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Abstract: Understanding the magnitude and distribution of the mixes of the near-ground carbon
dioxide (CO2) components spatially (related to the surface characteristics) and temporally (over
seasonal timescales) is critical to evaluating present and future climate impacts. Thus, the application
of in situ measurement approaches, combined with the spatial interpolation methods, will help to
explore variations in source contribution to the total CO2 mixing ratios in the urban atmosphere.
This study presents the spatial characteristic and temporal trend of atmospheric CO2 levels observed
within the city of Wroclaw, Poland for the July 2017–August 2018 period. The seasonal variability of
atmospheric CO2 around the city was directly measured at the selected sites using flask sampling
with a Picarro G2201-I Cavity Ring-Down Spectroscopy (CRDS) technique. The current work aimed at
determining the accuracy of the interpolation techniques and adjusting the interpolation parameters
for estimating the magnitude of CO2 time series/seasonal variability in terms of limited observations
during the vegetation and non-vegetation periods. The objective was to evaluate how different
interpolation methods will affect the assessment of air pollutant levels in the urban environment
and identify the optimal sampling strategy. The study discusses the schemes for optimization of
the interpolation results that may be adopted in areas where no observations are available, which is
based on the kriging error predictions for an appropriate spatial density of measurement locations.
Finally, the interpolation results were extended regarding the average prediction bias by exploring
additional experimental configurations and introducing the limitation of the future sampling strategy
on the seasonal representation of the CO2 levels in the urban area.

Keywords: carbon dioxide (CO2); geographical information systems (GIS); interpolation

1. Introduction

Atmospheric greenhouse gas (GHG) mixing ratio is strongly influenced by multiple
human-induced and natural factors. The rising CO2 concentration in the atmosphere is
a direct consequence of human activities, including a contribution of fossil fuel-derived
emissions into the atmosphere and effects of land-use changes, etc. [1–3]. In addition,
natural impacts through gas fluxes in ecosystems, carbon uptake and release from soils
and sequestration by live vegetation, are also an important part of the terrestrial carbon
cycle [4–7]. Evaluation of the urban carbon cycle, due to the mix of anthropogenic and
natural emission effects, is often difficult and shows a greater number of potential uncer-
tainties than in a wider spatial resolution. The accuracy of air quality studies depends on
the precision of criteria that are estimated for a certain region meteorological fields and
category of emission origins. At the present, the concentration of GHGs is mainly estimated
by the measurements from nearest stations or single discrete observations. In practice,
ground-based observations include a small number of sampling points in a limited spatial
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resolution. Datasets gathered in air pollution monitoring are often not complete in certain
locations and contain missing value points. As a result, very little is known about the
spatio-temporal variation of GHGs at an urban scale.

Given a large amount of daily CO2 variations in the urban environment, the attempt
to spatial predictions of air pollution is appropriate [4,5,8]. The overall spatial patterns
and the temporal evolution of the average concentration fields (pollution maps) derived
from the field measurements with various weight factors (e.g., various meteorological
conditions, terrain elevation, etc.) can provide realistic information on air quality in the
unmeasured locations. Time information about the typical spatial patterns should also
be noted to adequately represent the temporal effects of emission drivers (given emission
sources, traffic intensity). The seasonal average CO2 concentration map in particular is
assumed to be reasonable to underline the temporal processes of the fine-scale spatial
variability of GHG reduction targets in the urban areas.

The problem of filling data gaps in monitoring measure series can be solved by taking
the pollutant distribution trend and interpolating the missing data from surrounding
values. Building geostatistical spatial prediction models is a tool for achieving higher
accuracy in detecting patterns of the transport and distribution of the gaseous compound
through the local atmosphere. When a sufficient input measurement dataset is available,
the precise predictions of temporal and spatial variation in emission intensity are often
undertaken through spatial interpolation techniques. High-performance interpolation is
represented as explorative model analysis (comparing observed data to obtained under
statistical model) with validation and geo-visualization of estimated values.

Due to the sampling design and/or missing data, there is a need to evaluate the
limitations to spatial interpolation tools to better representing gradients of air pollution in
unsampled locations and understand the existence of spatial and temporal relationships
between air quality and urban land-use patterns. When interpolating ambient air quality
concentrations by a kriging scheme or other spatial interpolation techniques, there are
a number of important features to be considered: the mechanism of the input datasets
generated, spatial representativeness, temporal sampling frequency, spatial dependence of
air pollution [9,10].

Geographical information systems (GIS) technology is a tool of great inherent potential
for research in all areas of environmental science and engineering. The GIS system allows
the dataset to be explored in different ways: description, explanation, prediction of patterns
of spatial processes, and model building [11–14]. GIS spatial interpolation methods have
been applied to many disciplines and different fields for decision making and problem-
solving [15–18]. The GIS-based interpolation method is the process of using points with
known values to estimate values at other unknown points distributed within an area [19,20].
For example, spatial interpolation can estimate the air quality data at locations without
deploying the fine-scale number of monitoring stations or sufficiently detailed data by
using known parameters from nearby measured points to cover the entire scale [21–23].
The application of the interpolation technique provides conclusions about the geographic
differences in distributions of pollutants based on samples from various locations within
the study area [24].

GIS is an intelligent and smart technology to evaluate present and future climate
impacts. Spatial and temporal variations in GHGs from human activities with land-use
changes related to the density of roads, settlements, industries, vegetation covers have
been also analyzed in GIS [25–27]. A number of atmospheric and climate studies have been
conducted to understand the magnitude and distribution of greenhouse gas emissions
and trends spatially (land surface structure) and temporally (over diurnal and seasonal
timescales) under environmental and weather-dependent dispersion conditions [28–30].
Predictions of air quality are often merged with modeling techniques like GIS geospatial
meta-analyses [12,31]. Through meta-analysis methodology and spatial data derived from
GIS, the long-term environmental analysis would be considered further at a large geo-
graphic scale [32]. Most of these investigations use the GIS spatial interpolation techniques
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as a method of analyzing the variability in the CO2, CH4, and CO species. In particular,
the urban CO2 distribution maps based on the original measured and modeled data are
often developed to help predict the future air quality patterns in the cities [9].

The current study provides detailed comparison of the performance of five interpo-
lation techniques to visualize and analyse the spatial variability and temporal dynamics
of atmospheric CO2 concentration, including inverse distance weighting (IDW), spline,
natural neighbour (NB) interpolation, interpolation based on a triangulated irregular net-
work (TIN), Voronoi polygons, and the ordinary kriging method. The interpolated surfaces
were created using the ArcGIS software within the Spatial Analyst and the Geostatistical
Analyst series of interpolation techniques. Finally, each method was tested with different
parameters: weights of sample point structure, a number of measured points included,
the size and direction of the search radius, spatial autocorrelation structure; the sensitivity
of each method to the input data characteristics was also evaluated.

2. Materials and Methods
2.1. Description of the Study Area

The measurements of atmospheric CO2 concentrations were conducted during the
vegetation and heating seasons, from July 2017 to August 2018, within the area of Wro-
claw, the fourth-largest city in Poland. Wroclaw covers an area of 292.92 km2; city lies
between latitudes 51◦2′35” N and 51◦12′38” N and longitudes 16◦48′26” E and 17◦10′34” E.
According to data from the Central Statistical Office, there were about 640,000 inhabitants
in Wroclaw in 2018 [33]. The topography of the city is characterized by a flat surface to
gently rolling hills in the periphery. The terrain is higher in the western part, defined by
an average absolute elevation of 148 m a.s.l. and low in the southeast in the city center,
approximately 120 m a.s.l. Wroclaw is situated in the basin of the Oder River that flows in
many channels and waterways forming the drainage network of a stream system [34].

The city has temperate continental climatic conditions, with a mean annual precipita-
tion of 567 mm. The annual average temperature of Wroclaw is 10.2 ◦C (mean by decade
2008–2019), with the coldest month January (−0.1 ◦C), and the warmest July (20.2 ◦C) [35].
Warm and humid weather conditions are common in the summer; the winter season is rel-
atively mild with moderate and changeable temperatures [36]. Prevailing wind directions
are typically west and south with an average speed of about 2.5 m·s−1, according to records
collected by the meteorological station located at the Copernicus Airport Wroclaw [37].
Air temperature and amount of precipitation for the city of Wroclaw recorded by the
meteorological station located at the Copernicus Airport Wroclaw between July 2017 and
August 2018 are shown in Figure 1 [38].

Figure 1. Monthly trends of the air temperature and precipitation observed at a meteorological
station located at the Copernicus Airport Wroclaw from July 2017–August 2018.

Wroclaw’s atmospheric pollution issues result mainly from two types of anthropogenic
sources, caused by emissions from local household heating and vehicular traffic, as well
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as from large sources of emissions, such as power and industrial plants, nearby. The two
combined heat and power (CHP) stations situated in Wroclaw (CHP “Wroclaw”) and
neighboring CHP “Czechnica” are most likely dominant origins of atmospheric carbon
dioxide [39]. The local domestic heating, due to the use of poor-quality fossil fuels (coal,
oil energy sources), are also main type of air pollution source [8]. Transport operation in
the city is a rapidly growing source of energy-related carbon emissions, which constantly
contribute to air quality issues in the surrounding areas.

2.2. Experimental Set-Up

In this study, the measured atmospheric CO2 levels were collected between 1 p.m.–
5 p.m. local time (when the near-ground atmosphere was well mixed) by using the grab
method (flask sampling) during a one-year period from July 2017 to August 2018 on a
weekly basis. The air samples were taken into 1-L PTFE bags by using a vacuum pump
at about 2 L/min of flow rate passing through a magnesium perchlorate glass water trap.
The collected air samples were determined within 24 h using the Picarro CRDS (cavity ring-
down spectroscopy) technique with model G2201-I [40]. In order to ensure the accuracy of
the measurement results, instrumental calibrations were conducted on the high-accuracy
gas cylinders (different levels of standard gases) using the linear calibration curve fits.

In the case of the limited observation network, the spatial interpolation analysis was
covered at the district level in the east part of the city of Wroclaw (Figure 2). The experimen-
tal plot in Wroclaw is particularly well suited for this project because it contains a complex
mixture of anthropogenic and biogenic sources. The selected sites of the city of Wroclaw
were chosen to represent the different degrees of anthropogenic influence on ecosystems in
a city. The observations at these urban sites were combined with analysis of meteorological
records, studies of local conditions, historical patterns of pollution rates and impacts of
land-use changes. The aforementioned variables (meteorological data and topographic
trends) were used in the optimization of interpolation results by considering anisotropy
and interpolation parameters (e.g., neighbourhood type and number of sectors angle type,
effective terrain weights, as specified in the ArcGIS Geostatistical Wizard extension), as well
as in the analysis of the reflection of smooth/sharp changes on the interpolated maps.

Figure 2. Location of study districts in the Wroclaw urban area. The measurement points are marked
as: soil flux observation set/biogenic fluxes (violet pushpins), rooftop-level measurement sites (red
points), location with on-site continuous diurnal series measurements (blue point); measurement
stations operating by Inspectorate of Environmental Protection (dark red). The marks “RSP_1-6”
indicate rooftop-level measurement sites, “FSP_1-3” soil flux sampling places, “CSt” means a location
with continuous diurnal series measurements (“Cybulskiego station”), WIOS_1-2 are, respectively,
measurement stations operating by Inspectorate of Environmental Protection. Base map source [41].

Anisotropic semivariograms applied during the interpolation validation procedures
were used to detected directional trends of seasonal CO2 concentrations by dominant wind
routes. Moreover, the aforementioned procedures were undertaken to ensure that the
high CO2 concentration events (interpolated surfaces with and without anisotropy) are
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dependent on the wind as a key meteorological factor that impacts the distribution of air
pollutants is and also related to the weather events, e.g., anticyclonic circulations (lower
wind speeds and calm conditions). Additionally, a variable search radius during cross-
validation was determined based on a topography effect to cover the areas of emission
spots (significant sources of GHGs and major roads).

Several analyses have been performed in the investigation of CO2 emissions in the
urban environment. The urban CO2 fluxes were estimated using a combination of different
measurement approaches: the first one concerned the flask sampling (in gas sampling
bags) of atmospheric CO2 mixing ratios, significantly influenced by fossil fuel component;
the second one involved collecting samples for analysis of ambient CO2 concentration
depending on the contribution of biospheric components (soil-surface CO2 fluxes and
dynamics of photosynthesis) under various land use/land cover categories; the third one
included continuous measurement of diurnal variations in CO2 concentrations.

The measurements of atmospheric CO2 were considered at three specifications: sam-
pling points on the roofs; experimental sites that show natural emissions of CO2 within
an urban location (in the vicinity of the soil respiration sampling plots); and measure-
ments at the nearby automatic measurement stations of air pollutants for the Polish Chief
Inspectorate of Environmental Protection. Following that, samples of ambient air were
collected from the rooftop of the buildings at various altitudes (height of 15–30 m) at 6 ex-
perimental sites. Three plots were established over the area encompassing different biome
types—the most typical urban ecosystems: grasslands, forests, arable fields. This study
used datasets derived and measured at the nearby two automatic measurement stations
of air pollutants for the Chief Inspectorate of Environmental Protection (in Polish, GIOŚ),
showing variations in CO:CO2 ratios. Moreover, diurnal measurements of atmospheric
CO2 concentration were performed from the laboratory building “Cybulskiego station”
located in the city center and surrounded by a dense network of roads and close to the
Oder River channel. The measurements at the “Cybulskiego station” were considered as
independent check-point of urban CO2 concentrations in seasonal and diurnal cycles over
a one-year period. The significant changes in concentration over short periods of time,
often higher than the local background signals of CO2 in the heating season, were governed
by local anthropogenic sources. Concentrations lower than the background CO2 time
series usually reflect local sinks (biological CO2 fixation via plant photosynthesis) in the
vegetation season.

2.3. Spatial Analysis and Modelling in the Geographical Information Systems (GIS)

The study investigates the relationships between field-determined seasonal CO2
concentration patterns and interpolated data at the specified sites across the study area,
considering both related meteorological conditions and in-between the sampling points
distance. The interpolated CO2 distribution is combined with a linear regression (LR)
model of spatial and temporal trends of CO2 to estimate the impacts on a variance between
time periods (for the vegetation and heating seasons) in response to terrain attributes and
climatic variables of the area of interest. The approach is based on simple regressions
that assume the relationship between observed mean CO2 concentration and effects of
meteorological factors on both the temporal magnitude and spatial patterns of the carbon
cycle. The resulting data (residuals of LR model) were then utilized to interpolate seasonal
mean CO2 concentrations for the target locations and compared with original interpolator.

The observation size was examined by the distribution of CO2 on samples for the
vegetation and heating periods. The Pearson correlation matrix was applied to estimate
the relationships between the CO2 level and environmental variables (air temperature,
relative humidity, atmospheric pressure, wind direction, and wind velocity) during the
measurements. Multiple linear regression was also employed for each individual sampling
site to examine the effect of meteorological factors on the seasonal cycle of CO2 in an urban
area. The regression and correlation analysis performed using the least-squares method
were conducted in the OriginPro 2019 software workspace.
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The accuracy of observed and predicted CO2 distribution data within the study area is
compared by applying GIS-based interpolation methods for point-sampled values by filling
missing values in data sets of atmospheric CO2 monitoring. The interpolation analysis
comprises hourly averages of atmospheric CO2 concentrations collected at the nine sites
(roofs sampling points and flux sampling points) between July 2017 and August 2018;
three sampling points (WIOS stations and Cybulskiego station) were used for verification
purposes, as shown in Figure 2. The Tukey pairwise comparison between observations
(t-tests: two-sample assuming) was used to evaluate the significance of differences in
values of CO2 collected at each of the sampling points. A p-value (p = 0.05) was considered
as statistically significant at measurement locations.

The analysis was carried out for the mean daily variation of CO2 levels in the study
area. To capture the seasonal pattern of the CO2 concentration, the data attributed to each
sampling location were further averaged. The averages for each measurement point were
weighted in consideration of the site-specific data quality and completeness rate: missing
observations were excluded from the dataset. The weighting factors used in the above
calculation were geographic variables, such as topography, and land-uses of sampling sites
(urban greenery represented by grasslands, forests, arable fields, e.g., “FSP_1-3” places)
and emissions information, including the distance to the nearest major emission sources,
and traffic intensity nearby (sites, located near heavy traffic roads, e.g., “RSP_1” and
“RSP_6”), other observations with the pollutant of interest (e.g., “WIOS_1-2” measurement
stations). Seasonal average CO2 concentrations taken at specific points were then interpo-
lated. Predictions based on seasonal time scale were compared with monitoring data for
the assessment of the spatial interpolation methodologies.

The different interpolation methods, such as inverse distance weighting (IDW), the nat-
ural neighbor approach, and interpolation based on a triangulated irregular network,
Voronoi polygons were tested to analyze capabilities and select which method is best suited
for fulfilling data gaps in CO2 measurements from selected nearby sampling locations.
The various methods of interpolation work slightly differently, e.g., in a way to the shape of
some mathematical function that is applied to the whole area of interest. IDW interpolation
and spline are two deterministic methods that create surfaces from samples based on the
extent of cell similarity or degree of smoothing [42]. However, a spline mathematical
function crosses exactly through each sample point, while IDW crosses through none of
the points [43]. In the IDW-based spatial interpolation method, the value at the unknown
location (x, y), u(x, y) is calculated as the weighted average of the measurements at the
monitoring sites, and the equation is (1) [9]:

u(x, y) =
∑N

n=1
un(xn, yn)

dn

∑N
n=1

1
dn

(1)

where dn =
√
((x− xn)

2 + (y− yn)
2)

i
is a commonly squared distance (i = 2).

IDW is mostly used in pollution sampling and health science; kriging often used in
soil science and geology, as well as in the field of atmospheric data analysis [12]. Spline
interpolation is the best method to predict the smoothly varying surfaces of phenomena
like temperature [44]. The interpolated value at the spline algorithm can be expressed as
(2) [45,46]:

S(x, y) = T(x, y) +
N

∑
j=1

λjR
(
rj
)

(2)

where j = 1, 2, . . . , N; N—the number of points; λj—coefficients found by the solution of a
system of linear equations; rj—the distance from the point (x, y) to the jth point.

There are two spline methods: regularized and tension. A regularized method creates
a more elastic, gradually changing surface, while a tension spline usually creates smoother
surfaces of the same sample points [47]. The tension curve is flatter than the regularized
curve and forcing the estimates to stay closer to the sample data. The tension spline
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uses only first (slope) and second derivatives (rate of change in slope), when regularized
includes the first second, and third derivative (rate of change in the second derivative) in
the Spline computing [47]. Spline with a tension function is given by (3) [48]:

φ(r) = ln
(σ·r

2

)
+ K0(σ·r)2 + CE (3)

where r—distance between the prediction point and the sample; σ—tension parame-
ter; E1—exponential integral function; CE—constant of Eulero (0.577215); K0—modified
Bessel function.

The triangulated irregular network (TIN) interpolation typically used for high-precision
modelling of smaller areas, e.g., in engineering areas [49]. Natural neighbour interpola-
tion is based on the Voronoi tessellation of irregular distributed points, a network/region
generated around each location in the data set can be written as (4) [19,50]:

wi =
Area(V(q) ∩ V(Si))

Area(V(q))
(4)

where si the natural neighbours of q and V(si) their associated regions in the original
Voronoi diagram.

A geostatistical method, such as kriging, is one of the most complex interpolators and
a powerful statistical technique based on sophisticated weighted average techniques for
predicting values derived from the measure of relationship in samples [51]. The method
considers both the distance and the degree of variation between sample points when
estimating values of unknown samples. The distance and direction between all possible
pairs of data points are calculated to provide data on the spatial autocorrelation of the
sample point set on a particular surface [49]. The general mathematical formula for a
kriging interpolation scheme using weights independent of the data is defined as (5) [52,53]:

Z·(u) =
n

∑
a=1

λa(u)Z(ua) (5)

where Z(uα) is the random variable model at location uα; the uα’s are the n data locations,
the λα(u)’s are the ordinary kriging weights for estimation of Z · (u).

Choosing the correct type of interpolation method depends on many factors e.g.,
the nature of the observed variable and the representation period; types of surface for
modelling; and the features of the geographic area [54]. The characteristic of pollutants
affects the determination of the interpolation method to use. The difference in variance
between different data sets provides information with regard to the level of data smoothing
in the interpolated surfaces. For instance, the Thiessen and IDW techniques stay in the
range of the original observations, while kriging and spline can exceed the observed range
and produce interpolated values both below and above the measured ones [55,56].

The quality of the sampling set also affects the choice of the interpolation method.
The kriging interpolation is more sophisticated than other methods, however, the limited
number of sampling points, non-regular datasets, and clustered location of points could
affect the quality of the interpolated outputs [57]. In the case of poorly distributed or
few sampling points within the study area, then the application of the IDW method is
better [58]. The spline interpolation does not work well if observation points are close
together and have extreme differences in values [47].

Prediction accuracy of different interpolation methods is often evaluated by a cross-
validation technique. The idea of cross-validation is removing one data point and per-
forming the interpolation using the data at the remaining locations [47,59]. Furthermore,
a calculation of residuals between the measured value of the removed point and its es-
timation is executed. The procedure is repeated until each observation in turn out of
the sample has been estimated from the remaining observations [60]. After completing
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cross-validation, some data points can be rejected, such as that contains large errors or
requires refitting the trend and autocorrelation models.

The spatial autocorrelation between points must be quantified through the semivari-
ogram model: circular, spherical, exponential, Gaussian, linear [61]. When the semivariance
is plotted against the lag distance or separation distance between points, the plot is called
semivariogram [59]. The semivariance function characterizes the spatial continuity between
points and estimates spatial dependence between observations. These spatial structures
of semivariogram help in identifying autocorrelation, replicating samples and finding the
optimal parameters of interpolation control parameters [61]. The model error for each inter-
polation in cross-validation is evaluated by statistical means, such as the mean error (ME)
and root mean square error (RMSE) [60]. RMSE indicates an interpolator that calculates the
most reliable estimates at an unsampled location and shows a dominant pattern in the data
series [62].

3. Results and Discussion
3.1. Summary of the Measured CO2 Concentrations

The analysis in this study is based on the average hourly time series of atmospheric
CO2 concentrations measured at the surface level. The observation period was divided into
the vegetative and non-vegetative phases according to the meteorological data. The veg-
etative stage (vegetation I: 6 July 2017–7 November 2017 and vegetation II: 29 March
2018–2 August 2018) was defined as the period when the daily mean air temperature
increases above +5 ◦C, whereas the heating stage (8 November 2017–28 March 2018), refers
to the phase of low temperatures (drops below +5 ◦C) when the need for home heating
becomes quite high. The measured patterns of atmospheric CO2 concentrations followed
a normal distribution for both periods (vegetation and heating), whereas over the whole
study period (vegetation I, heating, vegetation II seasons) data were not significantly
right-skewed from a normally distributed population (tested with the Shapiro–Wilk test).
The overall distribution of observed annual CO2, however, provides statistically acceptable
fits to the set of observations, the data kurtosis of a normal population curve was not
reported as tested with the Shapiro–Wilk test (p < 0.05) in OriginPro 2019 software.

The time-series of measured CO2 levels indicated clear seasonality as a result of natural
processes and human activity. In the vegetative season, the biological impact through the
photosynthetic carbon fixation is dominant while the anthropogenic impact is minimized.
Conversely, in the heating season, the anthropogenic CO2 sources are predominant, while
photosynthesis uptake of CO2 by cover vegetation is negligible. According to the seasonal
cycle of carbon dioxide, for most of the measurement sites, a marked increase in CO2
concentrations was observed in late autumn (from November) caused by a decrease in air
temperature and related to higher energy consumption for electricity and heating purposes.
The decline in concentration was recorded in early spring (at the end of March and April)
due to the longer duration of sunshine and coupled changes in the vegetation distribution
(plant respiration and uptake). The measured average concentrations for atmospheric CO2
ranged from 380 to 440 ppm with a mean of 412 ± 3.1 ppm for the vegetation season; and
the maximum concentrations for CO2 were observed in the heating season, in the range of
410–470 ppm with a mean of about 430 ± 3.8 ppm in winter (Figure 3). Thus, the derived
seasonal variation in atmospheric CO2 concentration reaches up to 25–30 ppm, which is
consistent with the majority of previous studies [63–66].

The signals of measured CO2 for the study period also illustrate temporal variability
in CO2 values over the sampling sites. Figure 4 shows the box plots of the median and
interquartile range of CO2 concentrations at each sampling point. Analysis of variance
(ANOVA) and a pairwise comparison Tukey test (p > 0.05) indicated a significant difference
in the carbon dioxide rates observed for most of the study sites probably due to the distance
between the sampling locations, and the influence of local sources (mainly transport activity
and domestic heating sector). When analysing the differences separately for the vegetative
and non-vegetative period, the seasonal pattern of CO2 concentrations was quite evident.
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At all measurement locations, atmospheric CO2 concentration was found to be higher in
the heating period (from autumn to winter).

Figure 3. Seasonal patterns of the measured mean atmospheric CO2 concentration in the sampling
sites over the study period (vegetation I, heating, vegetation II, respectively) in July 2017–August
2018. A city-wide average for CO2 was computed by averaging daily values across all sites. Error
areas indicate the standard deviation (2σ) of the means.

Figure 4. Box plot of the measured atmospheric CO2 concentration in the sampling sites over the study period (vegetation
vs. heating) in July 2017–August 2018. The box components indicate the median (horizontal line) and range between the
25th and 75th percentile of the measured values, respectively. The whiskers represent the highest and lowest 1.5 × IQR
(interquartile range) of the mean data values. The various lower-case letters show which measurements for individual
sampling points by comparing seasonal CO2 trends were significantly different. The marks “RSP_1-6” indicate rooftop-
level measurement sites, “FSP_1-3” soil flux sampling places, “CSt” means a location with continuous diurnal series
measurements (“Cybulskiego station”), WIOS_1-2 are respectively measurement stations operated by the Inspectorate of
Environmental Protection.

The compared means of atmospheric CO2 across the majority of the study sites
were relatively close and do not demonstrate extreme values in the vegetation season
(Figure 4). A peak in CO2 concentration (median mean of 414 ppm) was only measured
at the “WIOS_2” on-road traffic station. Although slightly higher concentrations were
measured in the “RSP_1” and “RSP_6” sites, located near heavy traffic roads. Three stations
(“RSP_3”, “CSt”, “WIOS_1”) that were furthest from the heavily congested roads and asso-
ciated with the urban greenery showed the lowest concentrations of CO2 (median mean
below 397 ppm) observed during the vegetation season. From the results of pairwise com-
parisons of recorded CO2 in most of the observation locations, it can be concluded that there
was a significant difference in CO2 measurements in the heating season. The winter CO2
maximum was also observed in the “WIOS_2” measurement station (median mean over
450 ppm). For some sites, such as “RSP_1” and “RSP_6” the measured atmospheric CO2
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concentrations were characterized by peaks (median mean up to 440 ppm), predominantly
caused by emissions from anthropogenic sources. Furthermore, the amplitude of the CO2
concentrations measured in the heating season indicated that the meteorological episodes
(mainly, air temperature fluctuations) contributed significantly to the high variation in CO2
values within sampling groups (interquartile range on box plots).

The difference in the CO2 levels within and between the treatments (vegetative and
non-vegetative period) can be explained by the contribution of different physical and
physiological processes (respiration and photosynthesis components), complex emission
source configuration and other multiple human-induced factors. The higher variability
in meteorological conditions (duration of vegetation period, photosynthetically active
radiation, precipitation, wind speed and direction) had a direct influence on the temporal
patterns of atmospheric CO2 during vegetation and heating seasons. The results of the
measurements of atmospheric CO2 were correlated with the meteorological conditions,
represented in Table 1.

Table 1. Relationship between meteorological variables and observed CO2 concentrations at the study sites.

Environmental
Factors

Correlation
Coefficients

Atmospheric CO2 Concentration

RSP_1 RSP_2 RSP_3 RSP_4 RSP_5 RSP_6 CSt FSP_1 FSP_2 FSP_3 WIOS_1 WIOS_2 Average
of Sites

Vegetation season

Air temperature
(◦C)

Pearson −0.19 −0.30 −0.51 −0.47 −0.57 −0.52 −0.62 −0.21 −0.11 −0.16 −0.31 −0.49 −0.43

Spearman −0.20 −0.46 −0.46 −0.62 −0.35 −0.57 −0.64 −0.19 −0.12 −0.13 −0.30 −0.55 −0.41

Atmospheric
humidity (%)

Pearson −0.08 −0.07 0.31 0.21 0.56 0.32 0.12 0.28 −0.28 −0.17 0.17 0.36 0.28

Spearman −0.23 −0.07 0.19 0.14 0.31 0.24 0.32 0.24 −0.30 −0.21 0.21 0.38 0.22

Atmospheric
pressure (hPa)

Pearson 0.13 0.35 0.15 0.38 0.35 0.11 −0.06 −0.32 0.06 0.51 0.10 0.14 0.17

Spearman 0.14 0.30 0.22 0.42 0.53 0.27 −0.14 −0.33 0.02 0.30 0.24 0.32 0.24

Wind velocity
(m·s−1)

Pearson 0.11 0.23 0.11 −0.22 −0.48 −0.16 0.51 0.27 0.32 0.24 −0.21 −0.23 −0.22

Spearman 0.12 0.21 0.09 −0.15 −0.37 −0.11 0.33 0.21 0.39 0.11 −0.18 −0.18 −0.19

Wind direction
(deg)

Pearson −0.21 −0.13 −0.31 −0.12 −0.25 −0.16 0.06 0.05 −0.19 −0.45 −0.29 −0.11 −0.19

Spearman −0.29 −0.15 −0.38 −0.10 −0.42 −0.12 0.03 0.09 −0.25 −0.39 −0.36 −0.14 −0.23

Heating season

Air temperature
(◦C)

Pearson −0.13 −0.16 −0.31 −0.19 −0.18 −0.41 −0.21 −0.31 −0.36 −0.19 −0.26 −0.35 −0.37

Spearman −0.15 −0.12 −0.32 −0.32 −0.19 −0.40 −0.17 −0.50 −0.34 −0.24 −0.35 −0.32 −0.39

Atmospheric
humidity (%)

Pearson 0.19 0.19 0.30 0.51 0.39 0.29 0.13 0.11 0.09 0.09 0.13 0.39 0.29
Spearman 0.36 0.17 0.31 0.41 0.43 0.32 0.14 0.12 0.16 0.11 0.19 0.41 0.31

Atmospheric
pressure (hPa)

Pearson 0.14 0.19 0.11 0.39 0.26 0.19 0.09 0.09 0.26 0.08 0.15 0.34 0.19

Spearman 0.27 0.15 0.12 0.29 0.13 0.18 0.10 0.11 0.26 0.16 0.18 0.33 0.17

Wind velocity
(m·s−1)

Pearson −0.17 −0.16 −0.13 −0.17 −0.18 −0.19 −0.33 −0.28 −0.16 −0.17 −0.11 −0.27 −0.16

Spearman −0.19 −0.13 −0.11 −0.18 −0.21 −0.23 −0.34 −0.27 −0.25 −0.19 −0.18 −0.16 −0.14

Wind direction
(deg)

Pearson −0.15 −0.11 −0.18 −0.14 −0.17 −0.26 −0.35 −0.48 −0.39 −0.15 −0.26 −0.17 −0.17

Spearman −0.17 −0.14 −0.14 −0.15 −0.16 −0.28 −0.36 −0.44 −0.29 −0.17 −0.29 −0.20 −0.18

The Pearson correlation indicated moderately inverse correlation with air temperature
(r = −0.43 and ρ = −0.41 for Pearson and Spearman statistics, respectively, p < 0.05) and a
direct correlation with relative humidity (r = 0.28 and ρ = 0.22 for Pearson and Spearman
statistics, respectively, p < 0.05). The CO2 concentrations were positively correlated with
atmospheric pressure (r = 0.17 and ρ = 0.24 for Pearson and Spearman statistics, respectively,
p < 0.05) and associated with a negative weak relationship with wind speed and direction
(r = −0.22 and ρ = −0.19 for Pearson and Spearman statistics, respectively, p < 0.05).
The observation size was examined by the multi-factor ANOVA, with the following model:
y =−326.104− 0.014× x1 + 0.076× x2 + 1.168× x3 + 0.160× x4 − 0.104× x5 (where x1—air
temperature, x2—air humidity; x3—atmospheric pressure; x4—wind velocity; x5—wind
speed); and indicated that the air temperature parameter was the only key factor controlling
the intensity of atmospheric CO2 for the vegetation and heating periods (F < 0.05, df = 711,
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p < 0.05). In general, the regression model results revealed that the local distribution of
CO2 is dependent on the weather patterns, however, some meteorological influences were
more specific and their effects were less obvious.

3.2. Geostatistical Analysis of Temporal and Spatial Variability of Atmospheric CO2 Concentrations

According to the results obtained from different interpolation methods, the quality of
various predicted surfaces for the vegetation and heating seasons were identified. IDW,
spline, and natural neighbour (NB) approaches showed some similarities in the produced
surfaces. However, natural neighbour prediction led to accurate values mainly within
a short distance in sample points location. IDW and spline interpolation gave a consis-
tent, but poor performance for the seasonal CO2 distribution since the surface is highly
susceptible to edge effects (unsampled locations) and clusterization (clustered sample
points). The lowest and highest values obtained by Voronoi (Thiessen) polygons were
representative of the original data range, however, the prediction had a much greater
morphology of the map (high differentiation between colour ranges) and did not represent
realistic dispersion conditions for CO2 emission.

In general, the IDW and spline methods can be accepted for the analysis of CO2
variability in Wroclaw over the vegetation and heating seasons compared to the natural
neighbour interpolation and Voronoi (Thiessen) polygons. Prediction of seasonal changes
in the atmospheric CO2 concentration using spline and IDW techniques had a relatively
accurate level. Regarding the average prediction bias, the low ME values were obtained for
the spline technique, which suggests low interpolation errors compared to the chosen inter-
polation methods. The predictive ability of the IDW method was generally lower compared
to spline predictions (higher ME, RMSE values), probably due to a slight underestimation
of the observed concentrations. However, it is also worth noting that IDW proves to be
effective in identifying pollution hotspots from the interpolated surfaces; moreover, spline
tends to have a ‘smoothening’ effect (see Figures 5 and 6).

Every location (points) within a Thiessen polygon, due to the missing data at an
unsampled area, had very little obvious trends within the dataset. The range of results
obtained by IDW and spline interpolation was characterized by the minimum error vari-
ances (Table 2). However, the IDW approach strongly averaged data and did not produce
values higher than the maximum and smaller than the minimum values of the observa-
tions. Overall, the differences of RMSE between IDW and spline were generally small,
but IDW tended to higher errors, probably due to the uneven distribution of input points
over the study area (edge effects and clusterization). The lower errors were introduced by
natural neighbour estimating, as the interpolated values were close to the observed ones.
However, the values predicted by natural neighbour were obtained only for the central
part of the study extent, up to the contour of the data points. The absence of extrapolation
results affected potentially large errors in the area outside sampling locations by the natural
neighbour interpolation method.

The results showed that the choice of the correct type of interpolation method depends
on many factors including the nature of the observed variable, size of the sample dataset
used on spatial scale and the period on which it is represented. The interpolated surfaces
(Figures 3 and 4) of CO2 concentration differed significantly depending on the observation
period (with the highest values in the heating season and lowest in the vegetation). The pat-
terns of maximum concentration for vegetation and heating period changed direction
angle mainly in the west and north parts of the prediction map. The CO2 values were
more dispersed in the central part of the area, probably due to the lack of sampling points.
Along with the central part and edges (northeast, southeast part) in the predicted CO2
concentration map, the unconvincing values were estimated.
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Figure 5. Interpolated surfaces of CO2 distribution in the Vegetation season. 3-D view in ArcScene
obtained for selected interpolation techniques (top to bottom): Inverse Distance Weighting (IDW),
Spline, Natural Neighbour (NB) interpolation, Voronoi (Thiessen) Polygons.
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Figure 6. Interpolated surfaces of CO2 distribution in the Heating season. 3-D view in ArcScene
obtained for selected interpolation techniques (top to bottom): Inverse Distance Weighting (IDW),
Spline, Natural Neighbour (NB) interpolation, Voronoi (Thiessen) Polygons.
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Table 2. Summary statistics of the selected interpolation methods: vegetation vs. heating season.

CO2 Concentration (ppm), Vegetation Season

Interpolation
Methods Min Max Mean Std. dev. ME RMSE

Observed Values 384.31 430.62 407.41 8.35 - -

IDW 403.42 430.52 416.97 2.39 −0.13 8.74

Spline 392.61 438.94 415.77 1.66 −0.41 8.27

Natural Neighbor 403.51 420.51 412.01 7.44 0.13 4.22

Voronoi Polygons 403.31 430.52 418.41 1.61 −0.65 9.17

CO2 Concentration (ppm), Heating Season

Interpolation
Methods Min Max Mean Std. dev. ME RMSE

Observed Values 411.35 455.93 433.64 6.05 - -

IDW 426.57 436.39 431.48 1.68 −1.74 7.05

Spline 411.76 457.12 434.44 1.37 −0.85 6.88

Natural Neighbor 424.27 443.43 433.85 4.64 0.83 3.81

Voronoi Polygons 426.36 436.39 431.37 2.53 −1.61 7.74

The IDW interpolated surface (Figure 7) represents the best quantitative and accurate
results of CO2 dispersion in the atmosphere compared with other interpolators in this
study. The predicted mean CO2 values were highest in the heating season (nearly 431 ppm)
compared to the vegetation (mean 411 ppm). However, the IDW method works best for
the dense enough, evenly-spaced sample point sets, that is why the formatted feature
class cannot be sufficient to capture local CO2 concentration variations in the Wroclaw
urban area.

Figure 7. Geographic information system (GIS) coupling mapping of spatial CO2 distribution in the
vegetation and heating seasons, a surface produced using the IDW interpolation method.
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We studied the anisotropy by managing search direction and showing its impact
on the spatial correlation structure for a given, generally low number of observations
(vegetation vs. heating season). The direction of anisotropy was determined by estimating
semivariograms in multiplane directions. The semivariograms and semivariogram maps
with search direction used to determine the presence and direction of anisotropy in the
data in the vegetation and heating season (pattern of spatial correlation to be stronger in
certain directions) are shown in Figure 8. Clear anisotropy that was found with direction
labeled in semivariogram surface/maps, especially in the heating season, might suggest
the spatial variability of the observed data. In general, the spatial correlation of the data in
the direction perpendicular to that represented in Figure 8 is lower than that parallel to it,
whereas the anisotropic model reaches the sill more rapidly.

Figure 8. The semivariogram cloud and anisotropic model based on the semivariogram maps of
collected data in the vegetation season (top) and heating season (bottom).

Normally, with the semivariogram, the variation of the values should increase with
distance, but in this case, the clouds are not illustrating the expected results. The tendency
of the geographic relationships is not within the expected range mainly due to the character
of data collection. Some points are unevenly distributed, also located on the edges of the
measured network or more influenced by neighboring points when they are more clustered.
The semivariogram for the IDW method represents the high average rate of change of
data property with distance and not significant consistency of the variable through space
(Figure 9).

Figure 9. The semivariogram graph of the predicted points for average CO2 variation with distance,
obtained from the IDW interpolated raster.

Based on the spatial similarity of the spline interpolated surface, it is difficult to
highlight the obvious seasonal cycle of CO2 emissions from an urban area. The spline
function modelled spatial distribution map shows no large differences in carbon dioxide
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concentration under the vegetation and heating conditions (Figure 10). The CO2 values are
more dispersed, with higher values (419–420 ppm and 428–431 ppm for vegetation and
heating period, respectively) in the central part of the area.

Figure 10. GIS coupling mapping of spatial CO2 distribution in the vegetation and heating seasons,
a surface produced using the tension spline radial basis function interpolation method.

The level of model accuracy was tested also through semivariogram estimates of spatial
dependence between observations for a particular spline-created surface. This information
again raises the issue of the sampling distribution tendency, as well as reflecting non-uniform
geometrical configuration and spatial resolution of the sampling points (Figure 11).

Figure 11. The semivariogram graph of the predicted points for average CO2 variation with distance,
obtained from the spline tension interpolated raster.

The Natural neighbour (NB) interpolation method was used as it generally works
well with clustered scatter points [18]. A disadvantage of this technique is a limited in-
terpolated surface up to data point contour; it does not extrapolate outside of the data
locations. The natural neighbour method gives good results within uneven point distri-
bution (Figure 12); it estimates the CO2 concentration in a similar pattern compared to
the spline interpolation (an equal part of the produced surface). The general picture of
the presented pollutant distribution on the right side and in the central part of the work
extent is quite similar that obtained by the previous method. However, the absence of
extrapolation results affects potentially large errors in the area outside sampling locations.
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Figure 12. GIS coupling mapping of spatial CO2 distribution in the vegetation and heating seasons,
a surface produced using the natural neighbor interpolation method.

The spatial autocorrelation of the data points in the natural neighbour interpolated
surface is visualized by the semivariogram in Figure 13. The semivariogram also represents
the high average rate of change of the data property with distance and non-significant
consistency of the variable through space.

Figure 13. The semivariogram graph of the predicted points for average CO2 variation with distance,
obtained from the natural neighbor interpolated raster.

The Voronoi diagram with the Thiessen polygons was used to illustrate the stationarity
of the dataset. Each Thiessen polygon contains only a single point input feature and
represents the relationship for the data to their environment. Every location within a
Thiessen polygon was closer to its associated point than to the input point of any other
polygon. The trends shown in the Voronoi map (Figure 14) demonstrate the high variation
with the dataset for the study area. The darker colors represent the higher rates of change
of the CO2 concentration for the neighboring point dataset. The projected area due to the
missing data at an unsampled location from the neighbouring observations had very little
obvious trends within the dataset. This trend spreads in sites with no data—mostly north
and south and northeast. Furthermore, this method showed the highest differences in
observed and estimated CO2 values between vegetation and heating seasons.
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Figure 14. GIS coupling mapping of spatial CO2 distribution in the vegetation and heating seasons,
a surface produced using the Voronoi diagram with the Thiessen polygons method.

The raster surface created with the spatial analyst tool in GIS software does not have
semivariogram estimates of spatial dependence between observations for a particular
Thiessen Polygons. The statistical model was estimated by calculating mean prediction
error (MPE) and root-mean-square prediction errors (RMSE). The experimental results
showed the main factors affecting the accuracy of interpolation are sampling density,
sampling mode, and sampling location. The specific sampling datasets that do not reflect
the complexity of the spatial characteristics rapidly increase errors of interpolation methods
and the estimated values could be under-/overestimated. Organizing the sampling mode
plays a key role in future predictions, for example, in regular-grid sampling (with cells of
equal size), the spline interpolation method has the highest interpolation accuracy, and the
IDW has the lowest interpolation accuracy.

3.3. Sampling Strategies for Optimization of the Effect of Interpolation

It is not easy to determine which interpolation is better by looking only at the spatial
pattern of the interpolated surfaces. Multiple tools and approaches exist to answer the
question about the differences among various methods. Several studies have demonstrated
that the various spatial interpolation techniques perform differently depending on the
type of inputs, the geometrical configuration of the samples, and spatial resolution [67–69].
In general, the performance of the kriging technique is better than the other studied
interpolation methods, but it is more effective in predictions when the number of input
points is higher in the monitoring network. The predictions of the kriging interpolation are
greatly affected by the sampling configuration and spatial orientation of points of interest
in the area under study.

The best-interpolated outputs may only be when datasets used contain a sufficient
number of sample points, evenly or high-density located in the study area. The limited
number of observation points, as well as the isolated locations, both had a critical influence
on the estimated CO2 distribution surface. The performance of chosen interpolators in
the absence of spread datasets seems restricted for high-quality predictions. Unmeasured
locations have the most impact on interpolated values and significantly entail the largest
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errors in the surrounding surface. As a result, it is critical that additional sampling points
should be incorporated into further spatial estimates, especially in more problematic parts
of the study area (edges and central). Regardless of the limitations of kriging interpolation
on a number of data locations, the ordinary kriging prediction standard error map was
developed in this study for a better representation of the spatial nature of atmospheric CO2
variations (Figure 15).

Figure 15. Ordinary kriging prediction standard error map with the grid (1 km × 1 km) within a
particular study area.

The design of the new monitoring locations was estimated using the following GIS
interpolation methods: kriging technique (a prediction standard error map), create random
points, and densify sampling network geoprocessing tools. To decide, which areas have
the highest influence on the prediction surface, the prediction standard error (a kriging
geostatistical layer) was computed. Furthermore, the spatially continuous prediction error
map, associated with the kriging layer, was used as the selection criterion in determining
the new sampling sites. The additional monitoring points in areas that are void of air quality
measurements were distributed randomly by applying the random sampling approach
with the optimization criteria (input weight raster). For this purpose, we prepared a
probability raster taking into account additional layers such as land-use characteristics
and large-size emission sources allocation and their combination through the use of the
appropriate map algebra expressions. In this approach, the new sampling design depends
not only on the monitoring network density but also on the importance of land uses, where
the probability value is higher. Consistently, the prediction surface created by interpolation
was improved by applying the most suitable error statistic layers to determine where the
new monitoring sites should be built.

The next step for spatial analysis of these parameters was to form the empirical
semivariogram that provides information on the spatial autocorrelation of datasets. The ex-
perimental semivariogram of a dataset for the vegetation and heating periods with its
semivariogram curves is shown in Figure 16. There can be observed deviations of the
points on the semivariogram from the averaged values—some points are above and below
of the model curve. These variations could be the result of direction (anisotropy) trends,
labeled on semivariogram surface/maps (see maps in a corner), or some unmeasurable
physical process of pollution dispersion.

Spatial optimization from the kriging model indicates that there is a need to locate
additional sampling points, especially in southern and southeast directions (values of the
highest standard errors of prediction). A random sampling strategy was used to determine
the new distribution of sample points by the reconstruction of the air sampling network
density, especially in unmeasured locations. By using kriging interpolation (Figure 17) and
the random points tool in ArcGIS software the error map was created, where the future
sampling campaigns can be planned and a more realistic representation of CO2 distribution
across the most problematic parts of the study area should be achieved.
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Figure 16. The empirical semivariograms with averaged values (fitted models by solid lines) and
semivariogram maps of the ordinary kriging method from the dataset for the vegetation season (top)
and heating season (bottom).

Figure 17. A new sample locations pattern optimized with the ordinary kriging interpolation model
within the study area.

This strategy would avoid biases related to data variability in the study area as
compared to sampling at regularly spaced intervals. However, a random sampling strategy
is largely dependent on the number of points and may not represent the important features
of the data in complex terrain (e.g., local conditions, land cover, scope and sources of
emission, spatial emission processes, etc.) and requires additional field inspections.

With the change of the sampling mode from regular-grid sampling to combined
sampling, significant improvements in interpolation predictions were accomplished. Due to
the much better positioning of sample locations in feature space, the reduced interpolation-
error variance of the residuals was achieved. In the right-hand corner of the kriging
predicted surface, the sampling intensity was increased to ensure adequate coverage of the
observation network. The new sample locations were created in the bottom right and top
right sides of the work extent to more effectively examine this area and shorten sampling
intervals. Finally, the results obtained from the map of the optimal sampling scheme will
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lead to a better understanding of the spatial distribution pattern of pollutants in the city of
Wroclaw and defining zones with differentiated intensity.

The performance of the interpolation techniques can be further improved by having
a sufficient observation network with reasonable precision and including parameters
related to the variable environmental parameters (e.g., wind, weather patterns). The critical
requirements to more accurately capture the temporal and spatial variability of pollutant
concentrations are high-density observational data conducted for a long-term period on a
regular basis (e.g., daily). Since our measurements of CO2 levels were based on irregular
sampling at a few sampling locations, we propose to include in the future sampling strategy
unmeasured locations by discovering different spatial conditions (land-use characteristics)
regardless of the actual distance to the surroundings of the existing monitoring stations,
covering main emission sources in the study area, and capturing dependencies (spatial
correlation) between the dispersion of air pollutants and meteorological data.

The future sampling strategy is based on searching for the problem features in areas
of high uncertainty. Spatial optimization and validation procedures answered the research
question of this part of the study, i.e., how many sample units (points) should be located
to decide which interpolation technique is the most suitable for representation spatial
and temporal distribution of atmospheric CO2 in given geospatial features, local climate,
and meteorological conditions. In general, finding the optimal design of the spatial air
quality monitoring network is a significant issue. The advantage is that an optimal sampling
strategy leads to fewer sampling points and more cost-effective monitoring. The fact of this
matter is that the well-planned urban-scale CO2 in situ emission observations with a focus
on emissions according to source and geographic patterns, also comparing the measured
data with city emission inventories, are strongly recommended.

4. Conclusions

Spatial interpolation methods are widely used in various fields of science for mon-
itoring, mapping and spatial analysis of air pollution distribution. Five interpolation
techniques (inverse distance weighting (IDW), spline, natural neighbour (NB) interpola-
tion, interpolation based on a triangulated irregular network (TIN), Voronoi polygons,
ordinary kriging) were compared in the present study for their ability to accurately produce
the interpolated surface of atmospheric CO2 concentrations. Each interpolation method
was tested for effectiveness in determining the CO2 distribution in the city of Wroclaw
in two different periods (vegetation vs. heating seasons) from July 2017 to August 2018.
The results obtained demonstrate that the acceptable quantitative and accurate results are
obtained by IDW and spline interpolation compared to natural neighbour interpolation
and Voronoi (Thiessen) polygons. The interpolated surface of CO2 level differs by almost
30% depending on the observation period (highest in the heating season, nearly 431 ppm,
and lowest in the vegetation with mean of 417 ppm).

Because of the limited observation network which partly covers the analysed districts
in the present case, there is no confirmed optimal interpolation method, only the optimal
choice under certain circumstances. According to cross-validation estimates, the spline
tension interpolation is identified as the most suitable tool for spatial, as well as temporal
modelling of pollution in the studied geographic area. The high distinction between
observed and estimated (interpolated) values for all surfaces was observed as the predicted
surface is highly exposed to the present edge effects (unsampled sites) and clusterization
(congestion of the sample points). This suggests that the location used to account for
variations in atmospheric CO2 plays a critical role. The findings demonstrate that the
interpolators should be used when the set of points is dense enough to capture the full
extent of local surface variation.

In this study, the new sampling strategy was based on searching for the problem
features in areas of high uncertainty. The performance of interpolation techniques was
improved by the reconstruction of the air sampling network density, especially in unmea-
sured locations. By using kriging interpolation, the error map was created to determine
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where more information is needed when future sampling can be planned if necessary. Fur-
thermore, the optimal number and the new randomly selected locations of sampling points
were determined. In this case, the kriging technique was used not only for interpolating
values in the site but also to directly estimate the degree of uncertainty associated with
a map prediction. As a result of optimization, the more realistic representation of CO2
distribution across the more problematic parts of the study area was achieved. This is
due to the much better positioning of sample locations in feature space, which results in a
reduction of the interpolation-error variance of the residuals.

In general, based on the GIS tools, the results of in situ measurements can be rep-
resented as the data interpretation and visualization of related time series of air CO2
concentrations. Then, the urban air pollution maps with used parameters can accurately
identify the areas of high concentration of GHGs, which would likely enable cities to
manage their efforts better and set realistic targets of emission reduction. This study, how-
ever, left several questions unanswered, in particular regarding the optimal interpolation
technique for the specific geospatial features, distribution of local emission source types
(anthropogenic and biogenic) and contributions of atmospheric transport to the observed
seasonal cycles of CO2. The fact of the matter is that the optimization of the air quality
monitoring network for carbon dioxide for a medium-large city is a significant issue and
requires advanced interpolation and modelling methods to handle time series with large
gaps in measurements.
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which results in a reduction of the interpolation-error variance of the residuals. 

In general, based on the GIS tools, the results of in situ measurements can be repre-
sented as the data interpretation and visualization of related time series of air CO2 con-
centrations. Then, the urban air pollution maps with used parameters can accurately 
identify the areas of high concentration of GHGs, which would likely enable cities to 
manage their efforts better and set realistic targets of emission reduction. This study, 
however, left several questions unanswered, in particular regarding the optimal inter-
polation technique for the specific geospatial features, distribution of local emission 
source types (anthropogenic and biogenic) and contributions of atmospheric transport to 
the observed seasonal cycles of CO2. The fact of the matter is that the optimization of the 
air quality monitoring network for carbon dioxide for a medium-large city is a significant 
issue and requires advanced interpolation and modelling methods to handle time series 
with large gaps in measurements. 
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13. Ristanović, B.; Cimbaljević, M.; Miljković, Ð.; Ostojić, M.; Fekete, R. GIS Application for Determining Geographical Factors on
Intensity of Erosion in Serbian River Basins. Case Study: The River Basin of Likodra. Atmosphere 2019, 10, 526. [CrossRef]

14. Vizcaino, P.; Pistocchi, A. Use of a Simple GIS-Based Model in Mapping the Atmospheric Concentration of γ-HCH in Europe.
Atmosphere 2014, 5, 720–736. [CrossRef]

15. Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53,
173–189. [CrossRef]

16. Matejicek, L. Spatial modelling of air pollution in urban areas with GIS: A case study on integrated database development. Adv.
Geosci. 2005, 4, 63–68. [CrossRef]

17. Stocks, C.E.; Wise, S. The Role of GIS in Environmental Modelling. Geogr. Environ. Model. 2010, 4, 219–235. [CrossRef]
18. Van Der Knijff, J.M.; Younis, J.; De Roo, A.P.J. LISFLOOD: A GIS-based distributed model for river basin scale water balance and

flood simulation. Int. J. Geogr. Inf. Sci. 2008, 24, 189–212. [CrossRef]
19. Deligiorgi, D.; Philippopoulos, K. Spatial Interpolation Methodologies in Urban Air Pollution Modeling: Application for the

Greater Area of Metropolitan Athens, Greece. In Advanced Air Pollution; Nejadkoorki, F., Ed.; IntechOpen: London, UK, 2011.
20. Li, L.; Zhou, X.; Kalo, M.; Piltner, R. Spatiotemporal Interpolation Methods for the Application of Estimating Population Exposure

to Fine Particulate Matter in the Contiguous U.S. and a Real-Time Web Application. Int. J. Environ. Res. Public Health 2016, 13, 749.
[CrossRef]

21. Dashtpagerdi, M.; Sadatinejad, S.J.; Zare Bidaki, R.; Khorsandi, E. Evaluation of Air Pollution Trend Using GIS and RS Applications
in South West of Iran. J. Indian Soc. Remote Sens. 2014, 42, 179–186. [CrossRef]

22. Kianisadr, M.; Ghaderpoori, M.; Jafari, A.; Kamarehie, B.; Karami, M. Zoning of air quality index (PM10 and PM2.5) by Arc-GIS
for Khorramabad city, Iran. Data Brief 2018, 19, 1131–1141. [CrossRef]

23. Nichol, J.E.; Wong, M.S.; Wang, J. A 3D aerosol and visibility information system for urban areas using remote sensing and GIS.
Atmos. Environ. 2010, 44, 2501–2506. [CrossRef]

24. Wong, D.W.; Yuan, L.; Perlin, S.A. Comparison of spatial interpolation methods for the estimation of air quality data. J. Expo. Sci.
Environ. Epidemiol. 2004, 14, 404–415. [CrossRef]

25. Smolenski, R.; Beaulieu, J.; Townsend-Small, A.; Nietch, C. Spatial and Temporal Variations in Greenhouse Gas Emissions from an
Agricultural Reservoir. In Proceedings of the American Geophysical Union Fall Meeting, San Francisco, CA, USA, 3–7 December 2012.

26. Song, S.J. A GIS Based Approach to Spatio-Temporal Analysis of Urban Air Quality in Chengdu Plain. Int. Achieves Photogramm.
Remote Sens. Spat. Inf. Sci. 2008, 37, B7.

27. Zhao, Y.; Wu, B.F.; Zeng, Y. Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China.
Biogeosciences 2013, 10, 1219–1230. [CrossRef]

28. Hutyra, L.R.; Duren, R.; Gurney, K.R.; Grimm, N.; Kort, E.A.; Larson, E.; Shrestha, G. Urbanization and the carbon cycle: Current
capabilities and research outlook from the natural sciences perspective. Earth Future 2014, 2, 2014EF000255. [CrossRef]

29. Levin, K.; Cashore, B.; Bernstein, S.; Auld, G. Playing it forward: Path dependency, progressive incrementalism, and the “super
wicked” problem of global climate change. IOP Conf. Ser. Earth Environ. Sci. 2009, 6, 502002. [CrossRef]

30. Pataki, D.E.; Alig, R.J.; Fung, A.S.; Golubiewski, N.E.; Kennedy, C.A.; McPherson, E.G.; Nowak, D.J.; Pouyat, R.V.; Romero
Lankao, P. Urban ecosystems and the North American carbon cycle. Glob. Chang. Biol. 2006, 12, 2092–2102. [CrossRef]

31. Fedra, K. Urban environmental management: Monitoring, GIS, and modelling. Comput. Environ. Urban Syst. 1999, 23, 443–457.
[CrossRef]

32. Luke, M.B.; Bräuer, I.; Gerdes, H.; Ghermandi, A.; Kuik, O.; Markandya, A.; Navrud, S.; Nunes, P.A.; Schaafsma, M.; Vos, H.; et al.
Using Meta-Analysis and GIS for Value Transfer and Scaling Up: Valuing Climate Change Induced Losses of European Wetlands.
Environ. Resour. Econ. 2012, 52, 395–413.

http://doi.org/10.3390/atmos11060629
http://doi.org/10.1002/2015JD024473
http://doi.org/10.3390/atmos11010042
http://doi.org/10.1016/j.apgeochem.2013.05.010
http://doi.org/10.3390/ijgi6120389
https://nepis.epa.gov/Exe/ZyPDF.cgi/P1002QG4.PDF?Dockey=P1002QG4.PDF
http://doi.org/10.3390/atmos11090963
http://doi.org/10.3390/atmos10090526
http://doi.org/10.3390/atmos5040720
http://doi.org/10.1016/j.envsoft.2013.12.008
http://doi.org/10.5194/adgeo-4-63-2005
http://doi.org/10.1080/713668590
http://doi.org/10.1080/13658810802549154
http://doi.org/10.3390/ijerph13080749
http://doi.org/10.1007/s12524-013-0288-x
http://doi.org/10.1016/j.dib.2018.05.063
http://doi.org/10.1016/j.atmosenv.2010.04.036
http://doi.org/10.1038/sj.jea.7500338
http://doi.org/10.5194/bg-10-1219-2013
http://doi.org/10.1002/2014EF000255
http://doi.org/10.1088/1755-1307/6/50/502002
http://doi.org/10.1111/j.1365-2486.2006.01242.x
http://doi.org/10.1016/S0198-9715(99)00038-1


Atmosphere 2021, 12, 384 24 of 25

33. Statistical Office in Wroclaw. Available online: https://wroclaw.stat.gov.pl/en/ (accessed on 17 December 2019).
34. Kasprzak, M.; Traczyk, A. LiDAR and 2D Electrical Resistivity Tomography as a Supplement of Geomorphological Investigations

in Urban Areas: A Case Study from the City of Wrocław (SW Poland). Pure Appl. Geophys. 2014, 171, 835–855. [CrossRef]
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