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Abstract: Health risks from air pollution continue to be a major concern for residents in Mexico City.
These health burdens could be partially alleviated through individual avoidance behavior if accurate
information regarding the daily health risks of multiple pollutants became available. A split sample
approach was used in this study to create and validate a multi-pollutant, health-based air quality
index. Poisson generalized linear models were used to assess the impacts of ambient air pollution
(i.e., fine particulate matter (PM2.5), nitrogen dioxide (NO2), and ground-level ozone (O3)) on a total
of 610,982 daily emergency department (ED) visits for respiratory disease obtained from 40 facilities
in the metropolitan area of Mexico City from 2010 to 2015. Increased risk of respiratory ED visits
was observed for interquartile increases in the 4-day average concentrations of PM2.5 (Risk Ratio
(RR) 1.03, 95% CI 1.01–1.04), O3 (RR 1.03, 95% CI 1.01–1.05), and to a lesser extent NO2 (RR 1.01,
95% CI 0.99–1.02). An additive, multi-pollutant index was created using coefficients for these three
pollutants. Positive associations of index values with daily respiratory ED visits was observed among
children (ages 2–17) and adults (ages 18+). The use of previously unavailable daily health records
enabled an assessment of short-term ambient air pollution concentrations on respiratory morbidity
in Mexico City and the creation of a health-based air quality index, which is now currently in use in
Mexico City.

Keywords: ambient air pollution; air quality health index; fine particulate matter; nitrogen dioxide;
ozone; respiratory morbidity; risk communication

1. Introduction

Once the world’s most polluted regions, Mexico City has made significant improve-
ments in recent decades through targeted air quality management of fuels and industrial
emissions [1,2]. However, the rate of air quality improvement has recently slowed, and air
pollution-related health burdens continue to persist among the city’s residents due to rapid
urban development and local topographical conditions that trap pollution in the Mexico
City valley [3–6]. Beyond lowering pollutant concentrations through improved air quality
management, adverse health outcomes could also be reduced through behavior modifi-
cation choices (such as choosing to remain indoors on poor air quality days). Accurate
information about the daily health risks from air pollution is necessary so that individuals
can make the best behavior modification decisions. To meet this need, the Marron Institute
of Urban Management at New York University, in collaboration with Secretaría del Medio
Ambiente (SEDEMA), developed a rigorous health-based air quality index based on local
health statistics for use as a communication tool in Mexico City.

Air quality indices communicate current air pollution conditions to the public; the
intention is to encourage individuals to change their behavior in ways that reduce poor
health outcomes in a given locale. Studies have shown increased public awareness of these
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tools, particularly among those living in highly polluted regions, those with respiratory
conditions, and in regions where doctors have been trained to provide information about
air quality indices [6–9]. Additionally, changes in behavior as a result of index alerts have
been observed in numerous locations [6,10,11]. These tools may provide immediate benefits
to existing air quality management efforts, which take time to implement and often run
into bureaucratic roadblocks.

Traditional risk communication tools, such as the U.S. Air Quality Index (AQI), have
been constructed to emphasize extreme pollution episodes, or to highlight days where
pollution levels are unusually high and above regulatory levels [12–14]. Mexico has
modeled its regulatory air quality standards off of those in the U.S., and uses a similar air
quality index based on a single-pollutant concentration model to communicate daily risk
to the public [1]. However, these and similar tools are limited in their ability to capture
the risks associated with lower levels of pollution, given that by design, anything below
their regulatory levels would be deemed as “safe” [15]. In reality, strong evidence suggests
that a large proportion of health effects attributable to air pollution occur on days where
exposures are below standard regulatory levels [16,17].

In contrast to indices based on federally-mandated pollutant concentration limits,
recent efforts have been made towards developing health-based indices using risk ratios
derived from the epidemiological literature. The first among these was Canada’s Air
Quality Health Index [18,19], which has served as a model for similar index designs in
other countries [20–22]. Most health-based index designs incorporate a multipollutant
model to better represent the reality of airshed mixtures and ambient exposures, and
may include multi-day lag structures to capture the full spectrum of short-term health
impacts [19,23,24]. Existing health-based indices typically rely on measures of mortality to
determine risk communication messages, an outcome which may not best reflect the day-
to-day needs of the general population. In contrast, using respiratory morbidity as a health
outcome is relevant across a wider range of age categories (from children to the oldest
adults) [25,26] and is also the health endpoint most likely to drive individual behavior
modification decisions [11,27–30]. Respiratory morbidity has also been demonstrated
as the only health outcome to be improved through the awareness and utilization of a
health-based air quality index in Canada, even though that index was designed based
on short-term mortality risk. Examining a population-based ten-year cohort in Toronto,
Chen et al. (2018) found that only asthma-related emergency department visits showed
significant reductions in association with air quality alerts; the six other cardiovascular
and respiratory-related health endpoints, including mortality, revealed no association with
index values. While a similar study based in Santiago, Chile did observe reductions in
mortality associated with air quality alerts, this city frequently experiences severe pollution
episodes that are uncommon in Toronto, suggesting mortality is a less useful endpoint
under moderate to low pollution settings [31].

In this study, the associations of pollutant concentrations and respiratory morbidity
outcomes were examined in Mexico City and used to produce a multipollutant, health-
based air quality index. In order to produce a rigorous index suitable for communication
to the general public, three goals were put in place at the start of the study. First, because
pollutants affect different age groups to different extents, the index should accurately
predict respiratory outcomes for both children and adults. Second, the index should
include at least three ambient air pollutants, since indices that rely too heavily on a single
pollutant are unable to accurately capture the overall health risk to a population that
is exposed to many different pollutants each day. Finally, the index needed to show a
generally normal distribution to allow for effective risk communication, particularly at
relatively lower levels of pollution.

2. Materials and Methods

Hourly and daily pollution monitoring datasets were obtained for all available moni-
tors from 2010 to 2015 in Mexico City from SEDEMA. The individual pollution variables
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were aggregated into daily exposure variables at health-relevant averaging times (24-h
average for fine particulate matter (PM2.5) (µg/m3), 8-h maximum average for ground-level
ozone (O3) (ppb), 1-h maximum for nitrogen dioxide (NO2) (ppb)). Monitors used in the
primary health analysis were selected in part due to a low number of missing monitoring
days by season and spatial representation of the metropolitan area. A frequency cut-point
of 70% of days with valid monitoring data per season, prior to data imputation, was used
as a screening criterion for inclusion. Missing values were inputted with multivariate impu-
tation by chained equations (MICE) using predictive mean matching to input non-normally
distributed pollution data. In total, there were six PM2.5 monitors, ten O3 monitors, and
five NO2 monitors that met the inclusion criteria (see Appendix A). All imputations were
completed using R [32,33].

Meteorological variables, derived from the MER air quality station (see Figure A1),
were also used in the analysis to control for the effects of temperature and relative hu-
midity, which have been shown to be associated with both respiratory health outcomes
and daily pollution concentrations [34–36]. Daily 24-h average temperature and relative
humidity values were used in the primary health analysis, although sensitivity analysis
using maximum temperature and relative humidity did not change these results.

Daily health data were available for the years 2010–2015 in the metropolitan area of
Mexico City, obtained through a data sharing agreement between SEDEMA and the city’s
Ministry of Health. Prior to this study, only weekly numbers had been made available to
researchers for analysis. Without this newly acquired daily health data, this analysis and
development of a health-based air quality index would not have been possible.

Respiratory emergency department (ED) visits were defined as upper respiratory
infections (ICD-10 codes J00–06), asthma (J45–J46), chronic obstructive pulmonary disease
(COPD) (J44), pneumonia (J12–J18), acute lower respiratory infections (J20–J22), chronic
lower respiratory disease (J40–J42, J47), and other respiratory illness (J30–J39). Daily
respiratory ED counts were calculated for age groups 2–17 years, 18+ years, and a combined
category of all ages. There were 610,982 respiratory ED visits reported from a total of 40
facilities during the study period, and approximately 80% of the total ED visits came from
a smaller subset of 17 facilities. Full descriptive statistics by age group and year are shown
in Table 1. Respiratory ED visits, rather than respiratory hospital admissions, were used
as our primary measure of population-level morbidity due to the nearly 20 times greater
number of events per day. A sensitivity analysis, which combined daily respiratory hospital
admissions with respiratory ED visits, did not modify the results of the study.

Table 1. Descriptive statistics of respiratory emergency department (ED) visits in Mexico City from
2010 to 2015, by year and age group. The total ages 2–17 years and 18+ years do not add up to
the total for all ages because of the ED visits that occur in infants aged 0–1. Respiratory ED visits
are defined as acute upper respiratory infections, asthma, chronic obstructive pulmonary disease
(COPD), pneumonia, lower respiratory infections and other respiratory illness.

Year
All Ages 2–17 Years 18+ Years

Total ED
Visits Counts/day Total ED

Visits Counts/day Total ED
Visits Counts/day

2010 103,013 282.2 72,325 198.2 12,779 35.0
2011 94,094 257.8 65,890 180.5 11,796 32.3
2012 110,777 302.7 77,243 211.0 15,094 41.2
2013 109,762 300.7 75,944 208.1 15,087 41.3
2014 111,138 304.5 74,355 203.7 20,147 55.2
2015 82,198 229.0 53,756 149.7 15,187 42.3

610,982 279.5 419,513 191.9 90,090 41.2

The study period was divided into even and odd years a priori in order to have
independent health data available for the creation and validation of the health-based air
quality index, consistent with previous work published by Perlmutt and Cromar (2019) and
Stieb et al. (2008) [19,37]. The coefficients corresponding to the associations of individual



Atmosphere 2021, 12, 372 4 of 16

pollutants and respiratory health outcomes were assessed on odd study years (2011, 2013,
and 2015), while the health-based air quality indices were validated using even study years
(2010, 2012, and 2014).

Poisson generalized linear models were used to assess the associations of individual
air pollutants with respiratory ED visits in Mexico City. Such models provide an effective
method for analyzing nonlinear time-series and are widely used to analyze the health
impacts of air pollution. Quasi-likelihood estimators were used in order to account for over-
dispersion of the data [38]. Model selection, including the number of degrees of freedom
used for natural splines, was completed using Akaike information criterion (AIC) scores
as well as inclusion of variables that are associated with both air pollution concentrations
and the health outcomes of interest [39–41]. The primary time series model for each of
the individual air pollutants used non-linear terms to control for long-term and seasonal
trends, day of the week, and same day and multiple day lagged meteorological variables
as shown in Equation (1) below:

Daily Respiratory ED Visits = pollutant concentration + day of week (6 df)
+ length of study period (24 df) + same day temperature (3 df) + lag days 1-3 temperature (3 df)

+ same day relative humidity (3 df) + lag days 1-3 relative humidity (3 df)
(1)

Natural splines were used for all of the variables (other than day of the week) using
the indicated number of degrees of freedom (df). Sensitivity analysis was also completed
using alternative degrees of freedom, based on the number of degrees of freedom with the
next lowest AIC values; this sensitivity analysis indicated that the health results were not
substantially changed using alternative degrees of freedom.

Associations between pollutant concentrations and respiratory ED visits were assessed
for individual lag days 0–5 as well as average lag structures using permutations within the
same 6-day exposure time window. Reported relative risks and 95% confidence intervals
(CI) were calculated for the interquartile range of the individual air pollutants. All analysis
was completed using R [32].

A health-based air quality index was created that included PM2.5, O3, and NO2 using
coefficients from individual pollutant models. The effects of the individual pollutants were
represented as being additive in nature in the final index. Daily index values were estimated
using coefficients derived for each pollutant in the primary analysis (see Appendix B).
These calculated daily values were then used to estimate population-level respiratory
morbidity using a similar model to that described for the individual pollutants as a way to
validate the effectiveness of the index to represent population-level health risks. A more
detailed description on how to calculate these daily index values is found in Appendix C.

3. Results

Significant associations between increased air pollution exposures and increased
counts of daily respiratory ER visits were commonly observed among multiple pollutants,
age ranges, and lag days. A complete listing of relative risks by lag structure and age
group can be seen for all three pollutants in Table 2. The coefficients and standard errors
used to calculate these relative risks are found in Appendix B for the same age groups, lag
structures, and pollutants.

Figure 1 shows the relative risk of respiratory ED visits for an interquartile increase
in PM2.5 concentrations. Significant associations are observed across multiple individual
lag days for both children (ages 2–17 years) and adults (ages 18+ years) with maximum
relative risks observed around lag days 2 and 3 in both age groups. The average of lag
days 0–3 captures this window and indicates a relative risk of 1.03 (95% CI: 1.01–1.04) per
an interquartile increase in PM2.5 concentrations among individuals of all ages. This effect
is slightly more pronounced in adults than children but effect sizes are highly similar on a
per unit basis.
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Table 2. Risk ratios (per interquartile range, or IQR) of respiratory emergency department visits in Mexico City associated
with key pollutants [fine particulate matter (PM2.5); ground-level ozone (O3); and nitrogen dioxide (NO2)], by age group
and lag structure. Significant positive associations for population-level respiratory health risk is most consistently observed
for PM2.5 and O3. Average lag structures were able to capture effects that were observed to occur over multiple days
following exposure.

PM2.5 O3 NO2

Age Lag Days Risk Ratio
(95% CI)

IQR
(µg/m3)

Risk Ratio
(95% CI)

IQR
(ppb)

Risk Ratio
(95% CI)

IQR
(ppb)

2–17 years

Lag 0–3 1.03 (1.01, 1.04) 10.69 1.02 (1.00, 1.04) 19.23 1.01 (1.00, 1.03) 15.20
Lag 0 1.00 (0.99, 1.01) 13.00 1.01 (0.99, 1.03) 22.20 1.00 (0.99, 1.02) 19.80
Lag 1 1.02 (1.00, 1.03) 13.00 1.02 (1.01, 1.04) 22.25 1.01 (1.00, 1.03) 19.80
Lag 2 1.02 (1.01, 1.04) 13.03 1.02 (1.01, 1.04) 22.30 1.01 (0.99, 1.02) 19.70
Lag 3 1.02 (1.01, 1.03) 13.05 1.00 (0.99, 1.02) 22.30 1.01 (0.99, 1.02) 19.70
Lag 4 1.01 (1.00, 1.03) 13.10 1.00 (0.99, 1.02) 22.30 1.01 (1.00, 1.02) 19.70
Lag 5 1.01 (1.00, 1.02) 13.15 1.00 (0.98, 1.01) 22.30 1.00 (0.99, 1.01) 19.70

18+ years

Lag 0–3 1.04 (1.01, 1.06) 10.69 1.06 (1.03, 1.09) 19.23 1.00 (0.98, 1.03) 15.20
Lag 0 1.01 (0.99, 1.03) 13.00 1.04 (1.02, 1.07) 22.20 1.01 (0.99, 1.03) 19.80
Lag 1 1.01 (0.99, 1.03) 13.00 1.05 (1.02, 1.07) 22.25 1.00 (0.98, 1.02) 19.80
Lag 2 1.02 (1.00, 1.04) 13.03 1.03 (1.01, 1.06) 22.30 1.01 (0.99, 1.03) 19.70
Lag 3 1.04 (1.02, 1.06) 13.05 1.02 (1.00, 1.04) 22.30 1.00 (0.98, 1.02) 19.70
Lag 4 1.02 (1.00, 1.04) 13.10 1.02 (1.00, 1.04) 22.30 1.01 (0.99, 1.03) 19.70
Lag 5 1.02 (.99, 1.04) 13.15 1.01 (0.99, 1.04) 22.30 1.00 (0.98, 1.02) 19.70

All ages

Lag 0–3 1.03 (1.01, 1.04) 10.69 1.03 (1.01, 1.05) 19.23 1.01 (0.99, 1.02) 15.20
Lag 0 1.00 (0.99, 1.01) 13.00 1.02 (1.00, 1.03) 22.20 1.00 (0.99, 1.01) 19.80
Lag 1 1.02 (1.01, 1.03) 13.00 1.03 (1.01, 1.04) 22.25 1.01 (1.00, 1.02) 19.80
Lag 2 1.02 (1.01, 1.04) 13.03 1.02 (1.01, 1.04) 22.30 1.01 (0.99, 1.02) 19.70
Lag 3 1.02 (1.01, 1.03) 13.05 1.01 (0.99, 1.02) 22.30 1.00 (0.99, 1.01) 19.70
Lag 4 1.01 (1.00, 1.02) 13.10 1.00 (0.99, 1.02) 22.30 1.01 (0.99, 1.02) 19.70
Lag 5 1.01 (1.00, 1.02) 13.15 1.00 (0.99, 1.01) 22.30 1.00 (0.99, 1.01) 19.70

Figure 1. Risk ratios of respiratory ED visits in Mexico City corresponding to an interquartile increase
in PM2.5 concentration, by lag structure and age group. PM2.5 was consistently associated with
significant increases in population-level respiratory morbidity among both children and adults over
multiple lag days.

Exposures to increased levels of ambient O3 were also observed to be significantly
associated with respiratory ED visits in Mexico City during the study period. Figure 2
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shows the relative risks for children, adults, and all ages for an interquartile increase in
O3 concentrations. Unlike what was observed for PM2.5, the peak impact of O3 appears
to occur primarily on lag day 1 among adults and lag days 1 and 2 among children. A
four-day moving average of lag days 0–3 captures this window and indicates a relative
risk of 1.03 (95% CI: 1.01–1.05) among individuals of all ages. Unlike the effects of PM2.5,
which were observed to be similar among children and adults, the effect size among adults
is more than twice as large as among children for an interquartile increase in ambient O3.

Figure 2. Risk ratios of respiratory ED visits in Mexico City corresponding to one interquartile
increase in O3 concentration, by lag structure and age group. Significant, positive associations with
O3 were consistently observed for population-level respiratory risks among children and adults in
Mexico City. Multi-day lag structures were better able to account for health risks as compared to
individual days.

As shown in Figure 3, associations of respiratory ED visits were not as consistent
for NO2 as they were for PM2.5 and O3. None of the individual lag days were associated
with increased respiratory morbidity risk among adults during the study period with
statistical significance. Among children there were significant or nearly significant positive
associations for NO2 and respiratory ED visits at lag days 1 and 4, although non-significant
positive associations were observed on other lag days. Not only were the associations less
likely to be significant for NO2 as compared to PM2.5 and O3, but the effect size was also
approximately one third of the other pollutants among individuals of all ages.

The results of the validation of the index constructed using daily concentrations of
PM2.5, O3, and NO2 are shown in Figure 4. Significant associations were observed at a
6-day moving average of lag days 0–5, with similar effect sizes for both children and adults.
The relative risks and confidence intervals are shown by age group in Table 3.
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Figure 3. Risk Ratios of respiratory ED visits in Mexico City corresponding to one interquartile
increase in nitrogen dioxide (NO2) concentration, by lag structure and age group. Associations of
NO2 with population-level health risks are not as consistent as observed for PM2.5 and O3. Significant
associations were observed among children, but not adults, for individual lag days. Average effects
at lag days 0–3 show positive, but not significant, associations among children.

Figure 4. Risk ratios of respiratory ED visits in Mexico City corresponding to one interquartile
increase in health-based index values, by lag structure and age group. The primary exposure window
of interest is the 6-day average of lag days 0–5. The index values are significantly associated with
population-level respiratory risk for both children and adults over the multi-day window of health
impacts observed for the underlying individual pollutants. Examples of lag days 0–2 and lag days 3–5
represent the extreme differences in results observed between age groups. Other lag structures (i.e.,
lag days 1–3) are significantly associated with health risks in both populations at similar levels of
relative risk.
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Table 3. Risk ratios for respiratory emergency department visits in Mexico City associated with
health-based index values, by age group and lag structure. The primary exposure period of interest is
the 6-day average observed at lag days 0–5. Significant associations were observed for both children
and adults for the critical time period at which health effects were observed across the range of
individual pollutants evaluated in this study.

Age

Health-Based Index Values

Risk Ratio (95% CI)

Lag 0–2 Lag 3–5 Lag 0–5

2–17 years 1.00 (0.99, 1.01) 1.02 (1.01, 1.03) 1.02 (1.00, 1.03)
18+ years 1.02 (1.00, 1.03) 1.01 (0.99, 1.02) 1.02 (1.00, 1.04)
All ages 1.00 (0.99, 1.01) 1.01 (1.01, 1.02) 1.02 (1.00, 1.03)

There are notable differences in the timing in regards to when significant effects are
occurring between the two age groups. The most extreme examples are presented in
Figure 4 and shown in more detail in Table 3. At the population-level, adults showed signif-
icant associations with adverse respiratory health outcomes more immediately following
exposure (i.e., lag days 0–2) but not at later lag periods (i.e., lag days 3–5). The opposite
was true for children, who continued to experience adverse health impacts of exposure to
elevated levels of air pollution 3–5 days following exposure. However, the lack of positive
associations among children at lag days 0–2 should be interpreted with caution given that
the non-significant association is driven entirely by a lack of effect observed at lag day 0, a
finding that was also consistently observed in the individual pollutant results. These values
were specifically selected to show the most dramatic differences in effects observed by age
group. Other groupings of lag days (e.g., lag days 1–3, etc.) show significant associations
for population-level health risks among both children and adults with similar magnitudes
of relative risks (t-statistic for children at lag days 1–3 = 2.55, t-statistic for adults = 2.49).

4. Discussion

An ideal health-based air pollution index is capable of easily and accurately commu-
nicating the daily health risks of outdoor air pollution exposures to the public. The index
should take into account the effects of multiple pollutants at both high and relatively low
concentrations and be able to represent risks that occur across broad age ranges in order
to be meaningful for the general population. Beyond these general goals, there was no
pre-determined combination of pollutants stipulated for inclusion in the generation of this
study’s final index model.

The inability to detect a stronger NO2 effect, especially among adults, is likely due
to increased exposure misclassification when using central site monitors in estimating
population level health effects. Given the much higher NO2 concentrations near major
roads and experienced during commute times [42–45], the central site measurements of
NO2 are likely not accounting for the true exposures of affected populations. Despite this
limitation, the coefficient for NO2 associations with population-level respiratory morbidity
was used in the creation of an air pollution index in the absence of more precise exposure
estimates for NO2.

Like many existing health-based risk communication approaches, this index was
designed to consider the multi-day effects that have been consistently observed to be
associated with air pollution exposures rather than a same-day, rolling hourly exposure to
air pollution [46]. It is also agnostic towards existing regulatory limits or recommended
standards which are considered in some air quality indices (e.g., AQI in the US and the
health-based index in Hong Kong) [14,47]. Rather, it was built to consider observable
population-level health risks and is created using coefficients developed specifically for
Mexico City. It is possible that a generic health-based index using coefficients derived
from a variety of locales could be developed [37,48], but this approach was not tested in
this study.
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Conversely, this index is unlike existing health-based risk communication indices
for air pollution [19–21,31] in that it was built specifically to consider the respiratory
morbidity risks of air pollution rather than mortality risks. It is also unique in its ability to
provide individuals with reliable information not just on high pollution days but also on
days typically described as having good or moderate levels of air pollution. Susceptible
individuals already experience adverse health risks at these lower concentrations [16,17,49]
but previously have not had access to the information that could inform daily behavior
modification decisions. However, it is not recommended that this index replace existing
mechanisms that trigger required actions based on categories of outdoor pollution levels,
such as school closures when air quality exceeds a specific level on their existing index.
These existing mechanisms are well-suited to both reduce continued emissions of pollutants
and provide broad-based guidance for reductions in exposures [7,9,11,50]. Instead, this
study’s index should be a health-focused supplement for use by individuals to inform
behavior modification decisions, in addition to the effective regulatory actions are already
in place.

It is also recommended that communication of health-based air pollution index val-
ues avoids the use of strict cut-points both in visual and descriptive dissemination of
information. Existing communication approaches rely heavily on strict cut-points in the
messaging of outdoor air pollution levels, which have little scientific basis and do not
reflect the individual heterogeneity of effects that occur across healthy individuals, much
less among individuals with increased susceptibility who this index is specifically designed
to help [51]. Designated alert levels may also produce information overload, reducing
individual behavior change when the level is breached over multiple days [52,53]. Rather
than specifying categories of health risks using cut-points, it is preferable to instead identify
categories of air pollution levels (e.g., days with relatively low, typical, or relatively high
pollution levels in the context of what is commonly observed in the region). It is likely
that colors may add to the effectiveness of communication of the index in this regard and
if they are used they should reflect the continuous, non-threshold scale of health risks
accompanying index values. The index values will be most effective when communicated
in a consistent manner that allows susceptible individuals to learn the level at which they
might want to consider behavior modification to reduce personal exposure to outdoor air
pollution. Therefore, while the choice of scaling values and maximum index values is fluid,
it should not be modified once individuals begin to adapt to the new index values.

Many important decisions regarding the spatial and temporal resolution of the index
values will need to be made in order to best communicate the health risks of ambient
outdoor air pollution in Mexico City. It is not recommended that these values be combined
with real-time, personal monitoring of air pollutants, given that it was developed based
on longer pollutant averaging times measured at central site monitors. Instead, the use
of rolling rather than daily pollutant concentrations using the same averaging times as
used in the study may allow for “real-time” reporting of index values. Even while this
approach best supports the science behind the index, special consideration needs to be
made for the available resources of local air quality managers in order to encourage the
most consistent risk communication to the general public. In considering these important
issues we have recommended that the reporting of daily temperatures be used as a guide
in how to best use the air pollution index values to communicate the health risks of air
pollution. In particular this may mean emphasizing forecasted values of index values to
allow susceptible individuals to make plans regarding their personal behaviors. It may
also mean allowing the public to learn for themselves the levels at which they will start to
take specific actions to reduce exposures.

In addition to working with traditional media outlets and developing web-based
and mobile-based communication tools, it may be advisable to specifically train primary
health care providers in the utilization and interpretation of air pollution index values.
Previous research has shown that this is a viable mechanism for informing the public of air
pollution indices, particularly for individuals with preexisting respiratory diseases [6,8].



Atmosphere 2021, 12, 372 10 of 16

This approach may also provide an accelerated path towards targeting individuals in the
population who are most susceptible, and thus most likely to benefit from this tool.

Finally, special attention should be paid to environmental justice and health literacy
issues in considering how the information can be best communicated to the public. This is
especially true given that socioeconomic status impacts both susceptibility to the health
risks of air pollution and the ways in which information is most frequently derived [54–57].
Consideration of relevant environmental justice issues in communicating this index, and
maximizing the ability of all individuals to have ready access to reported air pollution
index values, will result in the greatest mitigation of adverse public health risks associated
with daily air pollution exposures [52].

5. Conclusions

Air pollution is significantly associated with respiratory morbidity outcomes in Mexico
City. Based on newly available hospital data, locally-derived coefficients associated with
three major air pollutants were derived and used in the design of a health-based air quality
index. In conjunction with forecasted pollutant concentrations, daily index values can
effectively communicate health daily risks to individuals of all ages across a wide range
of ambient air quality conditions. While construction and validation of a health-based
index was the goal of this research, the ultimate intent is to communicate an index that not
only accurately communicates daily health risks to the public, but an index that is actually
adopted by the public. This requires outreach and advocacy by local government, as well
as local public health and environmental organizations. Local air quality managers are
advised to communicate these values to the public in a way that reflects the non-threshold
health risks associated with various air pollution levels. Additionally, health care providers
may be a key source in distributing index information, and special care should be taken
to ensure the tool is distributed equitably across income and education levels. Moreover,
expansion to the public requires development of mobile apps, websites, or other risk
communication methods that ensure that the general public has access to current index
values. Such measures have already been adopted by SEDEMA in Mexico City using the
index developed in this study (http://aire.cdmx.gob.mx/conoce-tu-numero/, accessed on
9 March 2021) and by working with medical practitioners to expand outreach efforts to the
public. As such, while the focus of this research was on the construction and validation of
a health-based air quality index, its translation continues to be implemented by SEDEMA,
enabling the citizens of Mexico City to make informed decisions on when to modify their
outdoor activities, reduce their exposure to air pollution, and potentially reduce respiratory
morbidity health outcomes.
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Appendix A. Mexico City Monitoring Locations

Figure A1. Monitoring locations in Mexico City and their abbreviated names.

Table A1. Monitors included in determining average city-wide pollution concentrations in Mexico
City from 2010 to 2015, by pollutant. Monitors (identified by three-letter codes) included in each
group had missing data inputted prior to averaging. Monitors are listed in alphabetically order and
ordering does not imply any additional information.

PM2.5 Monitor Group: CAM, COY, MER, SAG, SJA, TLA, UIZ

O3 Monitor Group: COY, FAC, IZT, MER, PED, TAH, TLA, SAG, UIZ, XAL

NO2 Monitor Group: IZT, MER, PED, SUR, UIZ
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Table A2. Frequency of monitoring days by season for PM2.5 monitors in the Mexico City Metropoli-
tan Area, from 2010 to 2015. Frequencies represent the number of valid monitoring days prior to data
imputation. Monitors in bold correspond to the monitors used in the primary health analysis for
PM2.5. A monitoring threshold of 70% per season was used as the cut-point criterion for consideration
in the primary health model.

PM2.5 Station ID
Monitoring Frequency per Seasonal Period

1 2 3 4

ACO 31.1 24.8 18.2 12.9
AJM 11.8 12.0 13.7 12.6
CAM 83.5 84.0 69.5 80.2
CCA 13.8 13.2 19.7 27.7
COY 94.5 87.7 90.0 89.2
HGM 45.8 51.7 46.0 44.6
MER 93.2 90.8 79.5 92.3
MGH 13.7 13.1 14.0 13.1
NEZ 52.0 42.5 64.0 69.4
PED 48.5 50.3 64.0 59.8
PER 39.5 40.2 24.8 28.2
SAG 85.8 81.8 86.3 80.0
SFE 44.9 46.5 49.5 35.1
SJA 91.5 90.8 77.1 73.5
TLA 80.3 85.8 71.8 94.3
UAX 46.5 53.5 55.7 51.1
UIZ 90.8 90.5 93.1 94.8
XAL 39.8 50.2 51.7 55.2

Appendix B. Coefficients from the Primary Health Analysis

Table A3. Coefficients and standard errors of respiratory emergency department visits in Mexico City associated with key
pollutants, by age group and lag structure. Coefficients for lag days 0–3 for PM2.5, O3, and NO2, for individuals of all ages,
were used in the creation of the final validated air pollution index.

PM2.5 O3 NO2

Age Lag Days Coefficient Standard Error Coefficient Standard Error Coefficient Standard Error

2–17 years

Lag 0–3 0.002473 0.000801 0.001231 0.000502 0.000834 0.000527
Lag 0 −0.000050 0.000557 0.000433 0.000372 0.000130 0.000354
Lag 1 0.001403 0.000549 0.000993 0.000367 0.000607 0.000350
Lag 2 0.001817 0.000539 0.001043 0.000369 0.000357 0.000347
Lag 3 0.001511 0.000539 0.000157 0.000360 0.000347 0.000339
Lag 4 0.000931 0.000538 0.000062 0.000338 0.000481 0.000332
Lag 5 0.000682 0.000534 −0.000057 0.000325 0.000059 0.000326

18+ years

Lag 0–3 0.003535 0.001185 0.002854 0.000749 0.000272 0.000790
Lag 0 0.000804 0.000803 0.001777 0.000557 0.000297 0.000528
Lag 1 0.001062 0.000800 0.002070 0.000549 −0.000070 0.000526
Lag 2 0.001726 0.000788 0.001437 0.000553 0.000305 0.000521
Lag 3 0.002776 0.000784 0.000863 0.000541 −0.000055 0.000509
Lag 4 0.001666 0.000779 0.000974 0.000505 0.000474 0.000498
Lag 5 0.001137 0.000775 0.000605 0.000487 0.000072 0.000489

All ages

Lag 0–3 0.002586 0.000711 0.001593 0.000447 0.000524 0.000470
Lag 0 0.000176 0.000494 0.000808 0.000332 0.000106 0.000315
Lag 1 0.001338 0.000487 0.001304 0.000326 0.000434 0.000312
Lag 2 0.001808 0.000478 0.001066 0.000328 0.000304 0.000309
Lag 3 0.001518 0.000478 0.000235 0.000321 0.000071 0.000303
Lag 4 0.000803 0.000477 0.000174 0.000301 0.000280 0.000296
Lag 5 0.000648 0.000474 −0.000031 0.000290 −0.000109 0.000291

Appendix C. Calculating Daily Health-Based Index Values

A summary of the methods used to calculate daily index values is shown in the flow
chart illustrated in Figure A2. Of particular note is the identification of the averaging
time for each pollutant that is to be used for each pollutant along with the accompanying
coefficients derived from the time-series analysis.
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Figure A2. A Guide to calculating a daily air pollution index in Mexico City. Coefficients provided correspond to lag days
0–3 associations for the individual pollutants and respiratory ED visits for all ages of individuals. The provided scaling
value corresponds to the maximum daily index value observed from 2010 to 2015. This value can be modified as desired in
order to re-scale index values. Similarly, step 4 shows the creation of daily index values that range from 0 to 10. Alternative
ranges of values can be used if a maximum value of 10 is not desired. It is possible that maximum excess risk will be greater
than the scaling value provided, resulting in an index value greater than the maximum value selected.

The precise values of these coefficients are less important than the ratio of the coeffi-
cient values, which indicates the increased importance of PM2.5 and O3 when computing
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the index values as compared to NO2. These coefficients were derived from the lag 0–3
associations among individuals of all ages but the use of slightly different coefficients using
different age groupings or lag structures would not be expected to alter the validation of
the created index as long as the ratios between the pollutants remained the same.

It is important to note that it is possible that the calculation of excess risk from an
individual pollutant may be negative on a given day. In these circumstances it is essential
that this value is changed to zero when calculating the combined daily excess risk as shown
in Step 1 of the flow chart illustrated in Figure A2. Failure to do so will result in index
values that will not accurately reflect population-level risks.

As identified in Step 3 of the flow chart, an initial scaling value corresponding to the
maximum excess risk observed during the study period has been provided. This value can
be changed in accordance with priorities and preferences of local staff but once selected
should not be modified. This value, in conjunction with the desired maximum index value,
will determine how the index values are scaled for communication purposes. It does not
change the ability of the index to represent health risks. It is possible that the daily excess
risk may be greater than the selected scaling value. When this happens the calculated
index value will be greater than the maximum index values which can be easily planned
for during formulation of how the index is communicated to the public.
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