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Abstract: Comparisons of observational data obtained at the Moscow Ecological Monitoring net-
work (MEM) with numerical simulations using a chemical transformation and transport model
(SILAM—System for Integrated modeLling of Atmospheric coMposition) showed that the errors in
determining the gaseous pollutant concentrations in the urban atmosphere have a more complex
structure than those assumed under the conventional algorithms of data assimilation. These errors
are statistically nonstationary; they show a pronounced diurnal cycle and a significant lifetime. The
statistical features of errors in numerical calculations also depend upon the type of pollutants, i.e., the
chemical reactions in which they participate. Our analysis showed that the simulation errors are not
small: the ratios of calculated and measured concentrations (even for daily averages at all measuring
stations) may vary in a wide range. For the chemically active pollutants, the intradiurnal error
variations may reach 100%. The diurnal cycle of such errors was found to vary according to seasons
(in our case, summer and winter). The analysis of statistical properties of the errors, including their
temporal and spatial variability, allows one to correct and adequately forecast the air pollution in the
metropolis area at lead times up to three days in advance.

Keywords: megacity; air quality; chemical transport model evaluation; error model; data fusing

PACS: 92.60.Sz; 92.60.Aa

1. Introduction

The numerical models of chemical transformation and transport of atmospheric pollu-
tants from different sources, including megacities, have been significantly improved over
the past decades [1–4]. However, the use of these models for quantitative estimates and
air pollution forecasting still remains a challenge, because our knowledge of the intensity
and composition of emissions or of turbulent transport characteristics remains somewhat
approximate, especially for the significantly inhomogeneous urban medium [5,6]. The lack
of regular network observations of chemically active gaseous pollutants also presents a
considerable challenge.

These concentration fields that determine the air quality are, to a great extent, random
in their behavior. The infrequent intense periods of complex measurements, such as the
BUBBLE experiment [7], do not provide assurance that the estimated characteristics of
pollutant emissions or turbulent mixing will not vary with variations of meteorological
conditions, transport load, and both the market and industrial dynamics in megacities.
In contrast to many Russian megacities, the Moscow metropolis possesses an efficient
system of air quality monitoring called the Moscow Ecological Monitoring (MEM) net-
work. Here, the basic pollutants (CO, NO2, NO, and O3); both saturated and unsaturated
hydrocarbons; and PM10 and PM2.5 aerosol fractions have been continuously measured
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for many years [8–11]. The measurements are conducted at different locations: highways,
residential areas, districts with a large industrial load, city parks, and suburbs.

The chemical transport models, unlike the local monitoring data that often contain data
gaps, allow one to calculate the continuous fields of concentrations throughout the entire
atmospheric boundary layer. However, these fields are always smoothed, because, in these
models, the unknown sources and sinks are represented by averages. Measurements reflect
not only some average or expected concentrations but also the effects of many random
interrelated factors: rapidly varying and unknown sources, the mesoscale dynamics,
atmospheric turbulence flows, and different types of measurement errors.

Such models are especially needed to predict rapid air quality deteriorations [12].
The necessary information obtained prior to the occurrence of extreme situations makes it
possible to minimize the consequences adverse for human health and for environmental
conditions. An anomalous increase in pollutant concentrations in the megacity’s atmo-
sphere may be associated not only with unfavorable meteorological conditions but also
with significant variations in pollutant emissions (whose intensity and sources may rapidly
vary) into the atmosphere. This is clearly supported by the fact that simulation results may
differ from measurement data by 100% and more. The analysis of errors showed that the
remaining still significant systematic errors, especially in calculating the fields of chemi-
cally active pollutants, suggest that the we are still far from achieving an improvement in
chemical transport models.

Data assimilation in weather forecast and chemical transport models is a conventional
approach that has established methods and principles (OI—optimal interpolation, 3D-Var,
4D-Var and, KF—Kalman filtering). The basic principle of observational data assimilation
implies their use in correcting the initial and boundary conditions as well as in the model’s
parameters of the model itself. In other words, observations are included in a feedback
circuit within the numerical model.

Uncertainty concept should be understood as deviations caused by the lack of accurate
data on the urban emissions, the errors due to improper model parameterizations, and
the measurement errors. Although each of these uncertainties has its own nature and
dynamics, separating them from each other is difficult due to the lack of information.
However, their main feature is that they do not remain unchanged and have different
lifetimes: some of them are fast and local, while others vary slowly and cover the entire
metropolis. Their spectral features can be estimated only by comparing model fields with
measurement data.

The approach proposed here is based upon combining data obtained from simulations
and from observations averaged over 20 min intervals, and it allows one to analyze in detail
the properties of errors, separating them into quasi-systematic (that is, slowly varying)
errors, such as daily and seasonal variability, and rapidly varying in time and space errors
of different origin, such as instrumental, associated with weather conditions, traffic load,
industrial activities, and parameterization of photochemical processes.

This approach is closest to the Kalman filtering of errors [13,14] and a probabilistic
analysis of the dynamic equations with random sources. Such analysis presents an inde-
pendent and complicated task that should be isolated from the problems of numerical
implementation of model dynamics. At a later stage, results of this analysis should certainly
be taken into account in upgrading chemical transport models.

The available studies of simulations of trace gas contents in the Moscow atmosphere
include one or two pollutants usually considered for short time intervals (see, for exam-
ple, [12,15,16]). In this work, we considered the primary and reliably measured gaseous
pollutants, namely, CO, NO2, NO, and O3 for two longer periods in winter and summer:
1–31 January and 1–31 July 2014. This gives one a general idea about the basics of air
pollution in Moscow and the errors in its simulations, as well as about the differences in
gaseous components, which are dependent upon their chemical properties, distribution,
source strength, and other factors. Such information on errors of chemical transport models
is also important for making management decisions.
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2. A Chemical Transport Model

The SILAM v.5.2. chemical transport model [17] used in this study makes it possible to
describe atmospheric dynamic processes using both diffusion and advection equations in
the Eulerian or Lagrangian coordinates. We used the Eulerian description of pollutant trans-
port. The model takes into account both dry and wet deposition and chemical interactions.
The algorithms for solving the equations of advective transport and diffusion are described
in [18,19]. In the model, the chemical pollutant transformations are obtained through
eight chemico-physical transformation modules, which describe basic acid chemistry and
secondary aerosol formation, ozone formation in the troposphere and the stratosphere,
radioactive decay, aerosol dynamics in the air, and pollen transformations [20]. A detailed
description of the model and the calculation algorithms used is given in [17,21,22].

Validating complex and multicomponent chemical transport models and estimating
the actual rather than nominal pollutant emissions present the initial difficult step in ap-
plying these models for the assessment of the air basin state in a large city and for the
forecasting of severe ecological situations. Another problem of dynamic simulation is the
low spatial resolution of the models, which stays between one and ten kilometers. A cell
of this size may simultaneously include several dissimilar landscapes, such as highways,
parks, and dwelling zones. These objects may have distinct macroturbulence character-
istics and their own intensity and regime of pollutant emission. Moreover, the situation
is complicated by the presence of a large number of chemical bonds between gaseous
components, which are only approximately parameterized in current models [20,23].

Characteristics of Numerical Experiments

The spatial resolution of SILAM’s computational grid in our case was 0.10 degrees in
longitude (about 8 km) and 0.05 degrees in latitude (about 8 km) at 69 altitudes for mete-
orology and 9 altitudes for chemical transformations. The grid area is a rectangle within
50.75–60.70◦ N and 32.60–42.50◦ E. Data of the on-line forecast calculated with the HIRLAM
model [24] at a time resolution of 3 h were specified as initial meteorological fields.

The initial and boundary conditions for pollutant concentration fields were specified
based on pollutant fields calculated at the Finnish Meteorological Institute using the SILAM
model for Europe and the European Russia [25]. Most air pollutant emissions were taken
from the TNO-2011 Inventory data [26]. The CO and NOx emissions within the territory
of the Moscow megacity were specified based upon annual emission values provided
in [10]. Analysis of data obtained at the MEM network and numerical experiments on the
optimization of urban air pollution sources described in [27,28] allowed us to distribute
them over time with one-hour time step and across Moscow territory. The CO and NOx
emissions outside Moscow were taken from the TNO-2011 Inventory data. The emissions
of non-methane volatile organic compounds (NMVOCs) were obtained from the MACCity
inventory [29].

The months of January and July in 2014 chosen for calculations are of interest for
several reasons. Firstly, this allowed us to detect differences between winter and summer
variations of pollutant concentrations within the Moscow’s atmosphere. Secondly, both
months include two-week periods with the presence of a stable airmass (winter and summer
blockings). The wind velocity in a stable airmass is low, which is one of the reasons for
accumulation of atmospheric pollutants that are hazardous to human health. Finally,
a sufficiently long period covered with computations allowed us to obtain statistically
reliable estimates.

3. Observational Data and Processing Methods

The observation data were taken from the database of the MEM network belonging to
the State Environmental Protection Institution “MosEcoMonitoring”. The MEM stations
rather uniformly and densely cover the entire territory of Moscow [30]. The network also
includes a few out-of-city stations that produce information on the contents of pollutants in
both windward (regional background) and leeward regions. In this work, we used the mea-
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surement data on the CO, NO, NO2, and O3 concentrations averaged over 20 min intervals
(see Table 1). These and other pollutants were measured with instruments recommended
by the World Meteorological Organization (WMO) for use by the Global Atmospheric
Watch network (WMO GAW). The instruments were regularly calibrated according to inter-
national standards and calibration gas mixtures. In our previous work [10], observational
data obtained for 2005–2014 were analyzed, and the annually mean CO and NOx emissions
were evaluated.

The task of systematization and analysis of the quality of observational data obtained
at the network stations that monitor the atmospheric pollution is not easy. The multiyear
data series contain a significant number of gaps caused by the necessary periods of cal-
ibrations of instruments and by their occasional failures. Using new instruments with
different technical characteristics affects the measurement accuracy and the homogeneity
of data series. The local spectral properties of errors in such measurements vary with
station locations and with the amount of data gaps. Such numerous uncertainties raise the
questions of observation quality: what is the relationship between the errors at different
measurement points? What are the spectral properties of measurement errors, and is it
possible to separate them from simulation errors?

Processing the Initial Series of Measured Pollutant Concentrations

The initial series of measured CO, NO, NO2, and O3 concentrations were selected
individually for each station for the time intervals corresponding to our computations
and compared with simulation results interpolated to respective measurement points.
This made it possible to estimate the quality of instruments and to detect some differences
in the sensitivity of instruments used for measuring the NO and O3 concentrations; com-
paring measured and calculated values will show the differences between the minima of
their diurnal variations.

The criterion for selecting the stations was the uninterrupted operation of sensors
during 90% of time for the periods under consideration. It should be noted that the number
of stations that measure ozone on a regular basis is small. Therefore, the statistical averaging
over a small number of stations results in significant sampling errors as compared to that
of other pollutants and leads to errors in estimating the error distribution parameters: the
median value and the interquartile range.

Table 1 gives the CO, NO2, NO, and O3 concentrations averaged over January and July
2014 according to observations at stations with less than 10% of missing observations and
model (SILAM) calculations in relation to the location of the selected stations. The mean NO
(and CO for July) concentrations calculated using the SILAM model are noticeably lower
than respective measured values, which may occur due to the fact that high concentrations
of some pollutants cannot be reproduced with a mesoscale model for measurement points
situated close to highways, which are characterized by high local concentration values.

To decrease the random spatial component of errors in comparing measured and
simulation data, the average concentrations over all observation points, for which a suffi-
cient amount of data (for selected time series) was available, were calculated for each gas
component as

〈q(tj)〉 =
1
N

N

∑
i=1

qij. (1)

here, qij is the pollutant concentration measured at the i-th station at the j-th time and N
is the total number of stations whose data were used in averaging over the city area. The
calculations were performed for the measurement data denoted below by 〈qM〉 (MEM) and
for model fields 〈qS〉 (SILAM), whose values were interpolated to measurement points.

The Kolmogorov–Zurbenko filter [31], capable of working with data series, including
those that contain gaps, was used to isolate the intradiurnal and interdiurnal components
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in the time series of concentrations. This filter may be defined as k times iteration of a
moving average (MA) filter with an averaging window with a width of 2m + 1 points:

yj =
1

2m + 1

m

∑
k=−m

qj+k , (2)

where qj+k is the initial pollutant concentration in time series and yj is the averaged
concentration. The reapplication of the MA filter to already smoothed data makes it
possible to obtain a steeper spectral transmission window characteristic than that of a

simple moving-average filter ( sinck(
2π

m
i) ). At each subsequent iteration, the yj values

obtained at the previous step are taken as a series of qj values. We used three iterations in
this work.

Table 1. Number of all the Moscow Ecological Monitoring network (MEM) stations and only those participating in comparisons with
the SILAMcalculation results (less than 10% of missing observations) and measured and calculated pollutant concentrations (mg/m3)
averaged over periods of 1–31 January and 1–31 July 2014 for the selected stations.

Pollutant
January July

Number
of Sites

>90%
of Data

MEM
Mean Conc.

SILAM
Mean Conc.

Number
of Sites

>90%
of Data

MEM
Mean Conc.

SILAM
Mean Conc.

CO 37 24 0.46 0.47 39 19 0.53 0.34

NO2 34 25 0.033 0.030 35 28 0.030 0.031

NO 34 21 0.033 0.022 34 21 0.022 0.012

O3 9 4 0.016 0.014 11 7 0.045 0.043

The presence of a clearly pronounced diurnal cycle of pollutant concentrations aver-
aged over the megacity generates a need for estimating errors in numerical calculations of
not only high daytime concentrations of pollutants but also their low night-time concentra-
tions. Thus, a quite admissible error of 10–20% under daytime conditions may lead to a
relative error of over 100% in the night-time if the value of simulation error is considered
constant. On the other hand, if the model error were only systematic, although varying
with time, it would be easily taken into account as if this error were quite random and
did not correlate with its previous value. However, in practice, both assumptions are very
rough, and, for their improvement, a detailed spectral analysis of the characteristics of
random variations in measured pollutant concentrations and simulation errors is necessary.

4. Comparing Observational Data with Results of Numerical Experiments
4.1. Space and Time Variations in Model Calculation Errors

The main feature that distinguishes between spatial pollutant distributions obtained
from observational data and calculations using the chemical transport model is the presence
of significant local inhomogeneities in observational data, which cause a high level of
local errors or, more correctly, natural variations. Comparing between the time series of
observations and model estimates interpolated to observation points demonstrates an
example of such local differences (Figure 1a).
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Figure 1. Local errors and the errors of average concentrations (MB—mean bias, NMB—normalized
mean bias, ME—mean error, NME—normalized mean error, corr—correlation coefficient). Top: the
NO2 concentrations measured on 1–31 July 2014, and calculated using the SILAM model for the same
period for the Mar’ino station. Down: the NO2 concentrations averaged over the selected MEM
stations for a period of 1–31 July 2014, according to measurement data and numerical calculations.

After the pollutant concentrations averaged over many stations, this conditional
average over the megacity shows a significantly better agreement with simulation results
(Figure 1b). Variations in the amplitude of the diurnal cycle due to varying meteorological
conditions (mean wind velocity, intensity of convective mixing in the atmospheric boundary
layer, passage of cyclones or anticyclones over the megacity, and change in air masses with
different chemical histories) are traced significantly better.

Note that the most chemically active pollutants NO and O3 show less agreement
with observational data. As is shown below in Section 4.4, the calculated and measured
time series of the CO and NO2 concentrations averaged over the megacity show the best
agreement for both summer and winter seasons.

Although deviations of pollutant concentrations in both calculated and measured data
still may reach tens of percent, the regularity in the behavior of the diurnal cycle of average
(over Moscow) concentration allows one to correct simulation errors according to the data
on the average diurnal error cycle (see below in Section 4.4).

4.2. Local Variation Distribution Functions

The spatial inhomogeneity and temporal variability of differences between calculated
(using the model) and measured pollutant concentrations may be considered as random
because there are no data on what causes these deviations beyond the scope of the model.
If we assume that the average (over the megacity) pollutant concentrations describe the
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main regularities of time variations in chemical pollutants, then the ratio between the local
and average (over Moscow) concentrations may be considered as a random variable.

The median of the probability distribution of such a characteristic is bound to be close
to 1, while the interquartile range may be high. To demonstrate this, the empirical proba-
bility distribution functions of this normalized characteristic (Figure 2) were constructed

on a semi-logarithmic scale. They were constructed for the set {
qij

〈q〉 j
}, where i = 1, N,

j = 1, M, N is the total number of stations at which the measurements were taken, and
M is the number of 20-min time intervals within the calculation period. The logarithmic
scale of the abscissa axis allows one to see that deviations from the average (over Moscow)
concentration values may amount to hundreds of percent in some cases. One can also
see that deviations from the average in measurement data significantly exceed the local
variations according to model calculations.

Figure 2. Distribution functions for the normalized values q/〈q〉 of the CO, NO, NO2, and O3 concentrations calculated
using the SILAM model (green line) and measured at the MEM stations (red line) for both the winter (1–31 January 2014,
top row) and summer (1–31 July 2014, bottom row) periods.

The parameter characterizing the range of local variations is the relative interquartile
range Q—the ratio between the third quartile P75 (the value below which there are 75% of
concentration values in the sample data) and the first quartile P25 (the value below which
there are 25% of concentration values in the sample data):

Q = P75/P25 . (3)

The quartile values were determined individually for each sampling (that is, empirical)
cumulative distribution function (CDF) of normalized characteristic. Table 2 displays
medians and interquartile ranges for January and July for each of the four pollutants
according to the measurement and simulation data. The difference P25 − P75 shows within
what range (with regard to the scatter) half of the entire observational data sample is
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located. The long-lived CO and NO2 pollutants have a smaller interquartile range, which
implies that they are distributed over space more uniformly and closer to the average (over
the city) concentration.

Table 2. Median, quartiles (25 and 75%), and relative interquartile range Q for the ratio between
current 20-min local concentrations at the MEM stations and their values averaged over all stations
and similar calculations using the SILAM model for the pollutant concentrations interpolated to the
points of station locations for periods of 1–31 January and 1–31 July 2014.

Pollutant Period
Median 1st Quartile 3rd Quartile Q

MEM SILAM MEM SILAM MEM SILAM MEM SILAM

CO
January 0.87 1.00 0.63 0.91 1.20 1.09 1.91 1.20

July 0.90 0.99 0.54 0.87 1.32 1.12 2.44 1.28

NO2
January 0.92 1.03 0.65 0.93 1.20 1.12 1.86 1.20

July 0.87 1.01 0.58 0.87 1.25 1.14 2.15 1.31

NO
January 0.72 0.98 0.41 0.69 1.22 1.25 3.00 1.80

July 0.64 0.93 0.31 0.60 1.21 1.20 3.92 2.02

O3
January 1.00 0.89 0.68 0.49 1.30 1.21 1.91 2.47

July 0.97 0.97 0.71 0.86 1.25 1.10 1.77 1.28

Another important feature of the measurement data distributions, which is mostly
characteristic of NO, is the deviation of the median of relative distribution from 1. In other
words, the distribution of errors in calculating the NO concentrations is not Gaussian even
approximately and the contribution of a smaller number of high concentrations (exceeding
the average), for example, in the vicinities of highways, prevails over that of a larger
number of low concentrations (below the average).

Some stations (less than 10% of the total number) show significant tenfold (and even higher)
deviations of both instantaneous and local values from the average over the city. One can
assume that these deviations from the average are not just “accidental” but may be associ-
ated with some features of the operation or location of these stations. In other words, such
empirical distribution functions allow one to select stations or to perform their clusteriza-
tion by location or infrastructure types (highways, industrial zones, residential areas, forest
parks, and others). Exciting a chemical transport model with random (but statistically close
to measurements) sources/sinks, as in meteorology, in the form of nudging may also be
regarded as one more application of a statistical approach [32,33].

On the whole, for these four pollutants, the higher Q values in the measurement data
support the hypothesis of the spatial smoothness of the concentration fields calculated with
models. Since these model fields cannot reproduce locally measured features, they should
be compared using averaged estimates such as medians.

4.3. Spatial Pattern of Model Errors

The spatial character of local uncertainties in model concentration estimates can
be expressed in the form of a ratio between simulated and measured concentrations
qS/qM. Since this quantity presents a random function of time, regularities in the spatial
distribution of deviations of model estimates from measured ones are expressed through
statistical distribution characteristics of this quantity, for example, median and interquartile
range. Such maps for both winter and summer seasons are shown in Figure 3. The
median of the distribution of ratios between calculated and measured concentrations
over the calculation periods under consideration—1–31 January and 1–31 July 2014—is
denoted by marker colors. If the median of distribution is higher than 1, the model mostly
overestimates pollutant concentrations at a given point, and if the median is lower than 1,
the model mostly underestimates real pollutant concentrations.
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The relative interquartile range Qr, i.e., the ratio of the third quartile of distribution
to the first one, was calculated to characterize time domain variations of local errors or
uncertainties in model estimates for each observation point. All stations were divided
into three groups according to Qr values. Group 1 (triangle) corresponds to the first
quantile (25%) of the data sample including Qr values for each observation point, group 2
(circle) corresponds to both the second and third quantiles (25–75%), and group 3 (square)
corresponds to the fourth quantile (75–100%). In other words, the measurement data
obtained at the stations of group 1 have the lowest random variability qS/qM, and the
measurement data obtained at the stations of group 3 have the highest random variability.
This implies that, for the stations of group 3, the forecast even if adjusted for an average
relative error will rarely agree with measurement data, because it contains a significant
random component.

Figure 3. Spatial distribution of statistics of calculated and measured (at the MEM network) concentrations of CO, NO, NO2,
and O3 for 1–31 January (top row) and 1–31 July 2014 (bottom row). The characteristic value of the relative interquartile
range Qr at each station is denoted by marker types (triangle, circle, and square). The area for which the CO and NOx

emissions were specified based upon analysis of data obtained at the MEM network and from numerical experiments on
the optimization of urban air pollution sources is marked by blue rectangle.

As might be expected, the long-lived CO and NO2 pollutants yield the best results, i.e.,
the values that are close to 1. These pollutants also have the smallest relative interquartile
range. The stations located near highways are marked by black outlines. For these stations,
the ratio qS/qM for CO, NO, and NO2 proved to be less than one with a small interquartile
range Qr. In addition, for O3 at the stations in vicinities of highways, qS/qM is larger than
one, which may be explained by the effect of motor transport, because a large amount
of NO emitted by motor transport reacts with O3 and, thus, significantly decreases its
concentration in vicinities of highways.

An important feature of spatial variations in disagreements between modeled and mea-
sured concentrations is their rapid and random alternation over the city map, which reflects
the mosaic alternation of highways and industrial enterprises with recreation zones and
residential areas. Table 3 gives the distribution of the groups of stations according to
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the qS/qM quartiles and the types of urban infrastructure. It can be observed in Table 3
that both residential areas and highways are almost equally distributed by the level of
model errors. Thus, one may conclude that, within the framework of a chemical transport
model with a spatial resolution of 1–10 km, it is hardly possible to accurately describe
measured concentrations at observation points. Therefore, we can obtain a regular pattern
of Moscow’s air pollution and errors in simulating this pollution only by averaging these
concentrations over a large number of observation points.

Table 3. Distribution of relative qS/qM errors at the stations located in vicinities of different infras-
tructure objects according to relative quartile Qr values.

Pollutant
Set Residential Highways Mixed Natural

Qr January July January July January July January July

CO

1 (<25%) 4 1 0 0 2 3 1 1

2 (25–75%) 2 1 3 2 6 6 0 1

3 (>75%) 2 1 0 1 2 0 1 0

NO2

1 (<25%) 3 1 1 3 3 4 0 0

2 (25–75%) 0 3 1 0 11 8 0 1

3 (>75%) 3 2 0 0 2 4 0 0

NO

1 (<25%) 1 0 0 2 5 4 0 0

2 (25–75%) 1 4 2 0 6 6 0 0

3 (>75%) 2 0 0 0 3 5 0 0

O3

1 (<25%) 1 0 0 1 0 0 1 0

2 (25–75%) 1 2 0 1 1 1 0 0

3 (>75%) 0 0 0 0 0 1 0 0

4.4. Seasonal Distribution of Model Errors

At some stations, comparison between the measured and calculated (using the SILAM
model for the same points) concentrations shows a significant random disagreement be-
tween them. The averages of many stations’ pollutant concentrations are in a significantly
better agreement (in terms of conventional RMS norm) with respective average model
values. However, these averaged concentrations may also demonstrate noticeable dis-
agreements, especially for concentrations of chemically active and short-lived pollutants.
Therefore, the analysis of different regularities in simulation errors (even for concentrations
averaged over the megacity) requires the knowledge of respective probability distribution.

In order to compare the average (over all stations) concentrations obtained from
observations 〈qM〉 (MEM) with calculations 〈qS〉 (SILAM), Figure 4 shows the CDFs for
their ratios for the summer and winter periods on a semilogarithmic scale. The average
error of SILAM calculations is closer to that for CO in winter and for NO2 in summer (see
below in Section 4.6). Even for the long-lived pollutants, approximately in 10% of cases,
the average observed concentrations exceed or underestimate calculated values by a factor
of 1.5 to 2.

The medians of error distribution in concentrations averaged over the city are no-
ticeably close to one, which implies the adequacy of the SILAM model for air pollution
forecasts for the whole city. For the concentrations of the short-lived and chemically active
NO and O3 pollutants, the difference between their modeled and measured concentrations
averaged over Moscow is more significant in both winter and summer periods. In both
summer and winter, the model significantly (by an order of magnitude) underestimates the
average (over Moscow) current (20-min) concentration of NO. This happens in about 30%
of cases. The distribution of these errors in the summer period significantly differs from
their winter time distribution. The width of the distribution function for the relative errors
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in NO and O3 concentrations (interquartile range) also proves to be an order of magnitude
larger when compared to the CO and NO2 distributions.

The high values of the current 20-minute (not averaged over a long time interval) error
in Moscow average concentrations of chemically active pollutants imply that at least some
part of it may be systematic and nonrandom and may vary during the day and between
the seasons.

Figure 4. Distribution function for the ratios between average (over Moscow) concentrations (with av-
eraging over 20 min intervals) calculated using the SILAM model and measured at the MEM stations:
〈qS〉/〈qM〉 for CO, NO, NO2, and O3 for 1–31 January (blue line) and 1–31 July (red line), 2014.

4.5. Intradiurnal Cycle of Model Errors and Its Correction

Since photochemical processes, emissions, dry deposition, and turbulent mixing have
a clearly pronounced diurnal cycle, it is precisely these diurnal simulation error variations
that show, to the full extent, the weak points of any chemical transport model. Although
the analysis of such variations does not show the cause of errors, recommendations that
follow from such statistical analysis for improving the models should lead to changes in
the ratio 〈qS〉/〈qM〉 between the SILAM and MEM averages over Moscow and bring this
ratio closer to one. Figure 5 shows the monthly averaged diurnal cycle of this ratio for each
of the four gaseous pollutants for winter and summer.
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Figure 5. The diurnal cycle of the ratio between the average (over Moscow) CO, NO, NO2, and O3 concentrations calculated

with the SILAM model and measured at the MEM stations:
〈qS〉
〈qM〉

(red line) and, similarly, the median of this ratio (green

line) in winter (1–31 January 2014, top row) and in summer (1–31 July 2014, the bottom row). Time is in UTC.

First, we note that the diurnal cycle of the ratio between average concentrations over
the megacity is significant according to both model calculations and to field observations.
This ratio for chemically active pollutants may reach 3 (an error of 200%). At the same
time, we note that the diurnal cycle of this ratio widely varies depending on season
according to model calculations and observations. This result shows how the model quality
is generally difficult to estimate. Even if it adequately reproduces the diurnal cycles of
the CO and NO2 concentrations, it does not necessarily mean that this model is capable
of reproducing diurnal cycles of other important components of atmospheric pollution.
Moreover, verification of the model on the basis of measurement data obtained during
only one month does not allow one to estimate its error in other seasons.

During the winter period, when the content of NO is usually low, its calculated
concentration may be 2–5 times lower than the measured concentration; an exception
occurs over the time interval from 10:00 to 14:00 UTC (14:00–18:00 LT in 2014), when the
ratio between calculated and measured concentrations is close to or exceeds one. From 17:00
to 04:00 UTC (21:00–08:00 LT), when the concentration of nitrogen oxide is significantly
underestimated by the model, the content of ozone is overestimated and reaches 1.1 at
20:00 (00:00 LT). During the summer period, the situation changes quite significantly:
the NO concentration is noticeably (two–three times) overestimated when compared
to observations from 04:00 to 16:00 (08:00–20:00 LT). During the same period, ozone is
underestimated by about 1.5 times.

If we assume that the chemical transport models better forecast only average diurnal
(but not 20-min) pollutant concentrations, then the obtained curves may serve as correction
functions for numerical prediction. Multiplying the model intradiurnal cycle by these cor-
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rective functions, we will obtain concentrations that are, on average, closer to observations
and certainly without considering the remaining random variability component.

4.6. Long-Term Quasi-Systematic Errors, Their Forecast, and Kalman Filtering

The lower frequency that persists for a day or longer and presents almost systematic
errors is associated with variations in industrial emissions, neglected sources (such as acci-
dents on solid domestic waste (SDW) sites), and systematic errors in describing turbulent
transport in the atmospheric boundary layer (ABL). These slowly varying simulation errors
predicted for one or two days of the inertial forecast may be separated from intradiurnal
variations using a simple low-frequency filter. Kolmogorov–Zurbenko filtering with the
averaging scales of 12, 24, and 48 h was applied to the initial time series of measurement
data obtained with a sampling interval of 20 min and through model calculations. In
averaging with a window of 12 h or less, the intradiurnal variability begins to dominate
the interdiurnal one, and, on a 48 h scale, error variations that can be predicted using
measurement data for the previous day are strongly suppressed. Moreover, the average
diurnal interval of our analysis naturally coincides with the interval between successive
forecasts by the SILAM mesoscale model.

It can be observed in Figure 6 that the relative difference between the average mea-
sured and numerically calculated diurnal concentrations slowly varies with time and may
be taken into account using either an autoregressive model (inertial forecast), or the Kalman
filter [13]. It is clearly seen that the minimum error in daily average forecasts occurs for the
longer lived CO and NO2 pollutants. It should also be noted that the model overestimated
the concentration of NO2 for the period of 1–13 January and underestimated it for the
period of 14–31 January under the conditions of a stationary air mass over Moscow.

For estimating the Kalman filter parameters at each time step for their forecasting at a
unit lead time, we used the following Gaussian linear model given in [34]:{

yt = Ctxt + µt

xt+1 = Atxt + νt+1
(4)

where yt is the concentration measured at time t, and xt and xt+1 are the model estimates
using the Kalman filter for times t and t + 1, respectively, while Ct is the correlation
coefficient between observed and measured concentrations, i.e., for the two data series
each consisting of 31 values, and At is the autocorrelation coefficient for calculations with
the SILAM model and a one-day delay.

Then, the Kalman extrapolation and correction procedures were applied to the values
determined in (4). The first procedure allows one to forecast an a priori estimate of
the pollutant content x(t) built on the basis of the knowledge of variations history in
modeled concentrations, while the other procedure allows one to forecast the value of x(t)
a posteriori in considering the value of y(t) newly measured at step t and the updated
estimates of their statistical properties. The mathematical formulations of these procedures
and some examples of their application in geophysics may be found, for example, in [35,36].

Figure 7 presents the results of these calculations. Using such an approach to the
measurement data series obtained in January and July 2014 led to evidently improved
results forecasted by the model, especially for CO and NO2.

The summer periods of atmospheric blocking over Moscow are known to result in
increased CO, NO, and NO2 concentrations (see, for example, [37]). The influence of winter
atmospheric blockings upon the urban atmosphere composition is understood to a lesser
degree. Therefore, it is important to note that a blocking anticyclone that stayed for two
weeks in January 2014 caused an increase in the average diurnal pollutant concentrations
that reached their maximum on 20 January 2014. Its distinctive feature was the presence
of a clearly pronounced concentration peak, which resulted in a derivative jump and a
deterioration in the operation of the Kalman filter for NO2. Therefore, for January 2014,
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we tested the Kalman filter algorithm including a correction stage, but without the stage
of extrapolation.

Figure 6. Ratio between the average (over Moscow) CO, NO, NO2, and O3 concentrations calcu-
lated using the SILAM model and measured at the MEM stations for 1–31 January and 1–31 July
2014. The concentration data series were smoothed with the Kolmogorov–Zurbenko filter with an
averaging window of 24 h.

Figure 7. The average (over Moscow) diurnal pollutant concentrations according to measurements at the MEM stations (red
line) and numerical calculations with the SILAM model (green line) and corrections of these calculations using the Kalman
filter (blue line) for the CO, NO, NO2, and O3 concentrations in January and July 2014.
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4.7. Post-Processing of the Modeled Concentrations

The value of the average intradiurnal correction (Figure 5) and the slowly varying coef-
ficients of the interdiurnal correction (Figure 7) determine the correcting coefficients k1 and
k2 for model forecasts with the SILAM model. In order to obtain the corrected SILAM series
values C72·i+j by applying the coefficients k1 and k2, we used the following expressions:

C72·i+j =
〈qS〉72·i+j · k2[i]

k1[j]
, where k1[j] =

(
〈qS〉
〈qM〉

)
j

and k2[i] =
〈qKF〉
〈qS〉 i

(5)

Here, i = 0, 30 is the number corresponding to the day of the month (respective
coefficients were calculated for every month), j = 1, 72 is the number of 20 min intervals
per day. The 〈〉 operator means that the values were averaged over all stations and the
overline denotes average values for the entire day. The SILAM data series is qS, and qKF
represents the values obtained after the Kalman filtering method was applied to the daily
mean concentrations.

Figure 8 displays the initial series of diurnal forecasts according to the SILAM model,
the corrected (multiplied by the corresponding coefficients k1 and k2 of intradiurnal and
interdiurnal corrections) SILAM series, and the observational (MEM) data. As seen from
Figure 8 and Table 4, taking into account the temporal relations of model errors allows
one to significantly decrease the systematic error. A large portion of the maximum and
minimum corrected SILAM series corresponds to observational results for all pollutants in
both the summer and winter periods. Moreover, for the summer period, the dynamic statis-
tical error correction model allowed us to correct the amplitude and the phase differences
between observations and calculations of the CO, NO, NO2, and O3 concentrations.

Figure 8. Results obtained from Kalman filtering and the intradiurnal correction for the next-day forecast of the average
(over Moscow) CO, NO, NO2, and O3 concentrations (blue curve) according to SILAM data (green curve) and measurement
data obtained at the MEM stations (red curve) for January (top) and July (bottom) 2014.

Of course, the purpose of our work is not just a simple correction of the model data
by two factors: a constant factor k1 and the dynamic factor k2. Our intention is to conduct
a detailed analysis of uncertainties contained in the numerical transport chemical model.
A demonstration of the properties of the errors shows that the elementary assumption
about their randomness (independence) and the constancy of statistical characteristics is
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not correct. Taking into account the spectral properties of errors, according to the results of
comparison with measurement data, allows us to conduct post-processing analysis of the
results obtained with the working model at the stage of its practical use by “non-specialists”
in numerical modeling. The process of model improvement may last for years so that
the shortcomings of the “current” version should not be an obstacle to its use “here and
now”. The proposed approach can find wide application in the analysis of errors of similar
models in their practical use.

Table 4. Standard statistics values: MB—mean bias, NMB—normalized mean bias, ME—mean error, NME—normalized
mean error, Corr—correlation coefficient, for results obtained from Kalman filtering and the intradiurnal correction for the
next-day forecast of the average (over Moscow) CO, NO, NO2, and O3 modeled (SILAM) and corrected concentrations.

Pollutant
January, 2014 July, 2014

MB NMB ME NME Corr MB NMB ME NME Corr

CO, SILAM 0.014 0.03 0.010 0.22 0.75 −0.19 −0.35 0.22 0.42 0.33

CO, Corrected −0.009 −0.02 0.010 0.20 0.86 0.007 0.012 0.12 0.22 0.79

NO2, SILAM −0.003 −0.08 0.011 0.31 0.56 0.0007 0.022 0.013 0.45 0.42

NO2, Corrected 0.002 0.07 0.007 0.21 0.94 −0.0003 −0.009 0.007 0.22 0.84

NO, SILAM −0.011 −0.33 0.019 0.57 0.67 −0.010 −0.45 0.018 0.69 0.32

NO, Corrected −0.010 −0.32 0.015 0.46 0.82 0.001 0.06 0.008 0.35 0.64

O3, SILAM −0.002 −0.12 0.008 0.51 0.42 −0.001 −0.03 0.02 0.39 0.71

O3, Corrected 0.001 0.07 0.007 0.44 0.68 0.003 0.08 0.02 0.34 0.89

5. Conclusions

Data on pollutant concentrations regularly measured at the MEM network and cal-
culated using the SILAM chemical transport model were compared in detail. It is shown
that the spatial correlation scale of measured concentrations is considerably smaller than
that of the SILAM spatial grid. The model concentration fields are smooth in time and
space, which is explained by low resolution of the model at the street-level description,
the lack of detailed data, and the random nature of sources and sinks of the pollutants.
For the territory of Moscow, it was rather difficult to single out a general spatial pattern
of variations in calculation and measurement errors. Stations located sufficiently close to
one another inside the city may yield significantly different results, while model values
produce similar results. For the stations located outside the city (Zvenigorod, Zelenograd,
and Troitsk), the model often underestimates pollutant concentrations.

The concentrations of the long-lived CO and NO2 pollutants show the best agreement
for both diurnal and day-to-day variations. For these pollutants, the results of numerical
simulation and the previously estimated urban emissions [10] may be regarded as satis-
factory. The diurnal harmonics of the CO and NO2 concentrations are reproduced by the
model with an accuracy of about 20% for January 2014 and 40% for July 2014. The diurnal
dynamics of the average (over the city) NO and O3 concentrations is accurately described
for the daytime and during rush hours. The errors noticeably increase in the night-time,
when the model significantly underestimates the NO concentration and overestimates the
O3 concentration.

The probability distribution functions constructed for the ratio between the measured
and calculated concentrations of each pollutant for January and July 2014 allow one to
visualize the frequency of model over- and under-estimation of the average pollutant con-
centrations. The chemically active NO and O3 pollutants demonstrate higher differences.
The distribution tails, i.e., the recurrence of small values of the relative error 〈qS〉/〈qM〉,
noticeably increase for these pollutants in July. It can be suggested based on the analysis of
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diurnal variations in the ratio between the model and measured concentrations that such a
situation is usually observed at night.

The relative errors of the diurnal cycle of ozone and the errors in estimating its average
diurnal concentration are significantly larger in summer, which may be associated with the
blooming period and an increased emissions of volatile organic compounds of biological
origin (Bio-VOCs), whose emission can be specified rather approximately in the current
version of the model. Moreover, the uncertainties in describing the diurnal cycle of ozone
affect the nitrogen oxides due to the photochemical interaction between these pollutants.

Correcting the lower frequency interdiurnal component of uncertainties may be re-
garded as Kalman filtering that uses the knowledge of correlation properties of model
errors for correcting the numerical forecasts. The forecast correction according to the
current (20 min) measurement data makes it possible to significantly decrease a system-
atic error of the model, which is associated with uncertainties in sources and turbulent
transport characteristics and based on comparisons between numerical calculations and
measurement data for the previous day, to obtain information sufficient for the correction
of diurnal forecasts of average (over the city) concentrations of the key pollutants. Of
course, this error may also be reduced by improving the model.

In conclusion, we would like to draw the reader’s attention to the fact that we have
demonstrated only the first steps towards the analysis and correction of model errors.
It is important to mention that the focus of the presented work is on diagnostics, not on
forecasting errors. Some further statistical analysis of errors in numerical simulations and
in classification of the observation stations by data quality, time periods of their stable
operation, the environment type and respective micrometeorological features will allow
one to develop and improve the obtained error model for numerical forecasts of atmospheric
pollution over the Moscow megacity. Analyzing the statistical properties of errors in such
numerical forecasts and their dependence on the location of measurement sites (highways,
industrial, residential, and recreation zones), one will be able to improve such models
and the procedure of chemical transport model and monitoring data fusion for correcting
numerical calculations.
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