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Abstract: CloudSat is often the only measurement of snowfall rate available at high latitudes,
making it a valuable tool for understanding snow climatology. The capability of CloudSat to
provide information on seasonal and subseasonal time scales, however, has yet to be explored. In
this study, we use subsampled reanalysis estimates to predict the uncertainties of CloudSat snow
water equivalent (SWE) accumulation measurements at various space and time resolutions. An
idealized/simulated subsampling model predicts that CloudSat may provide seasonal SWE estimates
with median percent errors below 50% at spatial scales as small as 2◦ × 2◦. By converting these
predictions to percent differences, we can evaluate CloudSat snowfall accumulations against a
blend of gridded SWE measurements during frozen time periods. Our predictions are in good
agreement with results. The 25th, 50th, and 75th percentiles of the percent differences between the
two measurements all match predicted values within eight percentage points. We interpret these
results to suggest that CloudSat snowfall estimates are in sufficient agreement with other, thoroughly
vetted, gridded SWE products. This implies that CloudSat may provide useful estimates of snow
accumulation over remote regions within seasonal time scales.
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1. Introduction

Most snow that falls on the planet lands over remote and unpopulated terrain where
few in situ measurements are available [1,2]. Understanding the amount of snow that falls
in these regions is important since the Snow Water Equivalent (SWE) stored in remote
snowpack can determine the freshwater supply for whole ecosystems and societies. Es-
timates of snow accumulation in remote regions are difficult to come by, however, and
products that exist often carry large uncertainties. Reanalysis models or interpolated hy-
drological products rely on in situ SWE observations thousands of km apart, and SWE
estimates between different methods can vary significantly [3]. Satellite measurements
do not have a sampling discrepancy between inhabited and uninhabited terrain, so they
are a logical choice for measuring snow in remote locations. Indeed, recent observations
from the Gravity Recovery and Climate Experiment (GRACE-FO) have successfully been
used to provide novel information on total snowpack in mountainous regions and high
latitudes [4]. This measurement inherently combines all mass-change that occurs during a
time period, however. If one is interested in total deposited snowfall, that information will
be absorbed alongside any snowmelt, rain, evaporation, or blowing that occurs.

Integrated satellite precipitation estimates can theoretically be used to provide a purer
measurement of the amount of snow that falls in a region over time. Passive microwave
sensors provide the most frequent measurements of precipitation. These measurements
have historically had errors over snow-covered surfaces, though recent algorithms are
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making strides in resolving this issue [5,6]. Satellite radar can provide estimates of surface
precipitation rates over most kinds of terrain, as long as the topography is relatively smooth.
CloudSat is the first satellite radar to provide global snowfall measurements [7]. The Dual
Frequency Precipitation Radar (DPR [8]) on the GPM satellite has a maximum latitude that
misses the highest latitudes where snow is most frequent, and it has a minimum detectabil-
ity that prevents it from seeing over 90% of snowfall events on the planet [9,10]. CloudSat
has been used to calculate the amount of snow falling across the entire planet [1,11] and to
understand regional snowfall climatologies across mountain ranges [12], Antarctica [13],
Greenland [14], Arctic Ice Sheets [15], and high latitude oceans [16–18]. CloudSat snowfall
rates have also been used as a target for evaluations of snowfall in reanalyses [4,19] and
climate models [20]. CloudSat retrievals have not yet been used to measure accumulations
over discrete time periods, however. This may be due in part to perceived uncertainties
from CloudSat’s infrequent coverage, but this uncertainty is currently ill-defined. If the
uncertainty for CloudSat retrievals of monthly snowfall is within acceptable limits, it could
open up new applications for satellite radar measurements of snowfall.

The purpose of this study is to determine the accuracy of CloudSat snow accumulation
over discrete time periods at seasonal and subseasonal time scales. We predict this accuracy
by drawing a distribution of percent errors in a modelled CloudSat global retrieval scenario.
We evaluate our prediction by comparing real CloudSat snowfall accumulation estimates
against a blend of best available estimates of SWE time-differences. CloudSat and surface
SWE data sources are described in Section 2. The method to evaluate CloudSat products
and SWE estimates is described in Section 3. Predictions of CloudSat accuracy are drawn in
Section 4. CloudSat estimates of snow accumulation are evaluated in Section 5. The study
is summarized in Section 6.

2. Data
2.1. CloudSat 2C-SNOW-PROFILE

CloudSat was launched on 28 April 2006. Only data from 2006–2015 are used in this
study to be conterminous with the gridded SWE datasets (see Section 2.2). CloudSat has
an orbital apogee of 81 degrees and repeats its orbital track roughly every 16 days. Cloud-
Sat carries the Cloud Profiling Radar (CPR), a W band (3.2 mm) radar with a minimum
detectable reflectivity of −30 dBZ. CPR reflectivities are converted to snowfall rates via
the 2C-SNOW-PROFILE [21]. This product relies on a Bayesian optimal estimation algo-
rithm. The algorithm uses measurements of reflectivity and ECMWF analysis to update
prior assumptions of microphysical properties and retrieve snowfall rates. The CloudSat
snowfall rates are presented as lognormal snowfall probability distributions. The standard
deviations of these distributions, herein referred to as the Bayesian uncertainty, tend to be
between 150% and 250% of the mean value. CloudSat is still operating today, but observa-
tions have not been continuous. There are numerous gaps in the data record, particularly
during 2009 and 2011 for winter snowfall. In 2012, CloudSat experienced a battery failure,
and after the battery was repaired it operated in a “Daylight Only” mode that reduces the
frequency of retrievals as a function of distance to the northern orbital peak. The loss of
CloudSat snowfall measurements results in a bias of annual snowfall measurements from
CloudSat after 2012 [22].

The Bayesian uncertainty is not the only source of error that can impact 2C-SNOW-
PROFILE retrievals. If the ice crystals in a size distribution are not sufficiently small
compared to the incident wavelength, non-Rayleigh scattering effects will dampen the
relationship between W band reflectivity and snowfall rate, adding increasingly large
uncertainties for snowfall rates at high reflectivity. Atmospheric gasses can attenuate
W band reflectivity, but this effect is typically accounted for in the 2C-SNOW-PROFILE
algorithm and can be safely ignored [23]. Attenuation due to liquid water may also
be substantial in mixed phase clouds, and no attempt is made to identify or offset this
attenuation. If there are an excessive number of snowflakes in a particle size distribution
(PSD), multiple scattering effects may artificially increase the reflectivity of a PSD by
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introducing cross sections from snowflakes outside of the radar footprint. High snowflake
concentration also increases W band attenuation in a fashion that tends to cancel out the
increase due to multiple scattering [24]. Finally, the 2C-SNOW-PROFILE defines “surface
precipitation rate” as the precipitation rate 1.25 km above the surface. This is done to
remove the “blind zone” of spurious radar measurements that obfuscate precipitation
reflectivity near the ground, but it will also remove information on any sublimation [25]
or low-level precipitation development [26] that may occur within the boundary layer.
The surface clutter will often spread beyond the 1.25 km threshold over mountains and
cliffsides, and in these cases the 2C-SNOW-PROFILE flags a retrieval as unreliable.

2.2. Gridded SWE Products

Gridded SWE products are generated from forward models of SWE that are con-
strained by collocated observations at set time intervals. In this study, we use the Blended-4
(B4) gridded SWE product developed by the Canadian Sea Ice and Snow Evolution (Can-
SISE) network [3]. B4 contains daily northern hemisphere (NH) SWE on ground estimates
from 2006 to 2015 at 0.5◦ resolution. The B4 product is the average (or blend) of four
gridded SWE products: the Canadian Meteorological Center (CMC) gridded SWE prod-
uct, CROCUS, GlobSnow (GS) and MERRA-2 (M2) datasets. The CMC dataset (updated
by Ross Brown) provides daily estimates of gridded snow depth and SWE at 1⁄3 degree
resolution [27]. Background field estimates are derived using a simple snowpack model
as described in Brasnett [28] which is forced with six-hourly ECMWF two-meter air tem-
perature and precipitation fields. The data are then interpolated to the grid using an
optimal interpolation data assimilation scheme that ingests in situ data from approximately
8000 survey sites across North America (NA). CROCUS is a complex, physically based,
energy and mass balance snow model developed by the National Centre for Meteorological
Research (NCMR) at 1◦ resolution [29]. The CROCUS model operates as a replacement
snow model in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land
model, driven by ERA-Interim meteorology and provides daily estimates of SWE for multi-
ple snow layers. The GS (version two) product developed by the European Space Agency
(ESA) is the only satellite-based component of the B4 which provides daily estimates
of SWE through a combination of in situ data and satellite temperature brightness (TB)
measurements [30]. In situ snow depth observations are used to force a single layer snow
emission model to simulate passive microwave estimates across the NH. Snow grain size is
then estimated through the optimized agreement between simulated and observed satellite
TB estimates, which are then kriged across the NH to produce a spatially contiguous map
of assimilated SWE at 25 km resolution. This product is masked over alpine regions due to
uncertainties related to microwave estimates over complex terrain. M2 is a reanalysis prod-
uct developed by the National Aeronautics and Space Administration’s (NASA) Global
Modeling and Assimilation Office (GMAO) [31]. M2 uses the Catchment land surface
model and an intermediate complexity snow scheme to provide SWE estimates at 0.5◦ by
0.6◦ resolution. In situ data are ingested using a 3DVAR assimilation scheme of nearby
surface observations, which is then used as forcing data for the Goddard Earth Observing
System (GEOS) atmospheric model to derive gridded SWE estimates.

There are several sources of error in SWE data products. SWE can be underestimated
at in situ stations due to “gauge undercatch”, whereby falling snow is not captured by the
gauge opening during strong winds [32]. SWE products can have errors resulting from
errors in modelled precipitation, especially for grid cells that are positioned further away
from observation sites, since these have less information to constrain model estimates [29].
Various sources of error propagating from assumptions in forward models may also add
uncertainty to final gridded SWE estimates [30]. The blending approach has been shown
to reduce SWE uncertainty, however, as well as diminishing any overall bias from these
effects [3,33–38].
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2.3. Weather Observations and Reanlaysis

An hourly simulation of global precipitation is drawn from the NCAR Global Cli-
mate Four-Dimensional Data Assimilation (CFDDA) Hourly 40 km Reanalysis [39]. This
Reanalysis provides estimates of total (combined water and liquid) precipitation at 0.4◦ in-
crements. CFDDA incorporates hourly and six-hourly surface and upper air measurements.
Land surface conditions such as surface temperature and soil moisture are initialized by
the NASA Global Land Data Assimilation System and compiled using the Noah Land
Surface Model (LSM). Sea surface temperatures are provided by the National Center for
Environmental Prediction (NCEP) version 2.0 global and daily dataset. At the time of its
creation, it was the highest temporally resolved reanalysis model. While newer reanalysis
models such as ERA5 can now provide hourly reanalysis estimates with similar or higher
resolution, the purpose of this reanalysis model is more to provide a realistic simulation
of weather patterns than to account for the best approximation of real weather at any
particular period in Earth’s history. CFDDA is sufficient for this purpose.

Daily maximum temperatures come from the Climate Prediction Center (CP) Global
Daily Temperature dataset. This dataset is generated by National Oceanic and Atmo-
spheric Administration/Ocean Atmospheric Research/Earth Science Research Laboratory
(NOAA/OAR/ESRL) Physical Science Laboratory (PSL) in Boulder, Colorado. These
temperatures represent a combination of weather station and satellite observations.

3. Method

As long as temperatures remain below freezing, the total snow that falls from the
atmosphere during a time period should be comparable to the change in surface snow
as measured at the beginning and end of that time period. We refer to both of these
measurements as ∆SWE, assuming herein that ∆SWE ≥ 0. A B4 measurement of ∆SWE
(∆SWEB) is defined as the difference of SWE between any two consecutive days over the
same grid cell,

∆SWEB = SWEB f − SWEBi (1)

with SWEB f and SWEBi referring to the final and initial B4 measurement of SWE. A
Cloudsat measurement of ∆SWE (∆SWEC) is defined as the average measured snowfall
rate for a grid cell multiplied by the sample collection time,

∆SWEC = ∑ S
N t (2)

with S representing a single snowfall rate retrieval, N representing the number of retrievals,
and t representing the time period. Calculating ∆SWEC and ∆SWEB adds new uncer-
tainties to the data sources. ∆SWEB will have a Gaussian random error representing the
different estimates from the constituent SWE products. In some measurements, ∆SWEB
had negative values. This could be due to sublimation/melting or random errors from
the ∆SWE blending process. Either way, −∆SWE cannot be evaluated against CloudSat,
so these measurements are rejected from the study. The accuracy of ∆SWEC relies on
CloudSat gathering a representative average precipitation rate over a measurement time
period. At finer spatiotemporal resolutions CloudSat snowfall estimates have larger dis-
agreements with surface evaluations, since ∆SWEC may be disproportionately impacted
by non-precipitating periods or snowfall rates during individual storms that will often be
stronger than average snowfall rates [34].

∆SWEC and ∆SWEB are compared against each other at 20◦ × 5◦, 10◦ × 5◦, and
5◦ × 5◦ spatial resolutions, with the 10◦ × 5◦ and 5◦ × 5◦ nested inside of larger 20◦ × 5◦

grid cells, at 10-day, 20-day, and 30-day time periods. We draw comparison grid cells over
relatively flat regions to prevent SWE and CloudSat errors that are linked with complex
topography (Figure 1). In all of these regions, the average surface clutter within the range
gates that determine CloudSat-retrieved surface snowfall rates are negligible.
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4. Estimated Accuracy of CloudSat Snow Accumulation Retrievals

Before evaluating CloudSat measurements using the method described in the pre-
vious section, we first generate predictions of CloudSat seasonal and subseasonal snow
accumulation accuracy at varying resolutions. The process used to generate this prediction
is visualized in Figure 2. CloudSat snowfall accumulation errors can be divided into two
categories: sampling errors and retrieval errors. Retrieval errors can be further subdi-
vided into Bayesian retrieval errors, which can be described by the probability distribution
function accompanying retrievals in the 2C-SNOW-PROFILE, and non-Bayesian retrieval
errors, which represent all other retrieval errors discussed in Section 2. Sampling errors
are simulated by subsampling CloudSat orbit tracks from an arbitrary three-month period
(January, February, and March of 2000) of hourly precipitation generated by CFDDA pre-
cipitation estimates (Figure 2a,b). Bayesian uncertainty is simulated by multiplying the
measurements from each simulated satellite orbit with a random coefficient generated from
a lognormal probability distribution function with a mean of 1 and a standard deviation of
200%. This corresponds to a typical Bayesian uncertainty from the 2C-SNOW-PROFILE. No
attempt is made to simulate non-Bayesian retrieval errors, such as non-Rayleigh scattering
or blind zone biases. This introduces some uncertainty, though such errors are expected
to be infrequent over the sample grids used in this study–away from the mountains and
water bodies typically responsible for snow storms with heavy precipitation or shallow
cloud depths [2].
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In order to generate distributions of retrieval uncertainty, the CFDDA product and the
simulated satellite retrievals are averaged at the same spatiotemporal resolutions (30 days
and 10◦ × 5◦ as an example, in Figure 2c,d). The accuracy of ∆SWEC can be estimated by
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calculating the distribution of percentage errors (PE) at all grid cells for each space and
time resolution,

PE = 100 ∗ ∆SWEtrue − ∆SWEestimate
∆SWEtrue

(3)

with ∆SWEtrue and ∆SWEestimate referencing the full and subsampled grid cells from
Figure 2c,d, respectively. These distributions are visualized as box-plot distributions for
some example spatiotemporal resolutions in Figure 3. Note that the distributions in
Figure 3 are presented without fliers (Figure 3 with fliers is presented in the Appendix A).
This is done for visualization’s sake, as some fliers approach 10000%. The presence of these
rare errors may be concerning, and they should be considered if CloudSat is to be used
for seasonal or subseasonal measurements. However, these extreme errors did not exhibit
any latitude dependence, indicating that they are more likely a result of the simulated
Bayesian uncertainty rather than the sampling error. Since the simulated lognormal PDF
is unbounded, it allows for the potential of extremely high errors that do not occur in
CloudSat retrievals. This is an admitted flaw of the simulation. We do not believe it will
strongly impact the quantitative results of this study, however, since it primarily affects
outliers, and the results of this section will be evaluated in terms of percentiles.
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On seasonal time scales, ∆SWEC is predicted to have median PE near 50% at the
smallest spatial scale of 2◦ × 2◦, and near 20% at the largest spatial scale of 20◦ × 5◦. On
monthly time scales, estimated median PE are still near 50% at spatial scales as small
as 5◦ × 2◦. These estimates are not weighted by sampling frequency, so they are likely
larger or smaller depending on latitude. Whisker ranges are typically several times larger
between the 75th and 95th percentiles than the 5th and 25th percentile, indicating again
that errors may often be considerable even if median errors are relatively low. The overall
picture is that theoretical accuracy improves, and the variation of errors decreases, with
increasing spatial and temporal scale.

PE distributions cannot be directly evaluated, however, since the gridded B4 prod-
uct carries too much uncertainty to be considered as a ∆SWEtrue. An alternative mea-
surement of uncertainty that can be evaluated against measured data is the percentage
differences (PD),

PD =
200(∆SWE1 − ∆SWE2)

(∆SWE1 + ∆SWE2)
(4)

with ∆SWE1 and ∆SWE2 here representing the full and subsampled grid cells from
Figure 2c,d, respectively. Box plots of predicted PD distributions are provided in Figure 4.
The 90-day PD distributions are not calculated since there are no 90-day frozen time peri-
ods that can be used to generate ∆SWE cells for evaluation. As an example, if a CloudSat
measurement could retrieve a snowfall accumulation of 20 mm with a median percent
difference error of 50%, the true snow accumulation would be between 12 and 33 mm half
of the time.
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between natural and re-analysis estimated precipitation rates may adversely influence our
simulations of CloudSat snowfall retrieval error distributions. Since the purpose of this
simulation is just to recreate sampling and relative errors, it is also possible that heavier
snowfall events would have no noticeable effect on results. Regardless, such extreme pre-
cipitation would be rare events, and they are not expected to impact the central distribution
of the median, first, and third percentile in the displayed plots.

5. Evaluation of CloudSat Snow Accumulation Estimates

We evaluate our predicted CloudSat accuracy by comparing collocated ∆SWEC with
∆SWEC. Evaluations are presented at all combinations of 5◦ × 5◦, 10◦ × 5◦, and 20◦ × 5◦

and 10-day, 20-day, and 30-day resolutions in Figure 5. ∆SWE can vary by two orders
of magnitude and the differences between ∆SWEC and ∆SWEB are heteroscedastic, so
results are presented on a log-log scale. There is a visible agreement between the two
measurements of ∆SWE in all panels, though the correlation decreases with finer space
and time resolutions. The strongest correlation coefficient of 0.8 occurs for 20◦ × 5◦ grid
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cells on 20 and 30 day time periods. The next highest correlation coefficient (0.7) comes for
10◦ × 5◦ grid cells on 30 day time periods. The lowest observed correlation coefficient is
0.4 at 5◦ × 5◦ grid cells over 10 day time periods.

Atmosphere 2021, 12, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 5. Comparisons between B4 and CloudSat estimates of ∆  at different spatiotemporal 
resolutions. Subplots (a,d,g) have 10 day time periods. Subplots (b,e,h) have 20 day time periods. 
Subplots (c,f,i) have 30 day time periods, Subplots (a–c) have 20° × 5° spatial resolution. Subplots 
(d–f) have 10° × 5° spatial resolution. Subplots (g–i) have 5° × 5° spatial resolution. 

The differences between biases and correlations in different datasets may also reflect 
conditional biases on CloudSat or B4 ∆  estimates. For example, one might expect a 
low-bias from CloudSat at warmer temperatures when retrieved snowfall rates would be 
largest [40]. To investigate this possibility, we consider three sensitivities in Figure 6: A 
regional sensitivity, a sampling sensitivity, and a temperature sensitivity. Regions repre-
sent different longitude spans. NA (North America) refers to any central longitude less 
than 0, EA (Eurasia) refers to any central longitude less between 0° and 60°, ES (East Sibe-
ria) refers to the region between 60° and 90°, and WS (West Siberia) refers to any longitude 
greater than 90°. Sampling sensitivity is measured in terms of an overpass ratio, repre-
senting the relative number of days during a sampling period that a Cloudsat Measure-
ment was conducted. Overpass ratio is mostly a function of latitude, but it will also be 
impacted by the 2012 battery anomaly. Temperature is represented by the maximum tem-
perature during a grid cell measurement. 

  

Figure 5. Comparisons between B4 and CloudSat estimates of ∆SWE at different spatiotemporal
resolutions. Subplots (a,d,g) have 10 day time periods. Subplots (b,e,h) have 20 day time periods.
Subplots (c,f,i) have 30 day time periods, Subplots (a–c) have 20◦ × 5◦ spatial resolution. Subplots
(d–f) have 10◦ × 5◦ spatial resolution. Subplots (g–i) have 5◦ × 5◦ spatial resolution.

At resolutions that provided relatively well correlated datasets, ∆SWE values tend to
be larger when measured by B4. For 20◦ × 5◦ resolutions, this bias is fairly consistent along
the ∆SWE domain. At finer resolutions, the relationship between ∆SWE and ∆SWEC
appears to be skewed; the maximum ∆SWEB tends to be lower than the maximum ∆SWEC
while ∆SWEB becomes disproportionately larger at low ∆SWEC. This behavior is likely
related to undersampled CloudSat measurements. If a grid cell is not adequately capturing
the average precipitation rate during a sample period, a chance observation of a few
storms may lead to an anomalously high ∆SWEC. If significant storms are missed, it may
lead to an anomalously low ∆SWEB. A simpler interpretation may also be that ∆SWEC
becomes uncorrelated with ∆SWEB when CloudSat measurements are too sparse to provide
meaningful snow accumulation information. Indeed, within the finest spatiotemporal
resolutions tested (10 days, 5◦ × 5◦), the correlation coefficient increases with increasing
sampling frequency at higher latitudes; the correlation coefficient between log-transformed
∆SWEB and ∆SWEC increases from 0.4, 0.5, and 0.6 as the along central grid latitudes
increases from 62.5, 67.5, and 72.5.

The differences between biases and correlations in different datasets may also reflect
conditional biases on CloudSat or B4 ∆SWE estimates. For example, one might expect a
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low-bias from CloudSat at warmer temperatures when retrieved snowfall rates would be
largest [40]. To investigate this possibility, we consider three sensitivities in Figure 6: A
regional sensitivity, a sampling sensitivity, and a temperature sensitivity. Regions represent
different longitude spans. NA (North America) refers to any central longitude less than 0,
EA (Eurasia) refers to any central longitude less between 0◦ and 60◦, ES (East Siberia) refers
to the region between 60◦ and 90◦, and WS (West Siberia) refers to any longitude greater
than 90◦. Sampling sensitivity is measured in terms of an overpass ratio, representing
the relative number of days during a sampling period that a Cloudsat Measurement was
conducted. Overpass ratio is mostly a function of latitude, but it will also be impacted
by the 2012 battery anomaly. Temperature is represented by the maximum temperature
during a grid cell measurement.
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Figure 6. Collocated ∆SWE measurements for 10◦ × 5◦ grid cells at one month resolution, as in Figure 5, but colored with
respect to region (a), overpass ratio (b), and maximum temperature (c).

These sensitivity tests do not reveal any obvious biases that are not better described
through decreased correlation. Warmer temperatures lead to larger snowfall accumulations,
though this could be expected without looking at any data. From a climate standpoint, it is
interesting that EA contains the largest wide-scale accumulations of snow and the warmest
frozen 30-day time periods in our North-Hemispheric dataset. Looking at Figure 6b, it
appears that grid cells with a higher overpass frequency also have a stronger correla-
tion. This is predictable for the same reason that correlations generally increased with
increasing spatiotemporal resolution, though it does motivate a new presentation of results
that accounts for differences in spatiotemporal resolution and latitude. Figure 7 presents
the correlation coefficient of the nine resolutions from Figure 5, with datasets subset by
central latitude.

The correlation coefficients paint an expected picture: correlation increases with
decreasing spatiotemporal resolution and higher latitudes. Of course, the two are not
totally independent, since grid cells will decrease in physical area with increasing area.
Note that there are great variations in the number of measurements and range of ∆SWE
within datasets, and while data are only presented if they provide a p-value less than 0.01,
these differences likely still influence the results for data subsets with particularly low
volumes. Additionally, note that the different latitudes represent different numbers of
grid cells that are providing data. The 70–75◦ N grid is entirely comprised of one 20◦ × 5◦

cell in northern Siberia (Figure 1) and there were no 20◦ × 5◦ grid cells that provided
consistently freezing time periods below 60◦ N. Figure 7 does demonstrate, however, that
the results from Figure 5 are likely more intricate than they appear. The 5◦ × 5◦ data
10-day data, which has the most data points and can be expected to be the most statistically
robust measurement at all central latitudes, has a stronger correlation at 75◦ N than any
represented dataset (5 × 5◦ 10 days, 10◦ × 5◦ 10 days, 5◦ × 5◦ to days) below 60◦ N, for
example. Therefore, one can expect higher accuracy for finer spatiotemporal resolutions
closer to the poles [38].
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Figure 7. Correlation coefficients of collocated ∆SWEB and ∆SWEC datasets at the nine spatiotem-
poral resolutions considered in this study, subset by latitude ranges. Data are plotted at the central
latitude of a grid cell. Data points are only included at a given central latitude if measurements exist
and if the p value corresponding to the correlation coefficient of the measurements is less than 0.01.

Finally, the collocated ∆SWEC and ∆SWEB are converted into percentage differences
(Equation (4)) so that they can be used to evaluate the predicted CloudSat accuracy from
Section 4. Measured PD distributions are presented alongside the simulated PD distribu-
tions from Section 4 in Figure 8. The measured accuracy (orange boxes) is in very good
agreement with the simulated accuracy (blue boxes). Differences between the 25th, 50th,
and 75th percentiles of measured and simulated PD distributions at all resolutions are less
than 8%. This agreement is particularly remarkable considering that the initial predictions
were based off two simulated precipitation products generated from the same model data,
whereas the ∆SWEC and ∆SWEB products represent two independent datasets with their
own biases and uncertainties.
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Figure 8. Orange box and whisker plots represent the measured PD distributions between B4 and CloudSat estimates of
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comparison in blue.

Since the PE predictions in Figure 2 are a reconfiguration of the same data in Figure 3,
we interpret Figure 8 to suggest our subsampling method provides confident estimates of
∆SWEC uncertainty for seasonal and subseasonal time scales. In other words, we conclude
that CloudSat can provide measurements of snow accumulation over wide areas with a
predictable accuracy.
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6. Summary

Active satellite radars such as CloudSat’s CPR have a unique skill in providing radar
profiles that can perform with similar accuracy over level ocean, land, ice, and snow-
covered terrain. In this paper, we evaluated the potential of CloudSat to measure seasonal
snowfall accumulation.

Using a simulation of global CloudSat snowfall rate retrievals, we generated a dis-
tribution of percentage errors at different spatial and temporal scales. We found that
CloudSat seasonal snowfall accumulation measurements could have reasonable accuracy
at different spatiotemporal resolutions, with median percent errors within 50% at 2◦ × 2◦

spatial scales as one example. To evaluate these predictions, we recast the uncertainty
estimates into percentage differences so that CloudSat estimates could be compared against
a best estimate of surface snowfall accumulation from the B4 gridded SWE model dataset.
We also defined a common variable (∆SWE) that could be interpreted as the integration of
the average snowfall rate from CloudSat or as the difference between gridded SWE at the
beginning and end of a time period as long as temperatures remained below freezing.

We found 84 to 2550 collocated ∆SWE observations that were usable for evaluation,
depending on resolution constraints. Correlation coefficients between CloudSat and B4
measured ∆SWE range between 0.4–0.8 from the finest (10 day, 5◦ × 5◦) to the coarsest
(30 day, 20◦ × 5◦) resolution. Overall, the distribution of errors between CloudSat and B4
agreed very well with the predicted values; the 25th, 50th, and 75th percentile of percent-
differences between measured ∆SWEC and ∆SWEB were within several percentage points
of the predicted values at all resolutions. Based on the success of our percentage difference
predictions, we infer that the predictions of percentage error from the same data are
similarly reliable. While a direct evaluation of CloudSat accumulation estimates over large
spatial scales is not possible with our method, we believe this study strongly supports
the capability of CloudSat to measure snow accumulation with a quantifiable accuracy at
arbitrary space and time scales. We aim to find ways to decrease the uncertainty of ∆SWEC
and increase the data available for ∆SWEC evaluations in follow-up studies.

The results of this study can only be considered applicable in regions that are similar
to our sample grids—flat terrain (land or ocean). This study makes no predictions on the
ability of CloudSat to measure accumulations over mountainous terrain, which would
must be properly validated before examining CloudSat-derived snow information over
areas of high elevation, such as Antarctica. However, we note that Antarctica, in particular,
presents a host of other issues for snow-accumulation measurements, including a greater
effect of post-battery-anomaly CloudSat measurement losses [21,40] and a greater impact
of blowing snow on regional accumulation totals [41].
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