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Abstract: Since COVID-19 pneumonia broke out, the Chinese government has taken a series of
measures to control the spread of the epidemic, which has made the air quality of Taiyuan in
February 2020 significantly better than during the same period in previous years. In this paper, the
Gray Relational Analysis (GRA) method was first applied to evaluate and analyze the influence
of six major pollutants on air quality. Then, the improved seagull optimization algorithm (ISOA)
was proposed and combined with Support Vector Regression (SVR) to establish a hybrid predicted
model ISOA-SVR. Finally, the proposed ISOA-SVR was utilized to predict air quality index (AQI).
The experimental results on two kinds of different data showed that the proposed ISOA-SVR had
the better generalization ability and robustness compared with other predicted models. Further, the
proposed ISOA-SVR is suitable for the prediction of AQI.

Keywords: air pollutant; AQI; prediction; support vector regression (SVR); COVID-19

1. Introduction

With the concentration of urban population and industrial growth, environmental
pollution problems are arising. Previous research showed that air pollution has a direct
impact on human health. It is estimated that 1.22 million people are killed every year by
haze in China, accounting for about 15% of annual deaths [1]. According to the data of
the World Health Organization in 2018, air pollution causes seven million people to die of
cancer, stroke, heart disease and respiratory diseases every year. Air pollution has become
the number one killer of human beings. In 2019, the World Health Organization lists air
pollution as one of the top ten threats to global health [2].

Air quality prediction is helpful to prevent air pollution from causing damage, and it
can guide government departments to take corresponding preventive measures to prevent
serious air pollution, such as heavy polluting enterprises stopping production and traffic
restriction. At the same time, it can provide travel suggestions for people’s outdoor
activities. Therefore, timely and reliable air quality forecasting is very necessary for the
prevention and control of air pollution. Air quality index (AQI) is an important index
to reflect and evaluate air quality [3]. According to China’s air quality standard, AQI is
obtained from the concentrations of six main pollutants including fine particulate matter
(PM2.5), inhalable particles (PM10), sulfur dioxide (SO2), carbon monoxide (CO), nitrogen
dioxide (NO2) and ozone(O3) [4]. The value of the AQI index reflects the level of air quality;
a low AQI value means that the air quality is good, and it is conducive to travel, whereas a
higher AQI value indicates that the air pollution is serious.

In the face of increasingly serious air pollution problems, people have more and more
attention on air quality. An autoregressive moving average (ARIMA) model was used
to predict the monthly value of air pollution index and the daily value of AQI in [5,6].
However, if the sequence is nonlinear or irregular, ARIMA may not provide reliable pre-
diction results. Compared with the ARIMA model, Support Vector Regression (SVR) [7,8]
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has been widely used in nonlinear systems with good generalization ability. Chen et al.
used SVR and a multivariate analysis model to analyze daily precipitation [9]. Withing
the literature [10,11] SVR has been applied to predict short-term electrical load. Mauro
Castelli et al. used an SVR model to predict AQI in California [12]. In the literature [13],
an SVR model was used to predict the AQI value of Beijing and NOx values in India. A
mixed prediction model based on the combination of fractional grey theory and SVM was
established by Meng Dun et al. to predict the concentrations of PM10, PM2.5 and NO2
in Shijiazhuang and Chongqing [14]. However, the performance of SVR depends on the
choice of SVR model parameters. In other words, the selection of parameters has a great
influence on the learning and generalization ability of SVR. Therefore, it is very important
to select optimal parameters to obtain good SVR performance. In fact, since the SVR model
was proposed, many researchers have given attention to the problem of SVR parameter op-
timization. In [15,16], the parameters of SVR were optimized by a genetic algorithm (GA).
Wang and Zhang used a differential evolution algorithm (DE) to find optimal SVR parame-
ters [17,18]. The optimization of SVR parameters by particle swarm optimization (PSO)
have been studied in literature [19–21]. In recent years, with the development of various
new intelligent algorithms, there are more choices for the optimization algorithm of SVR
model parameters. Cao optimized SVR parameters with fruit fly optimization (FFO) [22],
and optimization of SVR parameters with gray wolf optimization (GWO) appeared in [23].

In this paper, we first evaluate and analyze the air quality of Taiyuan city, which
since the outbreak of COVID-19 has been done using the grey relational analysis (GRA)
method [24]. Then, three improvements to the seagull optimization algorithm (SOA) [25]
are proposed. First, according to the flight characteristics of seagulls, the control parameters
that adjust the seagulls to move to the best position direction are changed from a linear
change to an exponential change. Second, considering the influence of individual seagulls
and groups, an adaptive nonlinear weight is introduced. Third, seagulls with poor fitness
are selected for position random selection update to increase the diversity of samples to
avoid local minimum errors in the process of optimization. On this basis, we propose an
improved seagull optimization algorithm (ISOA) combined with support vector regression
(SVR) to establish a hybrid prediction model ISOA-SVR. Finally, the proposed ISOA-
SVR method is used to predict air quality index (AQI). In addition, we combine particle
swarm optimization (PSO) [26], sine cosine optimization (SCA) [27], whale optimization
(WOA) [28] and an SOA algorithm with SVR, respectively, to establish PSO-SVR, SCA-SVR,
WOA-SVR and SOA-SVR, and compare them with the experimental results of ISOA-SVR in
turn. The experimental results on two different data sets showed that the proposed ISOA-
SVR method had the better performance, and the generalization ability and robustness of
the model were proved.

The main structure of this paper is as follows. In Section 2, the grey relational analysis
method and SVR model are briefly reviewed. The improved SOA algorithm (ISOA) and
proposed ISOA-SVR integration model are introduced in Section 3. Section 4 introduces the
experimental materials, including data, experimental environment and evaluation index.
Section 5.1 includes the evaluation and analysis of the air quality of Taiyuan city before
and after the outbreak of COVID-19 by using the grey relational analysis method. The
comparative experiments on the prediction of AQI values using SVR prediction models op-
timized by different optimization algorithms are arranged in Section 5.2. Finally, Section 6
concludes and discusses the paper.

2. Materials and Methods
2.1. Grey Relational Analysis (GRA)

Grey relational analysis (GRA) is a method to measure the degree of relational between
factors according to the degree of similarity or difference in the development trend between
them [24]. If the change trend of two factors is consistent, that is, the degree of synchronous
change is high, this indicates that the relational degree between the two factors is high;
otherwise it is low. The specific steps of the grey relational method are as follows:
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Step 1: Determine the analysis sequence.
The reference sequence reflecting the characteristics of system behavior and the data

sequence of factors influencing system behavior are determined.
Step 2: Dimensionless variables.

Because the data of each factor column in the system may be different due to different
dimensions, it is not convenient to compare, or it is difficult to get the correct results
when comparing. Therefore, in order to ensure the reliability of the results, dimensionless
processing should be carried out first in the grey relational analysis.
Step 3: Calculate the relational coefficient.

The relational coefficient of comparison sequence xi(i = 1, 2, · · · n) to reference se-
quence x0 at time t is as follows:

ξi(t) =
min

i
(∆i(min)) + ρmax

i
(∆i(max))

|x0(t)− xi(t)|+ ρmax
i

(∆i(max))
, (1)

where ρ is the resolution coefficient, usually the number in (0, 1).

min
i
(∆i(min)) = min

i
(min

t
|x0(t)− xi(t)|), (2)

max
i

(∆i(max)) = max
i

(max
t
|x0(t)− xi(t)|), (3)

Step 4: Calculate the relational degree.
Because the relational coefficient is the value of the relational degree between the

comparison sequence and the reference sequence at each time (i.e., each point in the curve),
there is more than one of them and the information is too scattered to facilitate the overall
comparison. Therefore, it is necessary to concentrate the relational coefficient of each time
into one value; that is, to calculate the average value as the quantitative expression of
the relational degree between the comparison sequence and the reference sequence. The
relational degree is calculated as follows:

ri =
1
N

N

∑
t=1

ξi(t) (4)

Step 5: Rank the relational degree. The larger the value, the stronger the relational.

2.2. Support Vector Regression (SVR)

Support Vector Regression (SVR) is a support vector algorithm for regression prob-
lems [7]. The goal of SVR is to find an optimal hyperplane, so that the deviations between
training data and the hyperplane are not greater than ε. In other words, it minimizes
the distance between the support vectors on both sides of the hyperplane. A schematic
diagram of SVR is shown in Figure 1.

Figure 1. A schematic diagram of support vector regression (SVR).



Atmosphere 2021, 12, 336 4 of 17

Therefore, a regression function f (x) can be obtained by training SVR so that its
deviation from the actual value y is not more than ε for each training vector x. The details
of the SVR are presented in reference [8]. The regression function f (x) can be obtained as:

f (x) =
m

∑
i=1

(a∗i − αi)K(x, xi) + b (5)

where x is the input feature vector, b is the bias term, α∗i and αi are Lagrange multipliers and
K(x, xi) is a kernel function with functional forms that can be obtained from the following
equations:

linear kernel function : K(x, xi) = xTxi.
polynomial kernel function : K(x, xi) = (γxTxi + 1)d, d ∈ (1, n), γ > 0.
radial basis kernel function : K(x, xi) = exp(−γ‖x− xi‖2), γ > 0.

3. Proposed Method
3.1. Seagull Optimization Algorithm (SOA)

The seagull optimization algorithm (SOA) is a swarm intelligence optimization algo-
rithm proposed by Dhiman and Kumar in 2019 [25]. In this algorithm, the migration of
seagulls and the attack behavior in the migration process are regarded as the optimization
process of the optimization problem, and the location of seagulls in the algorithm is the po-
tential solution of the optimization problem. The migration and attack patterns of seagulls
are shown in Figure 2.

Figure 2. Migration and attack pattern of seagulls.

1. Migration behavior of seagulls (global search)
In this part, the algorithm simulates how the group of seagulls move from one position

to another. In the process of migration, the movement behavior of seagulls satisfies the
following three conditions:

(1). Collision avoidance. An additional variable A is employed for the calculation of new
seagull position to avoid collisions between seagull neighbors.

A = a− a(t/T) (6)

C = AP (7)

where C is defined as a new position that does not allow collision with other seagulls.
The current position of seagulls is represented by P. t and T are the current iteration
and the maximum number of iterations, respectively.A represents the movement
behavior of seagulls in a given search space. The constant a is used to control the
range of A, when a = 2. A decreases linearly from 2 to 0.
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(2). Movement towards global best position direction: After avoiding the overlap with
other seagulls, the seagulls move toward the direction of global best position.

B = 2A2brand, (8)

M = B(Pbest − P) (9)

where M is the step size to move from the current position to the global optimal
position and Pbest is the global best position. The control parameter used to balance
global search and local search is defined as B, where brand is a random number that lies
in the range of (0, 1).

(3). Moving distance. When the seagull moves to a position where it does not collide with
other seagulls, it moves towards the direction of global best position. D is the distance
that the seagull moves from the current position towards the global best position.

D = |C + M|. (10)

2. Attacking behavior of seagulls (local search)
Seagulls use their wings and weight to maintain their flight height, and they can

constantly change their attack angle and speed during migration. Seagulls move in a spiral
pattern when attacking their prey. The spiral movement behavior of seagulls in x, y and z
planes is described by Equations (11)–(14).

x = r cos(θ), (11)

y = r sin(θ), (12)

z = rθ, (13)

r = ueθv, (14)

where r is the radius of the spiral, θ is a random angle value in the range of [0, 2π], u and
v are constants that define the spiral shape and e is the base of natural logarithm. The
updated position P(t) of seagulls is obtained using Equation (15).

P = xyzD + Pbest (15)

3.2. Improved Seagull Optimization Algorithm (ISOA)

In this part, in order to avoid the SOA algorithm falling into a local minimum and to
accelerate the convergence speed of the SOA algorithm in the optimization process, the
SOA algorithm is improved by three aspects.

(1). As we know, a good optimization algorithm should have strong exploration ability
in the early iteration and good development ability in the late iteration. In addition,
compared with a linear function, a nonlinear function can achieve a faster global
search in the early stage and a slower local search in the later stage. Therefore,
in the seagull optimization algorithm, we change the parameter B, which controls
the seagull towards the optimal position, from a linear function to an exponential
function.

B = eAbrand (16)

(2). From the SOA algorithm, we can see that the new position of the seagulls is mainly
affected by the global optimal position, but when we observe the foraging of seagulls,
we can find that the flight of seagulls is also affected by the individual optimal value
of seagulls. In order to solve this problem, we consider the influence of the particle
itself, and introduce the adaptive variable weight parameter ω.

ω =

{
ωmax− (ωmax−ωmin)( f itpbest− f itgbest

avg f it− f itgbest )
t
T , f it ≤ avg f it

ωmax, f it > avg f it
(17)
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where, ωmax and ωmin represent the maximum and minimum values of weight ω,
respectively, f itpbest represents the individual optimal value of particle fitness, the
global optimal value of particle fitness is defined as f itgbest, and avg f it is the average
fitness value of the current particle population. t and T are the current iteration and
the maximum number of iterations, respectively. It can be seen from Equation (17) that
when the target values of the particles tend to be consistent or the location optimal,
the weight ω is larger, whereas when the target values of the particles are dispersed,
the weight ω is smaller. For a particle with an objective function value better than
the average target value, the corresponding weight ω is smaller, so that the particle is
retained. On the contrary, for a particle with an objective function value worse than
the average target value, the corresponding weight ω is larger, so that the particle
moves closer to the better search area.

(3). Increase the diversity of particles to avoid the algorithm falling into a local minimum.
First, the fitness of particles is sorted from small to large. Then, the particles with poor
ranking generate a new position near the global optimal position, while the other
particles are retained.

To summarize, the attack position Pi of the ith seagull follows:

Pi =

{
(1−ω) ∗ xiyiziDi + ωPbest, i < popsize ∗ 0.8
(1−λ) ∗ Pbest + λ ∗ rp, other

. (18)

where i is the new serial number of particles after fitness sorting, population size is defined
as popsize, λ is a constant and rp is a random value in the range of (−1 to 1).

3.3. Proposed ISOA-SVR Prediction Model

In this study, the ISOA algorithm was used to optimize the penalty parameter c, width
parameter g and loss parameter p in SVR. The mean square error (MSE) is the fitness
function of ISOA algorithm. The fitness function of the kth training sample is defined by
the following Equation:

MSE =
1
n

n

∑
i=1

(yi − ŷi) (19)

where n is the number of samples and ŷi and yi are the actual and the forecasted return
AQI value, respectively.

The algorithm flow of the proposed ISOA-SVR prediction model is as follows:

Step 1: Set the control parameters of the proposed ISOA algorithm.
Step 2: Initial population P.
Step 3: Map P into the c, g and p of the SVR and calculate its fitness evaluation f by use of

Equation (19), then f itpbest, f itgbest and avg f it are calculated.
Step 4: Update weight parameters ω by Equation (17).
Step 5: Update C by Equations (6) and (7).
Step 6: Update M by Equations (9) and (16).
Step 7: Update D by Equation (10).
Step 8: Update attack positions P according to Equations (11)–(15).
Step 9: The fitness values f are sorted from small to large. Update the attack position P

according to Equation (18).
Step 10: If the stopping criterion is met, then go to Step 11. Otherwise, go to Step 3.
Step 11: Output the best positions that is mapped into the c, g and p of the SVR.

Then train and test the SVR.

4. Experimental Preparation
4.1. Data Description and Preprocessing

The data used in this study comes from the historical data of Taiyuan city released
by the historical data query of China air quality online monitoring and analysis platform
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(https://www.aqistudy.cn/historydata/ accessed on 15 July 2020). The daily and monthly
data of air quality index (AQI) and six closely related pollutants (PM2.5, PM10, SO2, CO,
NO2, O3) in Taiyuan from December 2013 to June 2020 were extracted. The daily data is
the average result of the real-time dynamic data released by the environmental protection
station on that day, and the monthly data is the average value of all the daily data of
that month.

Since the difference of the numerical dimensions of the indexes involved in the calcu-
lation of grey relational degree and AQI prediction, this study carried out dimensionless
processing on the data in the grey relational analysis (GRA) and AQI prediction. When
calculating the grey relational degree, we used the mean method of Equation (20) to realize
the dimensionless processing of the data. In addition, to realize dimensionless data in AQI
predictions, we used Equation (21) to normalize the data to the range of (0–1).

xnew =
x
x

(20)

where xnew is the dimensionless value of x and x is the mean value of the sample during
the experimental period.

xnorm =
x− xmin

xmax − xmin
(21)

where xnorm is the normalized value and xmin and xmax represent the minimum and
maximum values of experimental data in each experiment.

4.2. Experimental Environment

The experimental environment was as follows. MATLAB 2016b (MathWorks, Natick,
MA, USA) running Windows10 (Microsoft, Redmond, WA, USA) on an Intel Core i7-
8700 CPU (Intel, Santa Clara, CA, USA) with a 3.20 GHz processor and 8 GB of RAM. In
addition, all of the algorithms in the experiments ran independently for 30 times under
different randomly initialized populations. To verify the efficiency of the proposed ISOA,
the proposed ISOA was compared with SOA, PSO, SCA and WOA. The maximum number
of iterations T was set to 200 for all algorithms and the population size N was set to 20. The
other parameters of SCA were similar to those in [27], the WOA parameters were similar
to those in [28] and the SOA parameters were similar to those in [25]. For PSO, acceleration
coefficients c1 and c2 were set to 1.49445.

4.3. Evaluation of Prediction Effect

In this study, ISOA-SVR, SOA-SVR, PSO-SVR, SCA-SVR and WOA-SVR were used
to establish the prediction model of AQI in Taiyuan. Mean square error (MSE), relative
mean square error (RMSE) and mean percentage error (MAPE) were the evaluation indexes
of the above five models. In order to get an excellent regression model, the smaller the
MSE, RMSE and MAPE between the predicted value and the actual value, the better. The
mathematical expression of evaluation index is shown in Equations (22)–(24) where yi is
the label of the ith sample and ŷi is the predicted value of the ith sample.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2, (22)

RMSE =
1
n

n

∑
i=1

(
yi − ŷi

ŷi
)

2
, (23)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣× 100% (24)

https://www.aqistudy.cn/historydata/
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5. Experimental Results

In this section, GRA was used evaluate and analyze the air quality of Taiyuan city
before and during the outbreak of COVID-19. Then, a prediction model of AQI in Taiyuan
was established by using ISOA-SVR and compared with other predicted models.

5.1. Analysis of Air Pollution Assessment Results

Before applying the GRA method to analyze the influence of air pollution factors
on AQI, a simple numerical statistical analysis of AQI and each air pollution factor in
four time periods was carried out. The four time periods mentioned here include the
COVID-19 locking period (25 January 2020 to 24 February 2020), before the outbreak of
COVID-19 (25 December 2019 to 24 January 2020), the same period in 2019 (25 January
2019 to 24 February 2019) and one other time period (25 December 2018 to 24 January 2019),
each of which has 31 days. In addition, according to the technical regulation of ambient
air quality index (AQI) (HJ 1130-2020) issued by the China Ministry of Environment of
Protection, AQI can be divided into six levels (0~50 ‘good’, 51~100 ‘moderate’, 101~150
‘lightly polluted’, 151~200 ‘moderately polluted’, 201~300 ‘heavily polluted’ and >300
‘severely polluted’) [29]. This paper takes these as the standards to analyze the air pollution
in the above four periods. The statistical results of AQI are shown in Figure 3 and Table 1.
In the 31 days of the COVID-19 locking period (25 January 2020 to 24 February 2020), there
were three days of good, 16 days of moderate, nine days of lightly polluted and three
days of heavily polluted air quality, and there was no moderately polluted or severely
polluted weather. In the 31 days before the outbreak of COVID-19 (25 December 2019
to 24 January 2020), respectively, and another day with severely polluted air quality the
days with good and moderate grades were two and seven, respectively, the days with
lightly polluted, moderately polluted and heavily polluted were 11, two and eight. In
the same period of 2019 (25 January 2019 to 24 February 2019), the days of good and
moderate were one and 13 respectively, the days of lightly polluted, moderately polluted
and heavily polluted were six, eight and three respectively, and there was no severely
polluted weather. In the fourth period (25 December 2018 to 24 January 2019), the days
of good and moderate weather were zero and 11 respectively, the days of lightly polluted
were 10 days, the days of moderately polluted were four days, the days of heavily polluted
were four days and the days of severely polluted were two days. From these statistics,
it can be seen that the air quality of the COVID-19 locking period (25 January 2020 to
24 February 2020) was significantly better than the other three periods. In fact, during the
period of COVID-19 lock-in, the total number of days with good and moderate air quality
was 19 days, accounting for 61.3% (19/31), and there was no severely polluted weather.
However, in the other three time periods, the total number of good and moderate days
of air quality were 9, 14 and 11, respectively, which did not reach 50%. In the locking
period of COVID-19 (25 January 2020 to 24 February 2020), only three days reached or
exceeded the moderately polluted level, accounting for 9.7% (3/31), and the other three
time periods were 11 days, 11 days and 10 days, respectively, which exceeded 30%. In
addition, before the outbreak of COVID-19 (25 December 2019 to 24 January 2020), and
in the fourth period (25 December 2018 to 24 January 2019), there were one day and two
days of severely polluted weather, respectively. All these indicate that during the period
of epidemic prevention and control, the factories stopped production and motor vehicles
were restricted and stopped, which played a positive role in improving air quality.
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Figure 3. The proportion of days in each band of air quality index (AQI) in different periods.

Table 1. The days of each band of AQI in different periods.

Time Good Moderate Lightly
Polluted

Moderately
Polluted

Heavily
Polluted

Severely
Polluted Total

25 December 2018–24
January 2019 0 11 10 4 4 2 31

25 January 2019–24
February 2019 1 13 6 8 3 0 31

25 December 2019–24
January 2020 2 7 11 2 8 1 31

25 January 2020–24
February 2020 3 16 9 0 3 0 31

Figure 4 and Table 2 show the average values of AQI and pollutant concentrations
over the above four time periods. It can be seen that compared with the other three periods,
except for the increase of the average concentration of O3, the average value of AQI and
the average concentration of other pollutants decreased significantly during the COVID-19
locking period (25 January 2020 to 24 February 2020). The average value reflects the overall
level of data. Combining these results with the statistical results in Table 1 shows that the
air quality in the locking period of COVID-19 was significantly better than in the other three
periods. In fact, good weather accounted for 61.3% (19/31) in the COVID-19 locking period
(25 January 2020 to 24 February 2020). Compared with 29% (9/31) before the outbreak
of COVID-19, 45.1% (14/31) in the same period of 2019 and 35.5% (11/31) in the fourth
period, there were 32.3% (10/31), 16.2% (5/31) and 25.8% (8/31) more, respectively. The
number of days reaching and exceeding the moderately polluted level accounted for 9.7%
(3/31), which was 25.8% (8/31), 25.8% (8/31) and 22.6% (7/31) less than that before the
outbreak of COVID-19 (35.5% (11/31)) for the same period in 2019 (35.5% (11/31)) and
the fourth period (32.2% (10/31)) respectively. There was no severely polluted weather
during the period of COVID-19 lock-in. In addition, the average value of AQI during the
locking period of COVID-19 was 102, which is smaller than the other three time periods
(141, 122, 141). These results show that the prevention and control measures of COVID-19
had great restrictions on the movement of people, transportation, engineering construction,
industrial production and commercial trade activities. Industrial emissions and automobile
exhaust were greatly reduced, and air quality was significantly improved.
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Figure 4. The average values of AQI and six main pollution concentrations in different periods of time.

Table 2. The average values of AQI and six main pollution concentrations in different periods of time.

Time AQI PM2.5 PM10 SO2 CO NO2 O3

25 December 2018–24 January 2019 141 102 184 56 1.9 74 30
25 January 2019–24 February 2019 122 86 135 44 1.4 50 60
25 December 2019–24 January 2020 141 105 146 33 1.5 61 43
25 January 2020–24 February 2020 102 73 102 27 1.0 36 80

From the literature [29], we know that AQI is calculated by the concentration values of
PM2.5, PM10, SO2, CO, NO2, O3 and other pollutants. From previous numerical statistical
analysis, we know that compared with the other three time periods the AQI and the
pollution concentration changed greatly during the COVID-19 locking period. So, did the
impact of these air pollutants on AQI change greatly? Next, we used the GRA method to
analyze the gray relational degree of each pollution factor and AQI in the above four time
periods, and made a comparative analysis of the situation in different time periods. The
analysis and comparison results are shown in Figure 5 and Tables 3–6.

Figure 5. Comparison of the gray relational degree between pollutants and AQI in different periods
of time.
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Table 3. The gray relational degree between pollutants and AQI between 25 December 2019 to 24
January 2020 and 25 January 2020 to 24 February 2020.

Time PM2.5 PM10 SO2 CO NO2 O3

25 December 2019–24
January 2020 0.5946182 0.8036469 0.3600114 0.2916706 0.456154 0.4247363

25 January 2020–24
February 2020 0.5825637 0.8290349 0.3772621 0.297143 0.4210722 0.5905432

Table 4. The gray relational degree between pollutants and AQI between 25 January 2019–24 February
2019 and 25 January 2020–24 February 2020.

Time PM2.5 PM10 SO2 CO NO2 O3

25 January 2019–24
February 2019 0.5815787 0.7384725 0.419446 0.3033536 0.453656 0.5344895

25 January 2020–24
February 2020 0.5825637 0.8290349 0.3772621 0.297143 0.4210722 0.5905432

Table 5. The gray relational degree between pollutants and AQI between 25 December 2018 to 24
January 2019 and 25 January 2019 to 24 February 2019.

Time PM2.5 PM10 SO2 CO NO2 O3

25 December 2018–24
January 2019 0.7573002 0.731805 0.5499309 0.3751351 0.6669078 0.4942023

25 January 2019–24
February 2019 0.5815787 0.7384725 0.419446 0.3033536 0.453656 0.5344895

Table 6. The gray relational degree between pollutants and AQI between 25 December 2018 to 24
January 2019 and 25 December 2019 to 24 January 2020.

Time PM2.5 PM10 SO2 CO NO2 O3

25 December 2018–24
January 2019 0.7573002 0.731805 0.5499309 0.3751351 0.6669078 0.4942023

25 December 2019–24
January 2020 0.5946182 0.8036469 0.3600114 0.2916706 0.456154 0.4247363

It can be seen from Tables 3 and 4 that during the COVID-19 locking period (25 January
2020 to 24 February 2020), compared with before the outbreak of COVID-19 (25 December
2019 to 24 January 2020), the impact of PM10 was slightly enhanced, the impact of PM2.5,
SO2 and CO was basically the same as that in the earlier period, the impact of NO2 was
slightly weakened and the impact of O3 was significantly enhanced. Compared with the
same period in 2019 (25 January 2019 to 24 February 2019), the impacts of PM10 and O3
were significantly enhanced, the impacts of PM2.5 and CO were basically the same as before
and the impacts of SO2 and NO2 were slightly weakened.

The results in Table 5 show that in the same period of 2019 (25 January 2019 to 24
February 2019) compared with its earlier period (25 December 2018 to 24 January 2019),
the impact of PM2.5, SO2 and NO2 was significantly weakened, the impact of PM10 was
basically the same as that of the earlier period, the impact of CO was slightly weakened
and the impact of O3 was slightly enhanced. It can be seen from Table 6 that before the
outbreak of COVID-19 (25 December 2019 to 24 January 2020), compared with the same
period in 2018 (25 December 2018 to 24 January 2019), the impact of PM2.5, SO2 and NO2
was significantly weakened, the impact of PM10 was significantly enhanced and the impact
of CO and O3 was significantly enhanced.

Based on the analysis of the results in Tables 3–6 and Figure 5, it can be seen that
although there were some differences in the impact changes of pollutants on air quality
(AQI) in different comparison periods, the changes were similar in the corresponding
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comparison periods. PM10 and PM2.5 had great influence on AQI. These results indicate
that although the impact of various air pollutants on AQI had some changes due to the
outbreak of COVID-19, most of the changes were not significant. Therefore, it is feasible to
use the data before the outbreak of COVID-19 to predict the data during the outbreak of
COVID-19, but there are also some challenges.

5.2. AQI Prediction Results and Analysis

In this part, we used five prediction models, such as ISOA-SVR, SOA-SVR, PSO-SVR,
SCA-SVR and WOA-SVR, to predict the monthly average AQI values from September 2019
to June 2020, and the daily AQI values for 15–24 February 2020. In addition, in order to
ensure the reliability of the experiment, each group of experiments of each model was run
separately for 30 times, and the prediction results compared and analyzed.

The sampling time of Experiment 1 was from December 2013 to June 2020, with a total
of 79 groups of monthly average air quality data. The first 69 groups were used as the
training set and the remaining 10 groups as the test set. The sampling time of Experiment 2
was from 1 January 2020 to 24 February 2020. There were 55 groups of daily air quality
data, including the first 45 groups as the training set and the remaining 10 groups as the
test set. In the experiment, the AQI value of the sixth group was predicted by inputting
the AQI value of the first five groups and the pollutant value of the fifth group, and
then sliding forward was carried out to eliminate the random fluctuation in the historical
statistical series, and to eliminate the influence of season and random factors to make more
accurate predictions. The fitness convergence curve of training data and the test results
of test data (including MSE, RMSE, MAPE and run time) were obtained by running each
prediction model.

5.2.1. Results and Analysis of Experiment 1

As can be seen from Figure 6, the convergence effect of fitness functions of ISOA,
SCA and WOA were similar, but SOA was slightly worse, and the worst was PSO. The
training results in Table 7 show that ISOA-SVR was the best, MSE, RMSE and MAPE were
1.299370396, 0.010565973 and 9.064760441, SCA-SVR was 1.386464339, 0.012714389 and
9.62641542, and WOA-SVR were 1.367865788, 0.012364791 and 9.463121198, respectively.
From the evaluation index values of the prediction results in Table 8, we found that the three
index values of the prediction results of ISOA-SVR were the best, which were 3.379206115,
0.03090546 and 14.03810752, respectively. WOA-SVR was slightly worse than the ISOA-
SVR algorithm, SOA-SVR and SCA-SVR were similar, both slightly lower than WOA-SVR,
and PSO-SVR was the worst. In fact, we found from the prediction results in Table 9 that
the prediction result of ISOA-SVR achieved the optimal value or suboptimal value in 6/10,
which was the best among the five algorithms.

Table 7. The means square error (MSE), relative mean square error (RMSE) and mean percentage
error (MAPE) index results of five models in Experiment 1.

ISOA-SVR SOA-SVR PSO-SVR SCA-SVR WOA-SVR

MSE 1.299370396 1.516275653 1.783184745 1.386464339 1.367865788
RMSE 0.010565973 0.014142911 0.014833724 0.012714389 0.012364791
MAPE 9.064760441 9.853200382 9.371637923 9.62641542 9.463121198

Table 8. The results of MSE, RMSE and MAPE of five models in Experiment 1.

ISOA-SVR SOA-SVR PSO-SVR SCA-SVR WOA-SVR

MSE 3.379206115 3.441986222 4.349283613 3.498150956 3.41400161
RMSE 0.03090546 0.03230673 0.038231575 0.030672679 0.031900138
MAPE 14.03810752 15.60277275 18.02718993 14.65850732 14.31309124
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Table 9. The predicted value of the monthly average AQI index of Taiyuan in 10 months (September
2019 to June 2020) by five models.

Months Actual ISOA-SVR SOA-SVR PSO-SVR SCA-SVR WOA-SVR

September
2019 80 82.77198055 85.5977246 88.28627583 84.48194106 82.38016393

October
2019 86 91.75390427 92.79561765 104.4254211 95.03535344 91.52332133

November
2019 102 108.1564331 107.1279498 113.0787421 109.4848466 108.7885621

December
2019 95 129.8122227 124.8458292 120.8050922 129.2580647 130.9492776

January
2020 153 120.1545213 119.9753754 109.4081433 118.2433733 120.5372071

February
2020 108 128.1305829 127.0634554 127.8660077 128.9146531 127.4201454

March
2020 77 95.40056339 99.44739009 92.53519639 93.96113427 95.63228132

April 2020 83 94.20694095 95.92648075 101.5208532 89.12996596 95.75164039
May 2020 88 88.36159652 94.17246856 104.1960515 83.85785511 90.30725226
June 2020 123 111.1573034 106.1393318 119.698614 109.623607 113.3392755

5.2.2. Results and Analysis of Experiment 2

We can see from Figure 7 that the convergence effect of fitness function of ISOA,
SOA, SCA and WOA were similar, but the convergence effect of PSO was a little worse.
From the MSE, RMSE and MAPE of the training results in Table 10, we found that the
training results of ISOA-SVR (13.37973604, 0.163687428 and 28.1740733) were slightly worse
than the best SOA-SVR (12.90917741, 0.162034198 and 28.71513087), but better than other
algorithms. From the three evaluation index values of the prediction results in Table 11, we
can see that the prediction results of ISOA-SVR were the best (6.147418336, 0.185148465
and 37.28176518), SOA-SVR was slightly worse than the ISOA-SVR algorithm, SCA-SVR
was better than WOA-SVR and was slightly lower than SOA-SVR; the worst was PSO-SVR.
In fact, from the prediction results in Table 12, we found that the prediction result of
ISOA-SVR achieved the optimal value or suboptimal value in 7/10, which was the best
among the five algorithms.
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Table 10. The MSE, RMSE and MAPE index results of five models in Experiment 2.

ISOA-SVR SOA-SVR PSO-SVR SCA-SVR WOA-SVR

MSE 13.37973604 12.90917741 15.26069105 13.38228635 13.67762998
RMSE 0.163687428 0.162034198 0.263342202 0.164932562 0.176975593
MAPE 28.1740733 28.71513087 36.06950441 28.34307946 30.06256388

Table 11. The results of MSE, RMSE and MAPE of five models in Experiment 2.

ISOA-SVR SOA-SVR PSO-SVR SCA-SVR WOA-SVR

MSE 6.147418336 6.459778601 10.82499818 6.689566261 7.5729638
RMSE 0.185148465 0.185470358 0.416901153 0.201263888 0.259079722
MAPE 37.28176518 37.73182296 53.0989463 39.01383564 43.56969294

Table 12. The predicted value of the monthly average AQI index of Taiyuan in 10 days (15 February
2020 to 24 February 2020) by five models.

Days Actual ISOA-SVR SOA-SVR PSO-SVR SCA-SVR WOA-SVR

15 February 2020 37 66.19915498 64.1716092 81.11185736 66.77559426 68.29006364
16 February 2020 40 63.56384349 63.11114188 78.85186159 64.56873662 73.61728757
17 February 2020 50 64.31550156 65.53302046 77.72392869 66.30127468 73.6344107
18 February 2020 64 83.45317703 85.22290481 94.48414881 86.02403533 92.64726525
19 February 2020 77 98.39158683 101.4637515 107.20132 101.8584487 104.1777717
20 February 2020 107 102.5547977 104.7637718 113.8703628 104.7694695 104.8558503
21 February 2020 67 109.1720281 111.3754232 122.0536657 110.3169339 109.5317368
22 February 2020 56 76.30078067 76.27921803 92.07265008 76.87427183 77.86190836
23 February 2020 99 77.99825975 77.10175492 93.3506996 78.34032184 85.4347774
24 February 2020 137 104.6398589 104.8715531 118.3346012 104.0343253 107.4976793

Combined with the results of Experiment 1 and Experiment 2, we can conclude that
the proposed ISOA-SVR prediction model had better generalization ability and robustness
than other prediction models tested in this study. This good result is attributed to the three
characteristics of the ISOA algorithm: one is the exponential balance of local and global
optimization; the second is the adaptive ability of particles themselves and groups and
the third is the diversity of particles. These make the algorithm avoid falling into local
minimums in the process of optimization. In addition, the weight parameters introduced
in the ISOA algorithm can balance the global exploration and local development ability of
particles and accelerate the convergence speed of the algorithm.
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6. Conclusions

This study focused on air quality evaluation during the COVID-19 lock down (25
January 2020 to 24 February 2020), before the COVID-19 outbreak (25 December 2019
to 24 January 2020), the same period in 2019 (25 January 2019 to 24 February 2019) and
another time period (25 December 2018 to 24 January 2019). First, a numerical statistics
comparative analysis was made, and then the grey relational analysis (GRA) method was
used to analyze the relational degree between six major pollutants and AQI. The results not
only reflect the distribution of air quality index (AQI) and pollutant concentration in each
analysis period, but also reflect the impact of pollutants on AQI. The air condition during
the locking period of COVID-19 was evaluated. The results show that during the locking
period of COVID-19, the overall air condition was good, good and moderate weather
accounted for a large proportion of the period, and there was no severely polluted weather.
The average air quality index (AQI) and the average concentrations of five pollutants except
O3 decreased significantly. PM10 was still the main factor affecting AQI. This indicates
that air pollution was closely related to the higher pollutant discharge. The prevention
and control measures during the COVID-19 locking period reduced the emissions of
industrial waste gas, automobile exhaust and other pollutants in Taiyuan. Taiyuan greatly
improved its air. However, coal-fired heating in winter still contributes a lot to PM10
concentration. In addition, the evaluation results also reflect that the average concentration
of O3 increased slightly during the period of prevention and control of COVID-19, which
deserves our attention.

After the evaluation of air quality, this study constructed an ISOA-SVR prediction
model for the prediction of AQI value of air quality. Air quality is affected by many
factors such as pollution sources and the meteorological environment, which makes AQI
prediction inaccurate and difficult. SVR is suitable for AQI prediction, but its prediction
effect depends on the selection of model parameters. First, based on the SOA algorithm, this
study proposed the ISOA algorithm by introducing nonlinear parameters, considering the
influence of individual extreme and average adaptations of each generation, and increasing
the diversity of particles. Then, the parameters of the SVR model were optimized by the
ISOA algorithm. Finally, the optimized ISOA-SVR prediction model was used to analyze
the monthly average AQI values from September 2019 to June 2020, and the daily AQI
values for 15–24 February 2020, respectively. The results were compared with those of the
SVR prediction models optimized by the SOA, PSO, SCA and WOA algorithms. Finally,
the results showed that the SVR model optimized by the ISOA algorithm achieved good
results in MSE, RMSE and MAPE.

To sum up, first of all, the air quality evaluation results of Taiyuan in this study were
in line with the air quality situation of Taiyuan city. Secondly, the integrated prediction
model of ISOA-SVR proposed in this study was suitable for the prediction of AQI value
of air quality in Taiyuan before and after COVID-19 epidemic. These results can play a
guiding role in the prevention and control of air quality in Taiyuan and other places.
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