_IAP with a negative SIC anomaly and in TN10p_IAN with a positive
SIC anomaly (Figure 10). The above results indicate that the sea ice reduction in Barents-
Kara Seas in the early autumn may correspond to more cold days and cold nights the
following winter.

Figure 10. Composite maps of the Arctic autumn SIC anomaly (shaded, unit: %) in years with (a)
TN10p_IAP and (b) TN10p_IAN. The dotted region indicates significance at the 95% level from the
t test.
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The WELT in NEC is affected by reduction of Barents-Kara Seas sea ice in autumn.
Furthermore, we regressed autumn and winter sea surface temperature (SST) anomalies on
autumn SIC in the Barents-Kara Seas (B-KSIC, range 70◦N–85◦N, 15◦E–90◦E) during 1979–
2015 (Note B-KSIC is multiplied by −1 for a clear comparison in the following analysis)
(Figure 11). The SST in the Barents-Kara Seas shows positive anomaly, and this warming
continues until the later winter (Figure 11b). The autocorrelation coefficients of SST and
SIC reveal that both of them have a good persistence from autumn to winter (Figure 12).

Figure 11. Linear regression of (a) autumn SST anomaly (shaded, unit: ◦C) and (b) winter SST anomaly (unit: ◦C) on
autumn B-KSIC during 1979–2015. The dotted region indicates significance at the 95% level from the t test.

Figure 12. Time series of autocorrelation coefficient of SIC (the blue solid line) and SST (the red
dashed line) in SON (Sep., Oct., Nov.), OND (Oct., Nov., Dec.), NDJ (Nov., Dec., Jan.) and DJF (Dec.,
Jan., Feb.) in Barents-Kara Seas region. The gray reference line indicates significance at the 95% level
from the t test.

We further used the regional averaged autumn B-KSIC (range 70◦ N–85◦ N, 15◦ E–90◦

E) during 1979–2015 to regress the winter sea level pressure (SLP) anomaly. The SLP
in Barents-Kara Seas area shows obvious positive anomaly (Figure 13). This anomaly is
caused by the decrease of sea ice in the Barents-Kara Seas in autumn, which leads to the
increase of SST and the strengthening of Siberian high in winter [3]. It is also conducive to
the maintenance of UR [29], and the southerly wind in the west of UR transports warm air
to the Barents-Kara Seas, which is beneficial to the further reduction of local sea ice. The
northerly flow in front of the strengthened UR guides the polar cold air southward.

The linear regression of zonal wind anomaly at 200 hPa and the height anomaly
at 500 hPa onto the autumn B-KSIC during 1979–2015 is in good agreement with the
composite results above (Figure 14). When the sea ice in the Barents-Kara Seas decreases
in autumn, the westerly wind weakens in the upper troposphere in the following winter,
leading to the weakening of the zonal circulation and the southward penetration of polar
cold air mass. Moreover, in the middle troposphere, a positive height anomaly occurs in
Barents-Kara Seas, while a negative height anomaly is over NEC. The above distribution of
height anomalies is associated with the weakening of the polar vortex and the strengthening
of UR.
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Figure 13. Linear regression of winter SLP anomaly (shaded, unit: hPa) on autumn B-KSIC during
1979–2015. The green box indicates the key area of sea ice (70◦ N–85◦ N, 15◦ E–90◦ E). The dotted
region indicates significance at the 95% level from the t test.

Figure 14. Linear regression of (a) U200 anomalies (shaded, unit: m/s), (b) height anomalies (shaded,
unit: gpm) and wind anomalies (vector, unit: m/s) at 500 hPa on autumn B-KSIC during 1979–2015.
The dotted region indicates significance at the 95% level from the t test.

4. Conclusions and Discussion

Using statistical analysis and observation data, we focused on the WELT over NEC
region in this study. Firstly, we found that there is a significant interannual variation
dominating the WELT in NEC during 1979–2015. Using ±0.8 standard deviation as the
threshold, we selected the years with frequent and rare extreme low temperature anomalies.
In the years of frequent WELT, there are significant negative geopotential height anomalies
at 500 hPa over NEC and positive height anomalies along Barents-Kara Seas, which repre-
sent the intensification of EAT and negative AO phase. In the upper troposphere, the NEC
region is corresponding to cyclonic wind anomaly. Meanwhile, nearly opposite features
were identified during the years of rare WELT in NEC.

Furthermore, we determined the Barents-Kara Seas to be the key sea ice regions in
Arctic area, where the decrease of sea ice in autumn is accompanied by positive anomalies
of SST and SLP. The positive SLP anomaly is beneficial for strengthening Siberian high and
UR [3]. The northerly airflow in front of UR and the cyclonic anomalies over NEC guides
the polar cold air southward to NEC region, resulting in low temperatures there.

However, in this paper we mainly focused on the wintertime cold extremes in NEC.
Similarly, it is of vital importance to investigate the influence of Arctic sea ice on wintertime
extreme high temperature in NEC. To further study the possible mechanisms between
Arctic sea ice variability and cold extremes in NEC mentioned above, further investigations
are necessary by using numerical simulations. Moreover, the quantitative contribution of
sea ice factor in the Barents-Kara Seas should also be clarified in the future.
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