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Abstract: Although there has been substantial improvement to numerical weather prediction models,
accurate predictions of tropical cyclone rapid intensification (RI) remain elusive. The processes
that govern RI, such as convection, may be inherently less predictable; therefore a probabilistic
approach should be adopted. Although there have been numerous studies that have evaluated
probabilistic intensity (i.e., maximum wind speed) forecasts from high resolution models, or statistical
RI predictions, there has not been a comprehensive analysis of high-resolution ensemble predictions
of various intensity change thresholds. Here, ensemble-based probabilities of various intensity
changes are computed from experimental Hurricane Weather Research and Forecasting (HWRF)
and Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic (HMON) models that were run
for select cases during the 2017–2019 seasons and verified against best track data. Both the HWRF
and HMON ensemble systems simulate intensity changes consistent with RI (30 knots 24 h−1;
15.4 m s−1 24 h−1) less frequent than observed, do not provide reliable probabilistic predictions,
and are less skillful probabilistic forecasts relative to the Statistical Hurricane Intensity Prediction
System Rapid Intensification Index (SHIPS-RII) and Deterministic to Probabilistic Statistical (DTOPS)
statistical-dynamical systems. This issue is partly alleviated by applying a quantile-based bias
correction scheme that preferentially adjusts the model-based intensity change at the upper-end
of intensity changes. While such an approach works well for high-resolution models, this bias
correction strategy does not substantially improve ECMWF ensemble-based probabilistic predictions.
By contrast, both the HWRF and HMON systems provide generally reliable predictions of intensity
changes for cases where RI does not take place. Combining the members from the HWRF and
HMON ensemble systems into a large multi-model ensemble does not improve upon HMON
probablistic forecasts.

Keywords: tropical cyclones; intensity change; ensemble forecasting

1. Introduction

Despite numerous advances in numerical weather prediction and physical under-
standing, the prediction of tropical cyclone (TC) intensity change remains a challenging
problem, e.g., [1]. This issue is particularly acute for rapid intensification (RI), which is
often defined as the 95th percentile of the climatological intensity change [typically defined
as 30 kt 24 h−1 or 15.4 m s−1 24 h−1] [2]. Furthermore, TCs that undergo RI just prior
to landfall, such as Hurricanes Harvey [2017] [3], Maria [2017] [4] and Michael [2018] [5]
pose an especially important societal challenge because of the threat to lives and property
along coastlines. As a consequence, it is critical to provide timely and accurate estimates of
rapid intensity change, which in turn will inform other hazard predictions, such as wind,
freshwater flooding due to rain, landslides, and storm surge.
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There are numerous potential reasons why RI might be especially difficult to predict,
which is likely at least partially related to the interaction of multiple scales of motion that
may be responsible for RI, e.g., [6]. On the synoptic scale, it is generally recognized that RI
is more likely to take place in favorable environments, which includes low vertical wind
shear, high mid-tropospheric moisture content, and large difference between the TC inten-
sity and the maximum potential intensity, e.g., [2,7,8]. Progressing to the mesoscale and
convective scale, the structure and extent of convection in the TC, particularly with respect
to the shear vector appears to play a critical role. In particular, TCs with faster intensifica-
tion rates are characterized by greater areal extent of convection within the upshear-left
quadrant, e.g., [9–12], which is likely related to more efficient projection of latent heat
onto the symmetric component of the TC circulation, e.g., [13,14]. As a consequence, it
seems important to accurately represent the interaction of all of these scales of motion.
Furthermore, since RI is at least partially tied to convection, a probabilistic approach is
likely more appropriate since convection is generally considered less predictable, although
deterministic forecasts are made by operational centers.

The distinct preference for RI to take place in specific synoptic environments has
resulted in a number of statistical models that try to estimate the probability of RI. The first
of these models was the Statistical Hurricane Intensity Prediction System (SHIPS) Rapid
Intensification Index (RII), which made use of a combination of large-scale predictors, such
as the vertical wind shear, ocean heat content, 850–700 hPa water vapor, and the distance
that the TC is away from its maximum potential intensity (MPI), as well as statistics of
the infrared brightness temperature from geostationary satellite imagery [8]. A more
recent version of this model includes predictors that measure the water vapor in the
upshear quadrant and the EOF of the infrared brightness [6]. This approach has also been
used to produce probabilistic forecasts in other ocean basins with predictors that vary by
basin, e.g., [15]. Such forecasts were shown to provide skillful predictions of RI relative
to climatology out to 48 h. Other statistical-based approaches have also emerged, which
use input from numerical weather prediction models, including logistical regression-based
methods that convert from deterministic to probabilistic guidance [DTOPS] [16], analog-
based methods that constructs probabilistic forecasts based on predictors that look for
analogs based on past forecasts, e.g., [17], and neural network approaches, e.g., [18].

Given that RI likely involves the interaction of multiple scales of motion, the most
accurate probabilistic RI forecasts are likely to come from dynamical model ensemble
prediction systems, which can simulate the evolution of both the large-scale environment
and convection. Such convection-allowing (<4 km horizontal grid spacing) ensemble
prediction systems are very computationally expensive; therefore, these systems would
need to provide skillful forecasts to justify their cost. Despite the potential of these systems,
many of the prototype ensemble prediction systems which have been run over a variety of
cases, are characterized by a lack of variability in TC intensity relative to the ensemble-mean
errors, e.g., [19–21]. There are numerous reasons for this result, including systematic biases,
particularly within the parameterization schemes, and insufficient treatment of all sources
of forecast uncertainty, including in the atmosphere, ocean, and physical parameterizations.
In particular, adding more sources of uncertainty leads to more skillful ensemble intensity
forecasts, e.g., [20,22].

Many of these previous studies of dynamical ensemble prediction systems have
focused on verification of the instantaneous TC intensity; however, few have investigated
whether these models have skill at predicting intensity changes. Furthermore, many models
show difficulty at replicating intensity changes of the same magnitude as RI, e.g., [23–26].
As a consequence, it is difficult to know whether these dynamical models have any skill
at predicting RI or any other intensity change category. The goal of this study is to
validate a large number of probabilistic TC intensity change forecasts, which are derived
from the quasi-operational Hurricane Weather Research and Forecasting (HWRF) and
Hurricanes in a Multi-scale Ocean-coupled Non-hydrostatic (HMON) ensemble prediction
systems, which were run as part of the Hurricane Forecast Improvement Project (HFIP)
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demonstration system [27] for select TCs during the 2017–2019 seasons. The goal of HFIP
is to reduce TC track and intensity errors by 50% over 10 years. In addition, these forecast
products were produced as part of the HFIP Ensemble Products Tiger Team, whose goal
was to assess new ensemble-based forecast products that could be used by TC forecasters.
These probabilistic forecasts are compared to operational RI predictions to understand their
relative skill, and to probabilistic forecasts that represent a combination of the ensemble
members from both the HWRF and HMON prediction system.

The remainder of the paper proceeds as follows. Section 2 describes the model output
and methods used in this particular study. The role of bias correction on the dynamical
ensemble output and its validation against the statistical model guidance is provided in
Section 3. Finally, a summary and conclusions are provided in Section 4.

2. Data and Methods

This study makes use of the quasi-operational ensemble forecast products that were
produced as part of the HFIP demonstration system, as well as comparable-time operational
RI forecasts from the 2017–2019 seasons. The main focus of this study is on ensemble
forecasts from the HWRF and HMON models. Table 1 provides the list of storms and
number of cycles per storm that are used in this study. For computational considerations,
these ensemble systems were only run for a subset of potential cycles (489 initialization
times), and primarily consists of Atlantic Basin storms.

Table 1. TC cases used in this study. The values inside the parenthesis note the TC identification
number, while the second is the number of initialization times for each storm (489 total initializa-
tion times).

2017 2018 2019

Emily (AL06; 3) Florence (AL06; 58) Barry (AL02; 16)
Franklin (AL07; 14) Gordon (AL07; 5) Dorian (AL05; 56)

Gert (AL08; 14) Isaac (AL09; 29) Gabrielle (AL08; 13)
Harvey (AL09; 16) Kirk (AL12; 16) Humberto (AL09; 23)

Irma (AL11; 45) Leslie (AL13; 8) Jerry (AL10; 29)
Jose (AL12; 16) Michael (AL14; 18) Lorenzo (AL13; 32)

Maria (AL15; 37) Hector (EP10; 8) Nestor (AL16; 3)
Nate (AL16; 10) Lane (EP14; 10) Erick (EP06; 10)

When the SHIPS-RI guidance was first developed, RI was defined as a 30 kt or greater
increase in 24 h, which roughly corresponds to the 95th percentile of the Atlantic basin 24 h
intensity change distribution [2]. That definition was based on forecaster feedback, and the
method only considered the first 24 h of the forecast. That RI threshold has since become a
common RI definition used in a number of studies not directly tied to the original intent of a
forecaster tool. The probabilistic intensity change forecasts from the two ensemble systems
will be validated for each 24 h period starting from 0 to 24 and ending at 96–120 h for
the RI category. Three other intensification categories will also be evaluated, as shown in
Table 2. The steady category includes intensity changes that are below the clearly-detectable
intensity change threshold based on current observational capabilities, e.g., [28,29]. A 5th
category was originally included corresponding to the 5% of the climatological CDF (rapid
weakening), but that was combined with the 4th category in Table 2 (intensity changes
< −10 kt) due to the small sample size. As forecasters gained experience with the SHIPS-RII
guidance, the 0–24 h time frame was considered too restrictive, so additional thresholds
were added in later versions of the method [6]. Those defined RI over longer time intervals,
such as 55 kt increase in 48 h and a 65 kt increase in 72 h. Those definitions will also be
included in the ensemble validation so they can be compared with the statistical-dynamical
RI model forecasts.

All forecasts are verified against the corresponding National Hurricane Center (NHC)
best track values. In order to limit the impact of land, only forecast lead times where the
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best track TC position is at least 20 km from land are considered. Except where noted,
this study employs the “late” version (i.e., non-interpolated) version of the HWRF and
HMON ensemble forecasts, which in turn could potentially identify any spin-up issues in
the model and remove the complication of applying an interpolation scheme, except when
necessary. TC forecast centers, such as NHC, use “early” versions of the model, which
are employed because numerical models are not available until after the forecasters are
required to make a forecast. For example, these ensemble forecasts were not available until
9 h after the forecast initialization time (i.e., a forecast initialized at 0000 UTC is available at
0900 UTC). To account for this, “early” versions are produced, which adjust the older 12 h
intensity forecast to the analyzed value, while the same 12 h intensity difference is added
to all subsequent forecast times. A summary of each of the models is provided below.

Table 2. Intensity change categories used in this study.

Name 24-h Maximum Wind Speed Change Climatological Frequency

Rapid Intensification δI >= 30 kts 5%
Intensification 10 kts <= δI < 30 kts 29%

Steady −10 kts < δI < 10 kts 39%
Weakening δI <= −10 kts 27%

2.1. HWRF Ensemble

The HWRF ensemble is a system that includes uncertainty in the large-scale environ-
ment, TC vortex, and model through a variety of methods that are mostly documented
in [19]. This 21-member ensemble forecasting system (20 perturbed initial condition and
1 control member) uses much of the same configuration as the deterministic HWRF system
for that season, but it was run at a slightly larger grid spacing for computational consid-
erations. A brief description of the ensemble system is provided; the interested reader is
directed to the HWRF scientific document for specific information on the model, including
the physics parameters, vortex initialization, etc. [30]. While the ensemble system employs
the same physics and ocean model as the deterministic model, it was run at 3 km horizontal
grid spacing with 61 vertical levels (compared to 2 km horizontal grid spacing and 75
vertical in the deterministic model), with the same domain sizes (75◦ × 75◦ outer domain,
8◦ × 8◦ highest resolution inner domain). Large scale initial condition and lateral boundary
condition variability is obtained by pairing each member of the HWRF ensemble with a
corresponding 0.5◦ Global Forecast System (GFS) ensemble forecast member. Vortex-scale
initial condition variability is achieved through perturbing the operational estimates of
TC position and intensity (i.e., TCVitals) that are used in the vortex relocation process.
The perturbation TC position and maximum wind speed values are obtained by sampling
from a Gaussian distribution with the mean as the operational value and the standard
deviation taken from [28]. Furthermore, each ensemble member’s ocean initial state is
perturbed in the manner described in [20], which uses scaled deviations from climatology.
Finally, model error is represented by adding white noise stochastic perturbations to the
momentum drag coefficient, boundary layer height, and convective trigger.

2.2. HMON Ensemble

The HMON ensemble system is designed using a similar setup as the HWRF ensem-
ble system, with the exception being in the model error strategy. A description of this
ensemble system is provided below; further documentation of HMON model is available
from [31]. While the HMON ensemble has the same horizontal resolution and grid sizes as
the deterministic HMON model, all three domains of the ensemble configuration have 8%
fewer grid points compared to the deterministic version. Similar to the HWRF ensemble,
initial and boundary conditions for the 11 members (10 perturbed initial condition and
one control member) are obtained from the GFS Ensemble Prediction System (GEFS), with
vortex-scale uncertainty using perturbed TC position and intensity. By contrast, each
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member of the HMON ensemble uses a different combination of physics parameterization
packages, which in turn means that this system is a multi-model ensemble. In particular,
the HMON members use three different cumulus schemes, and two different turbulent
mixing, land surface, microphysics, and surface/enthalpy exchange coefficient formula-
tions, while the control member (member 0) has the same physics configuration as the
deterministic HMON.

2.3. ECMWF Ensemble

In addition to evaluating HWRF and HMON ensemble output, similar methods are
applied to output from the European Centre for Medium Range Weather Forecasting
(ECMWF) ensemble produced during the 2019 season. At this time, the ECMWF ensem-
ble [32] has 51 ensemble members (50 perturbed initial condition and one control member)
initialized at 0000 and 1200 UTC. Each member of the ensemble has 18 km horizontal
resolution and 91 vertical levels. Initial conditions perturbations are generated based on
singular vectors, which represent the fastest growing error structures over a 48-h period
on a hemispheric scale and around the TC itself, e.g., [22]. Subgrid-scale model errors are
represented using the Stochastically Perturbed Parametrization Tendencies (SPPT) scheme.

3. Results
3.1. Bias Correction

Previous studies have suggested that numerical models can have difficulty simulating
rapid intensification, e.g., [23–26]. As a consequence, this could make it difficult to obtain
skillful probabilistic RI guidance. In order to determine each model’s ability to replicate
observed intensification rates, the cumulative distribution function (CDF) of 24 h intensity
changes was computed from retrospective forecasts of each modeling system during each
24 h period (i.e., 0–24 h, 6–30 h, 12–36 h), as well as the corresponding best track intensity
changes. This is done to provide an independent validation of the model’s intensity change
rates, which will be used for a bias correction method that will be described later. Figure 1
shows the 0–24 h HWRF and HMON intensity changes computed from retrospective
forecasts generated prior to the 2017 season, which includes Atlantic and Eastern Pacific
storms from 2014 to 2016 (over water times only). For HWRF, the 0–24 h intensity change
CDF generally matches the best track values up to the 70th percentile, after which the
HWRF CDF is steeper than the best track CDF. As a consequence, the HWRF 95th percentile
value (the RI threshold) is 28 knots 24 h−1, compared to 33 knots 24 h−1 from best track.
This result suggests that the HWRF model does a fairly good job replicating the observed
intensity changes up to roughly 14 knots 24 h−1, but beyond that, the model appears to
systematically under-estimate intensity changes. By contrast, HMON model (Figure 1b)
appears to overlap the best track CDF for most intensity changes for the same period of
time, suggesting that this model does a better job at replicating the variability of observed
intensity changes.

At later lead times, both models tend to systematically produce too narrow of a
distribution of intensity change values. For the HWRF model (Figure 1c), the model and
best track CDFs are similar up to the 65th percentile, but the model CDF curve is steeper
both above and below this value, such that the HWRF does not replicate the frequency of
weakening storms (HWRF 10th percentile −20 kts 24 h−1 vs. −25 kts 24 h−1 for best track)
and strengthening storms (the HWRF 95th percentile is 23 kts 24 h−1 vs. 32 kts 24 h−1 for
best track). Similar results are obtained for the HMON model during the same lead times
(Figure 1d); therefore, it appears that both models have a limited ability to replicate the
observed intensity change variability after running for some period of time.
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Figure 1. 0-24 h (a) HWRF and (b) HMON maximum wind speed change CDFs based on retrospective forecasts from the
2014–2016 cases (red line). The black line denotes the corresponding best track maximum wind speed change CDF. (c,d), as
in (a,b), but for the 48–72 h forecasts.

The above process is repeated for the retrospective forecasts generated prior to the
2017, 2018, and 2019 seasons to understand whether the yearly model innovations have sys-
tematically improved each model’s ability to simulate RI at the correct frequency. Figure 2a
shows the 95th percentile as a function of the forecast lead time and season for the HWRF
model and corresponding best track. It is worth pointing out that the set of retrospective
cases changes from year to year (generally 2–3 years of past forecasts), so the set of cases
is not homogeneous. For all three seasons, the HWRF model’s 95th percentile intensity
change is less than the best track at all lead times. Generally speaking, the best track 95th
percentile shifts toward smaller values with increasing lead time. This likely occurs because
RI occurs most frequently at the beginning of a TC’s lifetime, e.g., [33]; therefore, RI is more
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likely to occur at early forecast lead times, which are more likely to sample the early part of
a TC lifecycle, compared to later lead times, which are more likely to sample the later part
of a TC lifecycle. By contrast, the HWRF 95th percentile values show a substantial amount
of year-to-year variability, with the 2017 values decreasing from 28 to 23 kts between 0 and
24 h to 48–72 h, while the 2019 values increase from 26 kts to 30 kts (the best track value
is roughly 35 kts at all times in 2019). As a consequence, it appears that the 2019 HWRF
retrospective forecasts are better able to simulate larger intensity changes compared to
earlier years, which is likely a result of the difference in cases between the 2018 and 2019
retrospective forecasts since there were no major changes to the HWRF model between
2018 and 2019.

Figure 2. (a) HWRF 95th percentile 24-h TC maximum wind speed changes (solid line) based on retrospective forecasts
prior to the 2017 (red), 2018 (green) and 2019 (blue) seasons as a function of forecast lead time. The dashed lines indicate the
corresponding best track TC maximum wind speed changes for those years. (b) as in (a), but for the HMON model.

Whereas HWRF forecasts were characterized by improvements in the 95th per-
centile over this three year period, the HMON forecasts exhibit more year-to-year consis-
tency (Figure 2b). For all three years, the best track 95th percentile decreases by roughly
6 kts 24 h−1 between 0 and 24 h to 48-72 h. By contrast, the HMON model 95th percentile
from 2017 and 2018 decreases at a faster rate, from roughly 35 kts 24 h−1 to 21 kts 24 h−1 (a
decrease of 14 kts 24 h−1). This would suggest that HMON has greater difficulty simulating
large intensity changes as the model is run for longer periods of time. By contrast, the 95th
percentile in the 2019 HMON retrospective decreased at the same rate as the best track at
all lead times, but where the HMON value is systematically 6 kts 24 h−1 lower than the
best track.

The intensity change CDFs presented above suggest that HWRF and HMON forecasts
replicate some intensity changes at the correct frequency as best track for some categories,
but replicates others at a much lower frequency. As a consequence, both modeling systems
could benefit from a conditional bias correction scheme that adjusts the model’s intensity
forecast more substantially for the intensity change values that the model has difficulty
replicating (i.e., RI), while leaving others as is. One method for accomplishing this type of
bias correction is a quantile-based approach, e.g., [34,35], whereby the model’s intensity
forecast is mapped to its CDF percentile based on the retrospective forecasts from that year
(i.e., the 2017 forecasts use the CDF based on the retrospective forecasts produced before
the 2017 season) and the model forecast intensity change is replaced by the corresponding
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best track intensity change based on the forecast percentile. Returning to the results from
2017, this would mean a 0–24 h HWRF forecast of 10 kts 24 h−1 (a 69% intensity change)
would be corrected to 11.5 kts 24 h−1, while a HWRF forecast of 27 kts 24 h−1 (a 95%
intensity change) would be adjusted to 33 kts 24 h−1. HWRF and HMON forecasts are
bias corrected against CDFs that are computed for each 24 h period starting from 0 to 24 h
to 72–96 h, while 24 h periods beyond that time use the 72–96 h CDF due to the limited
number of samples at longer lead times, which in turn leads to unstable statistics. This
bias correction is applied independently to each ensemble member prior to calculation of
forecast probabilities.

Application of quantile-based bias correction has a substantial impact on the skill of
HWRF and HMON RI forecasts. This is assessed by comparing probabilistic RI forecasts
for 2017–2019 HWRF and HMON ensemble systems with and without bias correction
during each 24 h period from 0–24 h to 48–72 h each 6 h. The skill of each set of forecasts is
assessed using the Brier Skill Score [36], which measures the skill relative to a climatological
baseline, and is defined as:

BSS = 1.0 −
BS f orecast

BSclimatology
, (1)

where BS f orecast is the Brier scores [37] of the HWRF and HMON forecasts and BSclimatology
is the Brier score for a forecast based on the climatological frequency of RI (i.e., a 5%
chance). Both HWRF and HMON forecasts have higher BSS with bias correction, with
HWRF increasing its BSS by 67%, compared to 15% for HMON, though it should be noted
that the BSS are still relatively small (Table 3). By contrast, the raw and bias-corrected BSS
for other intensity change categories are relatively unchanged by the application of quantile
mapping, which is not surprising given that this method adjusts large intensity change
(>20 kts 24 h−1) relative to smaller values (not shown). Given the superior performance of
quantile-mapping bias correction, it is subsequently applied for all of the remaining results.

Table 3. Brier Skill Score of the Probability of RI based on 2017–2019 HWRF and HMON ensemble
data during each 24 h period from 0 to 24 h to 48–72 h. The bias corrected forecasts use the quantile-
mapping method, while the raw forecasts do not use any bias correction. For this calculation, the
climatological frequency is assumed to be 5%.

Model Raw Forecast Bias Corrected

HWRF 0.006 0.010
HMON 0.121 0.139

3.2. HWRF and HMON Ensembles

Before proceeding to validate the ensemble-based probabilities over the three years of
cases, it is worthwhile to show an example ensemble-based intensity change probabilities
that includes a skillful prediction of the timing of RI. Figure 3 shows a stacked bar chart
of the probability of different intensity change categories, e.g., [21] based on the HWRF
and HMON ensemble for Hurricane Harvey initialized 1200 UTC 22 August 2017 (i.e.,
before Harvey was reclassified as a tropical depression for a second time). In this case, both
the HWRF and HMON ensembles have the maximum probability of RI in the middle of
the period where RI actually took place (there were eight 24 h periods that qualify for RI
starting at 24–48 h and ending in the 60–84 h period), which immediately precedes landfall
of the storm, after which time both ensembles correctly predict rapid weakening due to
land interaction. It is worth pointing out that quantile mapping has a substantial impact
on producing the high probabilities in this case. In the case of the HWRF ensemble, the
raw forecast probabilities have a maximum probability of 32% during the 36–60 h period
(not shown), compared to a maximum of 71% with the quantile mapping.
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Figure 3. Stacked bar chart of the probability of the change in Hurricane Harvey’s maximum wind speed as a function of
lead time based on the (a) HWRF and (b) HMON ensemble initialized 1200 UTC 22 August 2017. The colored dots along
the top of the figure denote the verifying change in Harvey’s maximum wind speed based on best track data.

Turning to all forecasts for the 2017–2019, even with the application of quantile-
mapping, both HWRF and HMON ensemble-based probabilistic forecasts do not exhibit
RI forecast skill comparable to statistical models. Figure 4 shows reliability diagrams for
probabilistic RI forecasts for the 0–24, 0–48, and 0–72 h periods, which equates to a 30, 55,
and 65 knot intensity change, respectively, [2]. The HWRF and HMON ensemble forecasts
are not available until 9 h after the initialization time; therefore, in order to provide a fair
comparison between the statistical and dynamical models, the HWRF and HMON forecasts
are “interpolated” by 12 h. For intensity changes, interpolation only involves time-shifting
the forecasts because the intensity shift will uniformly adjust the intensity upward or
downward by an equal amount at the start and end of the intensity change window. As a
consequence, a hypothetical 1200 UTC SHIPS and DTOPS forecast is compared against the
HWRF and HMON-based probabilities initialized at 0000 UTC, but valid at the appropriate
time. Furthermore, given the relative infrequency of RI (42 periods over three years), the
reliability diagrams use five bins, 0, 1–20%, 20–40%, 40–60%, 60–80% and >80%.

For the 0–24 h period, SHIPS-RII (RIOD) and DTOPS forecasts are characterized by
reliability curves close to the 1:1 line. By contrast, both the HWRF and HMON ensemble-
based probabilities are generally above the 1:1 line for forecast probabilities below 40%,
meaning that RI happened more frequently than what was implied by the forecast prob-
abilities. Furthermore, the HWRF and HMON probabilities are below the 1:1 line above
the 40% forecast probability, meaning that RI happened less frequently than what was
implied by the forecast probabilities, though it is difficult to assess probabilities above
60% due to the lack of cases. In addition, the Brier Skill Score for HMON forecasts is
comparable to both SHIPS and DTOPS forecasts, with the HWRF ensemble substantially
smaller (Table 4). Furthermore, 0–48 h RI forecasts (Figure 4b) show relatively similar
behavior, though with the smaller number of cases (22 events during the three years), the
curves are less consistent among the various bins. Both SHIPS-RII and DTOPS are close to
the 1:1 line for low probabilities, while HWRF and HMON under-predict RI at the same
level. Furthermore, HMON and DTOPS yield the highest BSS, with HWRF and SHIPS
further behind. Finally, 0–72 h RI takes place less frequently than all four models suggest,
as all of them are below the 1:1 line for nearly all categories (Figure 4c). Whereas SHIPS and
HWRF ensemble-based probabilities exhibit BSS above zero, DTOPS and HMON ensemble
guidance are slightly below.
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Figure 4. Reliability diagrams for (a) 0–24 h TC maximum wind speed change >= 30 knots, (b) 0–48 h TC maximum wind
speed change >= 55 kts, and (c) 0–72 h TC maximum wind speed change >= 65 knots for interpolated HWRF ensemble
(HWM2; black), interpolated HMON ensemble (HMM2; green), SHIPS Rapid Intensification Index (RIOD; red), and DTOPS
(DTOP; blue) models during 2017–2019. The number of cases within each category is given along the top of each figure.

The relative infrequency of RI can make it difficult to assess whether these models can
provide useful probabilistic guidance. One way to increase the number of potential cases is
to consider multiple 24 h periods simultaneously, namely from 0 to 24 h to 48–72 h, which
in turn yields 9 potential verification times for each individual forecast. Figure 5a shows
the RI reliability diagram for all 24 h periods from 0 to 24 to 48–72 h into the forecast, which
yields 311 RI “events”. Similar to Figure 4a, both the HWRF and HMON ensembles are
characterized by forecast probabilities that are lower than the observed frequency when
the forecast probability is below 20%, while the ensemble-based forecast probabilities are
higher than the observed frequency when the forecast probability exceeds 50%, with the
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HMON forecast closer to the 1:1 line. In turn, the HMON BSS is 0.14, compared to 0.01
for the HWRF system. As a consequence, it appears that the HMON ensemble-based
probabilities are more skillful forecasts of RI relative to the HWRF ensemble.

Table 4. Brier Skill Score (BSS) for the probability of TC maximum wind speed changes for varied
time periods.

Model 0–24 h 30 kts 0–48 h, 55 kts 0–72 h, 65 kts

HWRF Ensemble 0.070 0.061 0.041
HMON Ensemble 0.170 0.216 −0.007

SHIPS RI Index 0.167 0.061 0.080
DTOPS 0.174 0.216 −0.011

Other forecast change categories are characterized by mixed skill relative to the RI
category. Figure 5b shows the probability of a 24 h intensity change from 10 knots up
to 30 kts. Similar to RI, this intensity change occurs more frequently than forecast up to
the 50% forecast probability, while above that threshold, this intensity change occurs less
frequently then the forecast implies. For a less than 10 kt change in maximum wind speed,
both models exhibit a relatively flat reliability curve, with under-forecasting below 30%
and over-forecasting above 30%, such that both models have BSS below zero. By contrast,
both models exhibit skillful forecasts of weakening (24 h intensity changes <= −10 kts) as
the reliability curves are close to the 1:1 line for all forecast probabilities (Figure 5d).

The previous results suggest that both the HWRF and HMON models have varying
ability to provide useful probabilistic guidance on the correct intensity change category.
One way to evaluate this is to compute rank probability skill score (RPSS; [38]) as a function
of forecast period. RPSS is defined as

RPSS = 1.0 −
RPS f orecast

RPSclimatology
, (2)

where RPS f orecast is the rank probability score of the ensemble forecast computed from the
probabilities of the four categories in Table 2, and RPSclimatology is the rank probability score
of a forecast based on the climatological frequency of each category, which is provided in
Table 2. Similar to BSS, RPSS ranges from negative infinity to one, where a score of 1 is
perfect and less than zero means no skill relative to a forecast based on the climatological
frequency (Figure 6). Prior to 36–60 h, both the HWRF and HMON ensembles have positive
RPSS scores, with a value of approximately 0.15 for 0–24 h, linearly decreasing to zero at
36–60 h. Beyond that lead time, both models have a skill score that is indistinguishable
from zero; therefore, these models appear to provide their most skillful forecasts of the
intensity change category right after initialization, but where skill is lost by the 36–60 h
and beyond.

As would be expected from the reliability diagrams, the most difficult categories are
the intensification and steady categories. Examining the cases where the 48–72 h HWRF en-
semble has the greatest number of members in the steady category
(−10 < δI < 10 kts; 169 cases), a steady intensity change is observed in 40% of those cases,
while 14% of those cases actually experienced either rapid intensification
(δI >= 30 kts) or even rapid weakening (δI <= −30 kts). Similarly, when the HWRF
ensemble had the highest probability of intensification (10 <= δI < 30 kts) for the same time
period, intensification was observed 40% of the time; however, steady was observed 33%
of the time. Similar results are obtained for both the HMON ensemble and for other lead
times (not shown); therefore, it suggests that these two ensemble systems have difficulty at
producing reliable forecasts of the steady and intensification categories.
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Figure 5. HWRF (black) and HMON ensemble (green) reliability diagrams for 24-h TC maximum wind speed change
(a) >= 30 knots, (b) 10 <= δI < 30 kts, (c) −10 < δI < 10 kts, and (d) δI <= −10 kts during each 24 h period from 0 to 24 h to
48–72 h during 2017–2019. The number of cases within each category is given along the top of each figure.

Having two distinct ensemble prediction systems, each with some skill at predicting
RI and other intensity change categories, provides the possibility of combining all of the
ensemble members from both systems into a single multi-model ensemble probabilistic
product. The hope would be that the combined ensemble will have more skill than any
individual system. This hypothesis is tested by computing the probability of RI from
the 21 HWRF members and 11 HMON members for the same set of cases. Given the
larger number of HWRF members, the probabilities from the combined ensemble are
going to be weighted toward the HWRF probabilities, which as seen above, has less skill
at predicting RI relative to the HMON ensemble system. Figure 7 shows the reliability
diagram of the individual ensemble-based products as well as the combined ensemble. For
lower probabilities (<30%), the combined ensemble has a relatively close to the 1:1 line
and similar to the individual ensembles. At higher forecast probabilities, the combined
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ensemble falls off the 1:1 line, but not as quickly as the HWRF system, but is still further
away from the 1:1 line relative to the HMON ensemble, and the BSS of the combined
ensemble (0.113) is lower than the BSS of the HMON ensemble itself. As a consequence,
these results suggest that adding the HWRF ensemble members to the HMON ensemble
members does not lead to a more skillful ensemble.

Figure 6. Ranked Probability Skill Score (RPSS) of HWRF and HMON ensemble 24 h maximum wind
speed change as a function of forecast lead times from2017 to 2019.

Figure 7. HWRF (black), HMON ensemble (green), and combined HWRF and HMON ensemble
(red) reliability diagrams for the probability of 24-h TC maximum wind speed change >= 30 knots
during each 24 h period from 0 to 24 h to 48–72 h during 2017–2019. The number of cases within each
category is given along the top of each figure.

There are at least two potential reasons for the lack of additional skill in the multi-
model combined ensemble. One possibility is that the HWRF and HMON forecasts are not
sufficiently independent of each other, which is necessary for skillful consensus forecasts,
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e.g., [39]. This possibility is assessed by computing the correlation between the error in the
HWRF control member 24 h intensity changes and the error in HMON control member
24 h intensity changes for each period. For all time windows, the correlation coefficient
exceeds 0.65 (not shown); therefore, it suggests that the two models may not provide a
particularly independent set of forecasts.

Another possible explanation for the lack of higher skill in the combined ensemble
could be the higher weight placed on the HWRF ensemble due to the greater number
of members. This possibility is tested by computing the probability of RI based on a
combination HWRF/HMON ensemble where equal weight is given to the HWRF and
HMON probabilities. While the reliability curves for the equal weight probability are closer
to the 1:1 line (not shown), the RI BSS for the multi-model ensemble where the HWRF and
HMON ensemble probabilities receive equal weight is 0.025 higher compared to computing
the probabilities based on combining all HWRF and HMON ensemble members into one
multi-model ensemble (hence giving more weight to the HWRF ensemble because of its
21 members). As a consequence, it appears that some minor gains can be made with a
multi-model ensemble with more weight given to the HMON ensemble.

3.3. Application to ECMWF Ensemble

While the HWRF and HMON ensemble show some promise to predict TC intensity
changes, these are not operational ensemble prediction systems and hence are not run
on all cases. Given this, and the potential benefit of the quantile-based TC intensity bias
correction, it is worth trying to apply quantile-based bias correction to a lower-resolution
operational ensemble prediction system, such as the ECMWF ensemble, and evaluate its
ability to provide probabilistic TC intensity change guidance. During 2019, the ECMWF
ensemble system had a native grid spacing of 18 km, thus although this not sufficient grid
spacing to fully resolve TC structures, it is possible that this grid spacing could still resolve
TC maximum wind speed tendencies.

This possibility is assessed by comparing the CDF of the ECMWF 24-h maximum
wind speed changes for all Atlantic and Eastern Pacific TCs during 2017 and 2018 seasons
against the corresponding best track data (Figure 8). During the 0–24 h period, the ECMWF
model CDF has a sharper slope than the corresponding best track data. Specifically, the
ECMWF model maximum wind speed changes appear to be within ±30 kts 24 h−1, which
is a smaller range than the best track data. Furthermore, the slope of the ECMWF CDF
appears to parallel the best track values up to a maximum wind speed change of 0 kts, but
is higher above that, meaning that the ECMWF model does not capture intensification as
frequently as the best track. Finally, the 95th percentile is roughly 20 kts in the ECMWF,
compared to almost 40 kts for the best track data for these cases. The 48–72 h forecast
CDF is qualitatively similar to the 0–24 h version, particularly for the largest intensity
changes, the range of intensity changes where the slope is parallel to the best track, and the
difference in the 95th percentile maximum wind speed change.
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Figure 8. 0-24 h ECMWF maximum wind speed change CDFs based on retrospective forecasts from the 2017–2018 seasons
(red line). The black line denotes the corresponding best track maximum wind speed change CDF. (b) as in (a), but for the
48–72 h forecasts.

Applying quantile-based bias correction to the ECMWF forecasts does not yield skillful
probabilistic forecasts of RI. Figure 9 shows reliability diagrams of each intensity change
category during each 24 h period from0 to 24 h to 48–72 h for all Atlantic and Eastern
Pacific cases from 2019 (there are 5700 cases with a 0000 or 1200 UTC initialization time).
Whereas the RI and steady intensity change categories exhibit no skill, as demonstrated by
the relatively flat reliability curves (Figure 9a,c), and BSS that are less than zero, both the
intensification and weakening categories are categorized by reliability diagrams near the
1:1 line (Figure 9b,d) and the BSS are 0.127 and 0.234, respectively. These results suggest
that the ECMWF ensemble exhibits limited ability to predict the correct category beyond
whether the TC is intensifying or weakening. One possible reason is the substantial bias
correction, particularly for large intensity changes. For example, if the ECMWF predicts
a 20 kt intensity change, the quantile method will correct that to 40 kts. In this case,
the bias correction scheme cannot distinguish between the model correctly predicting
a 20 kt intensity change (as occurs for some cases) or situations where there is a 40 kt
intensity change. As a consequence, it appears that the quantile-based intensity change
method might perform best when the intensity change CDF is relatively close to the
verification CDF.
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Figure 9. ECMWF ensemble reliability diagrams for a 24 h TC maximum wind speed change (a) >=30 knots,
(b) 10 <= δI < 30 kts, (c) −10 < δI < 10 kts, and (d) δI <= −10 kts for each 24 h period from0 to 24 h to 48–72 h for
all Atlantic and Eastern Pacific cases during 2019. The number of cases within each category is given along the top of
each figure.

4. Summary and Conclusions

The goal of this study was to evaluate the hypothesis that specific dynamical ensemble
prediction systems can provide skillful probabilistic predictions of TC intensity change
relative to the current suite of operational guidance. This hypothesis is tested using
489 cases from the HWRF and HMON ensemble data from the HFIP demonstration system
during the 2017–2019 seasons and verifying the results against best track data. These
forecasts are validated in four different intensity change categories that are of potential
interest to forecasters and comparable to the definitions used in operational statistical RI
models (SHIPS-RII and DTOPS).

Intensity change CDFs for both the HWRF and HMON models indicate that these two
systems generally replicate the observed frequency of weakening, steady, and moderate
intensification events; however, RI events occur less frequently than observations. Rather
than bias-correcting the model intensity change by a fixed amount for each forecast lead
time, a quantile-based bias correction scheme was developed that adjusts the model
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intensification rate to the best track value for a given percentile. For both HWRF and
HMON, this results in the biggest change occurs for near-RI levels, while making small
changes for other values. Applying this bias correction results in improved probabilistic RI
predictions for both models.

Ensemble-based probabilistic guidance have limited skill relative to climatology for
all intensity change categories. For RI, both the SHIPS-RII and DTOPS predictions are
more reliable then either dynamical model, with HMON exhibiting greater skill relative to
the HWRF ensemble. One potential reason for the superior performance of the HMON
ensemble is the use of multiple physics packages, which other studies have shown generally
results in greater ensemble standard deviation for a variety of mesoscale phenomenon,
e.g., [40–42], but typically at the cost of maintaining multiple packages and having an
ensemble where the members are not equally-likely. Of the remaining intensity change
categories, both models performed best at predicting weakening, and worst for steady
intensity changes, with the latter exhibiting no skill relative to climatology. Furthermore,
both models have the greatest skill at predicting the intensity change category from 0
to 24 h and lose their ability to distinguish between the categories by 48–72 h, which is
primarily the result of the relatively poor performance of the steady category. The higher
skill in the first 24 h is somewhat surprising given that TC modeling systems often exhibit
spin-up issues in the first 6–12 h, e.g., [43–45]. The lack of skill of the steady category
is likely a consequence of the lack of ensemble spread in intensity (not shown), as the
biggest issue is that verification falls outside of that category too frequently when the model
predicts steady (including some cases where the TC experiences rapid intensification or
weakening). Unfortunately, quantile-based bias correction will not address this flaw, thus it
will be necessary to address the underlying model physics. The variety of physics packages
employed by the HMON ensemble may explain its superior performance compared to
the HWRF system, which parameterizes model error by applying white noise stochastic
perturbations to various parts of the physics parameterizations. Combining the HWRF and
HMON ensemble output into a single multi-model ensemble system provides more skillful
forecasts relative to the HWRF ensemble; however, RI forecasts of the combined ensemble
are worse than the HMON model itself, even when accounting for the extra weight given
to the HWRF ensemble due to its larger ensemble size.

Although the ECMWF model has been shown to provide skillful probabilistic forecasts
for a number of fields and phenomenon, including TCs, e.g., [46], applying quantile bias
correction does not yield skillful intensity change forecasts. The main reason for this is that
the ECMWF intensity change CDF is too narrow relative to observations. Furthermore, this
approach makes it difficult to distinguish between cases where the model correctly predicts
a moderate intensity change and situations where the moderate intensity change should be
corrected to an RI. More than likely, the ECMWF ensemble will require additional resolution
upgrades to achieve an intensity change CDF that is comparable to the HWRF and HMON
ensemble and hence something closer to observations. Until then, one possibility is to use
machine learning approach, e.g., [17,18], which would allow for a greater number of bias
correction predictors.
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