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Abstract: We report on a long-lasting (10 days) Saharan dust event affecting large sections of South-
Eastern Europe by using a synergy of lidar, satellite, in-situ observations and model simulations
over Athens, Greece. The dust measurements (11–20 May 2020), performed during the confinement
period due to the COVID-19 pandemic, revealed interesting features of the aerosol dust properties
in the absence of important air pollution sources over the European continent. During the event,
moderate aerosol optical depth (AOD) values (0.3–0.4) were observed inside the dust layer by the
ground-based lidar measurements (at 532 nm). Vertical profiles of the lidar ratio and the particle
linear depolarization ratio (at 355 nm) showed mean layer values of the order of 47 ± 9 sr and
28 ± 5%, respectively, revealing the coarse non-spherical mode of the probed plume. The values
reported here are very close to pure dust measurements performed during dedicated campaigns
in the African continent. By utilizing Libradtran simulations for two scenarios (one for typical
midlatitude atmospheric conditions and one having reduced atmospheric pollutants due to COVID-
19 restrictions, both affected by a free tropospheric dust layer), we revealed negligible differences in
terms of radiative effect, of the order of +2.6% (SWBOA, cooling behavior) and +1.9% (LWBOA, heating
behavior). Moreover, the net heating rate (HR) at the bottom of the atmosphere (BOA) was equal to
+0.156 K/d and equal to +2.543 K/d within 1–6 km due to the presence of the dust layer at that height.
On the contrary, the reduction in atmospheric pollutants could lead to a negative HR (−0.036 K/d)
at the bottom of the atmosphere (BOA) if dust aerosols were absent, while typical atmospheric
conditions are estimated to have an almost zero net HR value (+0.006 K/d). The NMMB-BSC forecast
model provided the dust mass concentration over Athens, while the air mass advection from the
African to the European continent was simulated by the Hybrid Single-Particle Lagrangian Integrated
Trajectory (HYSPLIT) model.

Keywords: lidar; aerosols; dust event; COVID-19 lockdown; radiative forcing; Athens; Greece

1. Introduction

Dust aerosols have a large impact on climate, cloud formation, the precipitation cycle,
aviation safety, and, finally, human health [1–9]. More specifically, their impact on climate
concerns the direct and the indirect effects on the Earth’s atmosphere radiation budget. The
direct effect includes the scattering and absorbing role of these aerosols on the short- and
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long-wave radiation emitted by the sun and the Earth, respectively. According to the latest
available report of the Intergovernmental Panel on Climate Change (see Figure 8.17 in [10]),
the total direct radiative effect of mineral dust (coarse and fine modes) is estimated to be
negative (−0.1 ± 0.2 W/m2), recently updated to −0.11 ± 0.3 W/m2 [11], still with a high
uncertainty. On the other hand, very large uncertainties still remain regarding the aerosols’
(and mostly the dust particles’) indirect radiative effect through aerosol–cloud interactions,
which is equal to −0.45 ± 0.45 W/m2 according to Figure 8.17 in [10]. The aerosol–cloud
interaction involves the interactions of aerosol particles with liquid or ice clouds to change
the cloud microphysical properties and suppress precipitation [12–14], thus modifying
their lifetime and changing their ice content [15,16]. Furthermore, dust aerosols play a key
role in the dynamics and thermodynamics of the atmosphere [14], but they may also cause
severe health effects on humans [6–9], especially when combined with high air pollution
levels. Furthermore, a recent study shows a link between air pollution and an increased risk
of death from COVID-19 [17]. Therefore, it is of particular importance to study the spatio-
temporal variability of particles’ shape, concentration, size distribution, and refractive
index, and other geometrical and physico-chemical properties [18–20], especially under
specific conditions where local air pollution sources were minimized, as we will discuss in
this section.

The main sources of dust particles in Southern Europe are the large arid areas of the
Saharan desert, where more than 1–2 Tg of dust is lofted into the atmosphere on an annual
rate [11,21,22]. In Southeastern Europe, Saharan dust intrusions frequently occur in the
free troposphere from spring to autumn due to the high cyclonic activity over Northern
Africa [23–29]. The majority of these events over the Mediterranean usually last from a few
days up to one week during the autumn and summer periods [27,30–36]

In the past, several studies of the vertical variability of dust aerosol geometrical and
physico-chemical properties have been performed in the European continent by the syn-
ergy of lidars, in situ instruments, sun photometers, satellite observations and model
simulations, mainly in the frame of the European Aerosol Research Lidar Network (EAR-
LINET) [20,32,37–44]. However, no such studies have been performed under specific
conditions with very low local air pollution levels, such as those which prevailed during
the COVID-19 confined period in Europe [45–48].

The first cases of COVID-19 were reported in China [49,50] in early winter 2019–2020,
spreading over Europe and arriving in Greece in late February [51]. The lockdown period
started in most European cities (including Athens) during March 2020 and lasted mainly
up to June 2020 [46]. During this period, air traffic was nearly canceled and car traffic and
other means of ground transportation, as well as industrial activities, were minimized on a
European level; therefore, air pollution levels in most European cities showed very low
concentrations (e.g., a reduction in NO2 by 32% in Athens; see also Figure A1, by 48% in
Madrid and by 57–61% in Milan [45,47,52–57]). Similarly, an air pollution level reduction
was also observed in many cities all over the world (Canada, Brazil, India, Cairo, Southeast
Asia, etc.) [46,58–62]. Therefore, the importance of this study lies in the specific conditions
which prevailed during the COVID-19 lockdown period in spring 2020, namely: (i) the
very low levels of air pollution in Athens due to reduced emissions, (ii) the duration of the
dust transport (more than 10 days), and (iii) the intensity of the dust event (high levels of
layer aerosol optical depth (AOD) > 0.3–0.4 at 535 nm).

In this paper, we present in Section 2 the methodology and instrumentation used to
follow this dust event under rare background conditions. The evolution of this warm air
mass/dust advection across the Mediterranean and mainly over Athens will be further
analyzed in terms of synoptic scale, in conjunction with systematic ground-based and
space-borne measurements and model simulations (Section 3). Section 4 deals with the
presentation of a case study, while Section 5 focuses on the radiative effect of the studied
dusty air masses under the realistic scenario of reduced background pollution over our
station. To our knowledge, this is the first time that the radiative effect is studied under the
aforementioned unique conditions. Our conclusions are provided in Section 6.
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2. Instrumentation and Simulation Tools/Models

In order to analyze this strong event, we used a synergy of ground-based remote
sensing (lidar) measurements, satellite data and complementary forecast/simulation and
radiative transfer models. A short description of each tool used in this study is presented
in next sub-sections.

2.1. Lidar Systems at the National Technical University of Athens (NTUA)

The campus of the National Technical University of Athens (NTUA) is located inside
the Athens Basin (37.96◦ N, 23.78◦ E, elevation 220 m asl. Figure 1). The advanced
elastic-Raman lidar system aErosol and Ozone Lidar systEm (EOLE) of the Laser Remote
Sensing Unit (LRSU) of NTUA [63] is based on a pulsed Nd:YAG laser system which
emits, simultaneously, pulses at 354.93-532-1064.2 nm, with energies of 240-310-260 mJ,
respectively, at 10 Hz repetition frequency. The laser beam containing all three wavelengths
is expanded 3-times by an achromatic Galilean telescope before being emitted in the
atmosphere. A Cassegrainian telescope of 300 mm diameter (focal length 600 mm) collects
all elastically backscattered lidar signals (354.93-532-1064.2 nm), as well as those generated
by the spontaneous vibrational-rotational Raman effect (by atmospheric N2 at 386.6 and
607.4 nm, as well as by H2O at 407.5 nm), within a field of view of 1.5 mrad. Thus, EOLE is
able to provide independent and simultaneous measurements of the vertical profiles of the
aerosol backscatter βaer (at 355, 532, and 1064 nm) and extinction αaer (at 355 and 532 nm)
coefficients, as well as the water vapor mixing ratio in the troposphere. Furthermore, EOLE
provides the vertical profiles of the aerosol intensive parameters, namely the backscatter-
and extinction-related Ångström exponents (AEα355/532, AEb355/532, AEb532/1064), as well
as the lidar ratio (LR) at 355 and 532 nm. The full overlap of EOLE is reached at ~800 m asl.
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Figure 1. Map of the Greater Athens area (GAA) showing the locations of: The National Technical
University of Athens (NTUA) lidar systems (37.96◦ N, 23.78◦ E, 220 m asl.; red pin), and the National
Centre of Scientific Research (NCSR) facility (37.99◦ N, 23.82◦ E, 270 m asl.; yellow pin). The heights
of the surrounding mountains are shown with green labels.

The NTUA DEPOLarization lidar systEm (DEPOLE) is based on the third harmonic
frequency of a pulsed Nd:YAG laser emitting vertically a linearly polarized beam at 355 nm
(polarization purity >99.5% reached using a polarizing filter). It is equipped with a 200 mm
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diameter telescope (Dall-Kirkham Cassegrainian), with focal length f = 1000 mm, which
collects the elastically backscattered lidar signals at 355 nm (at two polarization planes:
parallel and perpendicular), which are optically separated by a polarizing beam splitter
cube. The full overlap of DEPOLE is reached at ~500 m asl. [63]. The average (systematic
and statistical) uncertainty of the vertical profile of the particle depolarization ratio (δp) is
less than 15% [64–66].

By using the Raman technique, as proposed in [46,47], the βaer and αaer vertical profiles
are retrieved with systematic uncertainties of ∼5–15% and ∼10–25%, respectively [67,68].
Therefore, the corresponding uncertainty of the retrieved LR values is of the order of
11–30%, while the uncertainty for AEβ and AEα ranges between 0.02–0.04 and 0.03–0.08,
respectively, as estimated by propagation error calculations. Both lidars are designed
according to the optical set-up of a typical EARLINET station [69], following all the EAR-
LINET quality assurance tests and standards [64,70], while the primary aerosol products
(αaer and βaer) are retrieved by using the EARLINET Single Calculus Chain (SCC) [65,66].

The process followed for the estimation of the optical properties from the lidar signal
is summarized below: an aerosol-free reference height window has to be detected initially,
where the normalized range-corrected lidar signal sufficiently fits the calculated attenuated
molecular backscatter coefficient (Rayleigh-fit criterion) [64]. For this, the user provides
the SCC input platform with an initial guess of that range (in our case, 6–12 km based on
visual inspection of the range-corrected lidar signal), and the corresponding algorithm
fine tunes this guess by applying different statistical tests to ensure that the shape of
the measured signal corresponds to the shape of a Rayleigh signal [66]. Afterwards, the
retrieval of the aerosol optical properties from the lidar signal starts from the identified
reference height using the assumption of the lidar ratio value (Klett technique), or from the
utilization of the Raman channel (Raman technique), for the case of daytime and nighttime
retrievals, respectively.

2.2. Optical Particle Counter at the National Centre of Scientific Research (NCSR) “Demokritos”

The National Centre of Scientific Research (NCSR) “Demokritos” is situated about
7 km to the north from downtown Athens (Figure 1). It is representative of the atmospheric
aerosol at suburban areas of the Athens Metropolitan area. At “Demokritos” station,
among other instruments, an optical particle counter (OPC, Grimm 107@660 nm laser light
wavelength) is in operation so as to acquire the particle size distribution in the size range of
250 nm to 10 µm optical diameter. The OPC in an intercomparison at the WCCAP (World
Calibration Centre for Aerosol Physics) exhibited a counting accuracy within 10% for the
size range 250 nm to 1 µm [71]. The instrument acquires a full-size distribution every 1 min,
while it uses a laser light at 660 nm wavelength. According to [72], during African dust
outbreaks, the coarse aerosol mode (PM1-PM10) increases by 43–46%. We acquired PM1
and PM10 concentrations by using the OPC aerosol particle size distribution and an aerosol
density of 1 g/cm3. Based on the increase in the coarse aerosol mode, we examine the
influence of Saharan dust at ground level.

2.3. WRF-Chem Model

We use the limited area of the WRF-Chem model [73,74] at 12 × 12 km grid-space.
Initial and boundary conditions are taken from the National Centers for Environmental
Prediction (NCEP) operational Global Forecast System (GFS) model for the atmospheric
parameters and from the NCEP operational SST for the sea surface temperature. The physi-
cal parameterizations of the model include the Mellor–Yamada–Janjic planetary boundary
layer scheme [75], the Noah Land Surface Model for land properties [76], the Grell and
Devenyi cloud convection scheme [73] and the Rapid Radiative Transfer Model for the
short-wave and long-wave radiation. Dust emission is parameterized using the Air Force
Weather Agency (AFWA) scheme [77] that includes five dust size bins with effective radii
of 0.73, 1.4, 2.4, 4.5 and 8 µm, respectively.
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2.4. MODIS Satellite Data

The Moderate Resolution Imaging Spectroradiometer (MODIS) on-board the Terra
and Aqua satellites is an operational satellite sensor which, among others, also performs
observations of atmospheric aerosols. Particularly, MODIS has been providing Aerosol
Optical Depth (AOD) retrievals at 500 nm since 2000, twice daily (under cloud-free condi-
tions) on a near–global basis with high spatial resolution, and has acquired a well-respected
status as one of the most reliable satellite datasets of AOD over ocean and land [78,79].
Besides AOD, there are several other aerosol properties that are retrieved by MODIS (e.g.,
Ångström exponent, refractive index), which will not be used in the frame of this paper.
Their retrieval is easiest over dark (in visible wavelengths) surfaces and, therefore, the first
family of algorithms used by MODIS was the so-called “Dark Target” over land [80] and
ocean [81,82].

2.5. DREAM Dust Model

The NMMB/BSC-Dust model [83,84] provides online short to medium-range weather
and dust forecasts from regional to global scales. It has been developed at the Barcelona
Supercomputing Center-Centro Nacional de Supercomputación (BSC-CNS). At a global
scale, NMMB/BSC is ranked among the best of AEROCOM dust models in terms of
performance statistics for surface concentration, deposition and aerosol optical depth
(AOD). At regional scale, the model reproduces significantly well the daily variability and
seasonal spatial distribution of the dust optical depth over Northern Africa, the Middle East
and Europe. It provides 24 vertical sigma-hybrid layers, having a 0.3◦ × 0.3◦ horizontal
resolution for each 72-h daily forecast. The meteorological fields are initialized every 24 h
(at 12:00 UTC) with the NCEP global analysis (0.5◦ × 0.5◦), and boundary conditions are
updated every 6 h with the NCEP GFS.

2.6. HYSPLIT Trajectory Model

The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), devel-
oped by NOAA’s Air Resources Laboratory (ARL) (https://www.ready.noaa.gov (accessed
on 22 December 2020) [85]), was used to study the atmospheric transportation of the dust
particles during this extreme dust event. For the analysis of the backward air mass tra-
jectories, we used the “normal” method, along with the GDAS1 (Global Data Analysis
System) meteorological data. The vertical motion used to calculate the trajectories was
the model vertical velocity. The initial values used to run the model were the coordinates
of the NTUA lidar station and the altitude (asl.) of the dust aerosol layers observed. The
duration of the backward air mass trajectories was set to 120 h, which is a typical duration
to characterize dust air masses in the Eastern Mediterranean [24,35]

3. Observations—Experimental Results
3.1. Synoptic Meteorological Description of the 11–20 May 2020 Dust Event

The weather conditions that favored this extreme dust event included a south-westerly
jet at the lower tropospheric levels that was stream placed between a trough over Southwest
Europe and a strengthening ridge over Southeastern Europe. The relative position of these
two systems is evident in the upper tropospheric maps in Figure 2 from the WRF model
at 12 × 12 km grid space, on 14 May 2020 15:00 UTC. As seen in Figure 2a, the jet stream
at 200 mb is located at relatively southern latitudes (25◦ N–33◦ N), with wind speeds
exceeding 60 m/s over Algeria. At 500 mb height (Figure 2b), the center of the trough is
located over the southwest parts of the Iberian Peninsula, while strong pressure gradients
are evident over the arid areas of Algeria and Tunis. This combination of weather systems is
responsible for the formation of the strong “Khamsin” winds that mobilize large amounts of
Saharan dust in the area [86]. At the same time, the formation of a persisting high-pressure
system over the eastern part of the Mediterranean (Figure 2b) resulted in the recirculation
of the elevated dust layers over Greece and Turkey.

https://www.ready.noaa.gov
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Figure 2. (a) Wind speed (in m/s) at 200 mb; (b) temperature (in ◦C) and geopotential height at 500 mb, from WRF model.

The evolution of dust advection from the Sahara towards Greece is shown in Figure 3,
as described by the WRF model for the period of interest. The formation of the dusty air
mass is evident over Northeast Algeria and Tunisia on 12 May. The dust layers, which
crossed the Mediterranean region on 13 and 14 May, were embedded into the anticyclonic
cell that was centered over Greece from 14 to 18 May. This persisting high-pressure system
resulted in the recirculation of the dusty air masses and in the consequent increase in
atmospheric dust-loads over the Eastern Mediterranean until 21 May. On 22 May, the
synoptic flow changed and the establishment of north winds over the Balkans resulted in
ventilating the atmospheric dust towards southern latitudes. In the same figure, it is of
interest to mention the high values of dust load which peaked on 15 May at 15:00 UTC
(2–2.5 mg/m2).

Overall, two distinct transport paths of the air masses can be observed during the
study period: (a) 10–15 May 2020 (phase 1), when fresh dust is transported from the Sahara
towards SE Europe, and (b) 15–20 May 2020 (phase 2), when aged dust is trapped in
a recirculating pattern over Greece. This is also supported later on (Section 3.2) by the
HYSPLIT back-trajectories (Figure 4), but also from the retrieved aerosol optical properties
(see also Figures 8 and 9).
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Figure 4. The 120-h backward trajectories for air masses arriving over Athens in the period 11–20 of
May 2020.

3.2. HYSPLIT Backward Trajectory Analysis

The path travelled by the observed dust layers from Northern Africa to Athens
was also verified using an air mass backward trajectory analysis based on the HYSPLIT
simulation model (Figure 4). As can be seen in Figure 4 (first row), the air masses which
arrived over Athens from 11 to 15 May at 10:00 UTC seemed to follow a similar pattern.
They originated from North-Western Africa (Algeria, Mali, Mauritania), deep in the Saharan
desert. After leaving the African continent, they followed an almost straight route towards
Greece. Between 15 May (19:00 UTC) and 18 May (10:00 UTC), the air mass trajectories
are slightly shifted to North-Eastern latitudes over Athens (Figure 4, second row), passing
over Algeria, Tunisia and Libya. Later, from 18 May (19:00 UTC) to 20 May (19:00 UTC),
the air mass trajectories starting from the North-Eastern Saharan region passed over Italy,
the Balkans region and then over the industrial regions of Istanbul (Turkey), following an
anticyclonic flow formed around a high-pressure system over Greece before their arrival
over Athens (see also Figure 3). The increased residence time over Greece that is evident,
for example, at 18, 19 and 20 May in Figure 4 results in more aged particles being detected
by the lidar system over Athens.

3.3. Dust Model Simulations

The NMMB/BSC-Dust estimations of the vertical evolution of dust mass concentration
(µg/m3) over Athens are presented in Figure 5. The dust mass concentration values at
2, 4 and 6 km height (approximately base, center and top, respectively) are depicted
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within a 6-h interval. According to the model, the massive export of dust load started on
10 May (00:00 UTC) and gradually ended on 22 May (18:00 UTC), with a total duration
of 300 h. During the first 6 days of the event, the maximum concentration values of the
dust concentration peaked at ~402 µg/m3 on 12 May (12:00 UTC) at a height of 4 km.
These values gradually became smaller during the following days, while the dust particles
remained present between 2–4 km height asl. On the contrary, the dust concentration values
at 2 km became larger on the 6th day of the event (18 May), shifting the center of mass of
the estimated layers to lower heights. At 6 km height asl., the dust mass concentration
remained below 100 µg/m3 throughout the event. Finally, the aerosol mass concentration
at the aforementioned altitudes in the free troposphere tend to zero value on 22 May,
at 18:00 UTC. Considering the models’ performance, there is quite good agreement of
the estimated geometrical properties (base, top, thickness) when compared to the ones
observed by EOLE lidar, as we will see in Figure 8a.
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Figure 5. Dust mass concentration estimations by the NMMB/BSC-DUST model during the period
10–22 May 2020 and for the altitudes of 0, 2, 4, and 6 km (represented with red, black, green and
blue triangles) over Athens, within a 6 h interval. PM10 (red circles) and PM1 (gray circles) hourly
mass concentration measurements at the surface performed at NCSR Demokritos, along with the
ratio PM10/PM1 (black solid line). The dashed black line corresponds to the mean May 2020 ratio
PM10/PM1.

From the in-situ measurements performed at ground level at NCSR “Demokritos”,
we observe that while PM1 concentration (mainly representing local emissions) remains
almost stable and at low levels, PM10 concentration increases rapidly on the 13 May, until
21 May.

As detected by the lidar, the dust layers remained detached during the study period.
This is also reproduced in the model by the very low concentrations of dust at ground
level compared to the free troposphere. The increase in PM10 concentrations, which is
evident in ground measurements after 16 May, is probably related to downward turbulent
mixing of dust particles inside the Planetary Boundary Layer (PBL). This increase is also
depicted in the modeled surface concentrations of dust; however, it is overestimated
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by 50–80 µg/m3 (Figure 5). Such local scale processes inside the PBL cannot be easily
reproduced at the mesoscale resolution of the model (0.3◦ × 0.3◦), especially for regions of
complex topography [87], thus explaining the discrepancy between modeled and measured
values, especially at ground level.

3.4. MODIS Satellite Data

Figure 6 presents the MODIS “True Image” alongside the Combined Value-Added
Aerosol Optical Depth normalized at 550 nm (AODMODIS) product from both Terra and
Aqua satellites per day of the long-lasting dust event (11–20 May). The cloud formation
over Southern Europe is in accordance with wind vectors at 2 km, as estimated by the
WRF model (see Figure 3), especially for the period 14–20 May. The color scale layering
represents the values of AODMODIS at 500 nm, in the scale of 0 (yellow) to 5 (dark red). As
stated in Section 2.3, the efficiency of the MODIS AOD product maximizes under cloud-
free conditions, thus, the AOD values are expected to be observed only in the absence of
clouds. During the first 3 days of the event (11–13 May), the MODIS AODMODIS values
over Athens were around 0.1–0.3. The dust burden became more intense during the next
7 days (14–20 May), with much higher AODMODIS values of the order of 0.3–0.6.
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satellites per day during the period 11–20 May 2020.

3.5. Ground-Based Aerosol Lidar Observations

Ground-based lidar observations were used to illustrate the spatio-temporal evolution
of the dust aerosol stratification during the measuring period (>50 h of measurements) (see
Figure 7). According to the temporal evolution of the range-corrected lidar signals shown at
1064 nm (Figure 7a), an intense dust aerosol layer is observed between 2000 and 5000 m asl.
during 11 May over Athens. On 13 May (see Figure 7b), during the daytime measurements
(06:00–11:00 UTC), the dust layer is limited below 2 km height asl., while a thick aerosol
layer appears during the nighttime lidar measurements (18:00–19:00 UTC) between 3000
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and 5000 asl. This layer, once split into two distinct layers (from ground to 3200 m
and 4000–5000 m), persists in staying over Athens during 14 and 15 May (Figure 7c,d,
respectively), while the lower layer is intensified during the daytime hours of 15 May
(up to 16:48 UTC) over the daytime Planetary Boundary Layer (PBL), which is confined
below ~1200 m height (between 13:00 and 16:49 UTC). The latter atmospheric barrier has
been estimated from the lidar signals by using the Extended Kalman Filtering technique
and found to be within the typical monthly range (1300–1700 m), suppressed, however,
~200 m here due to the presence of the free tropospheric dust load, as also reported by [88].
During the following day (16 May), the intense dust aerosol layer is well stratified in three
distinct layers between the top of the PBL (~1000 m height) and 3200 m height (Figure 7e).
On the following days (18–20 May), the dust layer stays at constant levels (1000–4000 m)
significantly attenuated over the Athenian PBL (denoted by black circles on Figure 7),
showing a high aerosol burden over the city (Figure 7f–h). The days of 14–20 May coincide
with the highest AOD values measured by MODIS (0.3–0.6). The free-tropospheric pure
dust layer was also depicted by the space-borne lidar CALIPSO, over our station during
May 2020 (Figure A2).
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In the following Figures (Figure 8a–f), we present the geometrical and optical prop-
erties of the aerosol layers observed over Athens during this dust event, while in Table 1,
the mean values for the whole studied period are presented, along with their standard
deviation (SD), the range and the median value. Due to overlap effect, the base of dust
aerosol layers is estimated for height levels above 1000 m during the whole period of the
event, while the top reached, in some cases, 7000 m asl (Figure 8a). In the same graphic
(Figure 8a), we also present the center of mass (COM) of each distinct dust layer according
to [89], which in most cases coincides with the geometrical center of the dust layer. All
values of the mean aerosol optical properties as well as their SD were calculated within
the altitude ranges shown for each day in Figure 8a and for the 1 h measurement period
under cloud-free conditions (daytime or nighttime). Consequently, seven daytime and five
nighttime datasets were considered for further analysis (Figure 8b–f). The αaer at both wave-
lengths (355 and 532 nm, Figure 8b) were similar, with higher values (~164 ± 39 Mm−1) on
13 May and a declining trend as the event evolved. A minimum is observed on the last
day of measurements (20 May) of ~25 ± 10 Mm−1 in both wavelengths. Identical values
in the extinction profiles were also reported by [90] during the SALTRACE experiment in
Barbados, as well as by [36] during the SHADOW field campaign in Senegal.
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Table 1. Mean geometrical and optical properties of the dust layers along with their SD during the
two distinct phases of the long-lasting dust episode, as observed over Athens by the EOLE and
DEPOLE lidar systems.

Parameter 1st Phase
(11 May–15 May Noon)

2nd Phase
(15 May Night–20 May)

Base (m) 1982 ± 879 1424 ± 390
Top (m) 5476 ± 811 4749 ± 1300

CoM (m) 3579 ± 273 2786 ± 645
α355 (Mm−1) 122 ± 60 45 ± 18
α532 (Mm−1) 122 ± 62 40 ± 18

β355(Mm−1 sr−1) 2.1 ± 1.0 1.4 ± 0.4
β532 (Mm−1 sr−1) 2.5 ± 1.4 1.5 ± 0.5
β1064 (Mm−1 sr−1) 1.3 ± 0.8 0.7 ± 0.3

δp355 (%) 30 ± 4 26 ± 3
LR355 (sr) 55 ± 10 42 ± 7
LR532 (sr) 46 ± 6 40 ± 8

AEβ355/532 −0.07 ± 0.64 −0.09 ± 0.57
AEβ532/1064 0.99 ± 0.22 1.20 ± 0.73
AEα355/532 0.09 ± 0.14 0.36 ± 0.21

AOD532 0.34 ± 0.08 0.19 ± 0.10
AOD355 0.32 ± 0.11 0.19 ± 0.11

Moreover, the βaer vertical profile (Figure 8c) had similar values at both 355 and
532 nm during the whole event, and even in some days of measurements (11, 13, 15 and
20 May) the mean β532 became larger than the mean β355. Such an excess in β532 values
was also reported by [36,91] (SHADOW). It should also be noted that the SD of the two
optical parameters, αaer and βaer, decreases as the event evolves, indicating that the probed
dusty layers become more stable and uniform with the aging of the dust event.
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Concerning the intensive optical properties, the LR355 inside the layers was equal
to the LR532 for the whole period (Figure 8d), or even exceeded it in some cases (see
also Figure 10f), giving an indication of non-mixed layers of Saharan dust aerosols [91].
Consequently, the ratio of the lidar ratios (LR355/LR532) was found around 1 for all the mea-
surements, indicating the absence of spectral dependence for the case of pure dust [37,92].
A descending trend was found for δp355, which took its highest value on the first day
of the event (11 May, δp355 = 35 ± 7%) and the lowest one on the evening of 18 May
(δp355 = 23 ± 3%). It should be reminded here that δp values greater than 30% are repre-
sentative for pure dust [36,91,93–95]. The AEβ355/532, AEβ532/1064 and AEα355/532 had an
increasing trend during the event (Figure 8e), ranging from −1.33 to 0.85, from −0.03 to
2.12 and from −0.01 to 0.50, respectively, taking mean values of −0.08 ± 0.26, 1.13 ± 0.21
and 0.25 ± 0.60, respectively, (Table 1) in accordance with data provided in [31–34,38,39,44].
On the contrary, the AOD at both wavelengths, inside the dust layer, showed a decreasing
trend during the event (Figure 8f), ranging from 0.39 (14 May) to 0.06 (20 May) and from
0.40 (14 May) to 0.07 (20 May) at 355 and 532 nm, respectively. This gradual decrease
(increase) with time for δp355, AOD (AEα, and AEβ) is of specific interest in terms of aging
and mixing processes, and is associated with the change in the atmospheric circulation
and the path travelled explained previously (see Figure 4) in an atmospheric environment
mostly free from local (continental) aerosol emissions due to the COVID-19 restrictions.
This gradual decrease (increase) in δp355, AOD (AEα, and AEβ), as the event evolves with
time, is supported by the fact that the air mass trajectories initially followed a straight route
from North Africa to Athens during the first phase of the event (11–15 May 10:00 UTC),
while during the second phase of the event (15 May at 19:00 UTC–20 May at 19:00 UTC, as
already discussed in Figure 4) they passed over the industrial regions of Istanbul (Turkey),
where the dust aerosols were probably enriched with small anthropogenic particles, giving
rise to the AEα and AEβ values and decreasing the values of δp355. By further analyzing
the aerosol optical retrievals, we identified differences between the two phases of the event.

The differences in the geometrical and optical properties between these two phases
are well depicted in Table 1. Firstly, lower geometrical properties (base, top, COM) are
reported for the 2nd phase compared to the 1st one, indicating that gravitational forces
designated the dust stratification, since the residence time of the particles in the atmo-
sphere extended due to circulation. This extra circulation also affected the dust load
(dry deposition of the coarser particles), as depicted by the mean values of αaer and βaer
and AOD, which reduced to around half (α355 = 45 ± 18 Mm−1, α532 = 40 ± 18 Mm−1,
β355 = 1.4 ± 0.4 Mm−1 sr−1, β532 = 1.5 ± 0.5 Mm−1 sr−1, β1064 = 0.7 ± 0.3 Mm−1

sr−1) the corresponding values observed during the 1st phase (α355 = 122 ± 60 Mm−1,
α532 = 122± 62 Mm−1, β355 = 2.1 ± 1.0 Mm−1 sr−1, β532 = 2.5± 1.4 Mm−1 sr−1, β1064 = 1.3
± 0.8 Mm−1 sr−1). The mean values of δp355 and LR also decreased, depicting that
the air mass circulation played a crucial role in the aging of the dust particles from al-
most pure [36,91,93–96] to long-range transported [20,33,37,39,90,97,98]. Finer particles
reached over Athens after 15 May, as shown by the increase in the mean AEα355/532 and
AEβ532/1064 values.

The aforementioned observation regarding the two distinct transportation phases
of the dust plume is further supported by the comparison of the LR355 values, obtained
during the two phases of the event and reported here, with the corresponding literature
values regarding pure and polluted dust (Figure 9). During the first time period (contains
11 and 14 May), the mean LR355 obtained by our ground-based measurements is very close
to pure dust observations reported by dedicated campaigns in the African region (SAMUM
and SHADOW), but also long-range transported pure dust over Barbados (SALTRACE).
On the other hand, during the second time period (contains measurements performed on
15 (night), 18 and 20 May), our LR355 values are in the cluster of mixed and polluted dust,
similar to values also reported by other studies.
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4. Case Study Analysis

In the following paragraphs, we will present two selected case studies during the
10-day period, focusing on the vertical distribution of the dust aerosol extensive and
intensive optical properties. The selection of these days was based on the different paths
followed by the air masses starting from the Saharan region and arriving over Athens. On
15 May, the air masses arrived directly to Athens; on 18 May, the air masses, embedded
in the anticyclonic flow as described in Section 3.2, were mixed with anthropogenic ones
passing over the Balkans and the industrial area of Istanbul.

4.1. Case I: 15 May 2020

The vertical profile of βaer (Figure 10a) at all the wavelengths for the case study
of 15 May (15:50–16:50 UTC) reveals a thick aerosol layer between 2000 and 6500 m.
Moreover, the βaer shows almost equal values at all wavelengths inside the dust aerosol
layer. Concerning the vertical profiles of AEβ355/532 and AEβ532/1064 on the same day
(Figure 10b), they show small values inside the aerosol layer (−1.33–0.3), indicating the
presence of coarse aerosols. The high values of δp at 355 nm (0.2–0.3) corroborate the
depolarizing ability of the probed dust aerosols (Figure 10c).

Concerning the nighttime measurements of 15 May (18:46–19:46 UTC, Figure 10,
bottom), the βaer at 532 nm has slightly larger values compared to the βaer at 355 nm.
According to the vertical distributions of βaer and δp, the aerosol layer remained quasi
stable between 2500 and 6000 m height asl., showing mean values of LR355: 43± 7 sr, LR532:
37 ± 17 sr and δp: 25 ± 3%.
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Figure 10. Vertical distribution of optical properties (a–h) of the aerosol layers observed over Athens on 15 May 2020 (top)
daytime (15:50–16:50 UTC), (bottom) nighttime (18:46–19:46 UTC).

4.2. Case II: 18 May 2020

The dust event on 18 May also shows significant intensity, as seen on the vertical
profiles of βaer. Again, the βaer at 355 nm and 532 nm wavelengths presents similar values
(Figure 11).

The AEβ355/532 is equal to 0 during both the daytime and nighttime lidar measure-
ments, indicating large particles [34,35,45] On the other hand, the AEβ532/1064 seems to
show slightly higher values (>1) during the daytime lidar measurements compared to the
ones observed during the nighttime (AEβ532/1064~1). Additionally, the LR355 and LR532
present equal mean values, 48 ± 11 sr and 48 ± 13 sr, respectively, during the nighttime,
indicating wavelength independence of dust particles, as discussed by [36]. The δp355
presents higher values during the daytime measurements (32 ± 5%) compared to the ones
present during nighttime measurements (23 ± 3%), in accordance with the change in the
synoptic pattern on this day and in terms of air mass backward trajectories. We have to
mention here that the two presented case studies concern the optical properties of dust
aerosols which arrived over Athens without significant mixing with locally emitted air
masses, due to the COVID-19 local transportation restrictions leading to reduced aerosol
emissions. Therefore, we could argue that the measured optical properties of the probed
aerosols are representative of dust aerosols mixed with inter-regional continental aerosols,
rather than local ones over the height of 1–1.5 km asl.
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5. Radiative Effect Calculations Using LibRadtran

In order to estimate the radiative effect (RE) of the dust event over Athens, we firstly
calculated the dust mass concentration profiles from our lidar measurements by follow-
ing the procedure introduced by [97] for the calculation of the dust-related backscatter
coefficient and [37] for the estimation of the height-resolved mass concentration of the
dust-related backscatter coefficient. The mass profiles were then used as an input in the
LibRadtran radiative transfer model version 2.0.2. [99]. The uvspec program that calculates
the radiation field in the Earth’s atmosphere was implemented for the disort radiative
transfer equation (1-D geometry), and the downwelling and upwelling shortwave (SW,
0.28–2.5 µm) and longwave (LW, 2.5–40 µm) irradiances at the top of the atmosphere (TOA,
120 km) and bottom of the atmosphere (BOA, ground level) were simulated. It should
be noticed here that SW and LW ranges are treated separately by LibRadtran, and all
the cases correspond to cloud-free conditions. The OPAC library 4.0 [100] was used for
desert spheroids (T-matrix calculations) in the mineral accumulation mode (MIAM) with
RMIAM ∈ [0.005, 20] in µm. The library uses an outdated dust refractive index spectrum
in IR, which may substantially bias the LW radiative flux calculations. The RE depicts
the perturbation in flux in the atmosphere caused by the presence of the aerosol layers in
relation to that calculated under clear-sky conditions, and can be expressed as [13,101]:
RE(z)NET = ∆Floaded − ∆Fre f erence, where the net flux, ∆F, at a level z is the difference
between the downwelling and upwelling flux. In addition to the RE calculations, the
radiative effect of the loaded atmosphere was also assessed from the vertical profile of the
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rate of heating of the atmosphere by the absorption of radiation called radiative heating rate
(HR), which, accordingly to the RE, is calculated as: ∆HR(z)NET = HRloaded

NET − HRre f erence
NET .

Simulations were performed at 10:00 UTC on 18 May 2020, since at this time of
measurement the solar zenith angle is small (18.78◦), providing high solar irradiances
proper to clearly depict the atmospheric situation. We initiated our simulations by assuming
a Hypothetical scenario in order to estimate how the presented dust layer, in the free
troposphere, can affect such a typical atmosphere (midlatitude summertime atmospheric
conditions [102]). Afterwards, we proceeded with a more Realistic scenario, which depicts
the current situation. Specifically, in the Realistic scenario, the local pollutants are reduced
within the PBL due to the quarantine (−30% NO2, −2% CO2 [52]), the free troposphere is
loaded with Saharan dust particles and, additionally, we took into account an extreme low
ozone event where the total column ozone dropped down to 280–295 DU [103]. Table 2
summarizes the estimations of the instantaneous dust RE both at the BOA and TOA, as
well as of the net heating rate within the atmosphere of both scenarios (Hypothetic and
Realistic). In the Realistic scenario, the net RE is higher in absolute value at the BOA and
almost equal at the TOA, compared to the Hypothetical one. The heating rate within the
atmosphere, from 1000 to 6000 m, where the dust layer was observed, has a positive sign in
both scenarios and is slightly lower in the Realistic scenario, which depicts the contribution
of the reduced concentrations of the pollutants.

Table 2. Instantaneous radiative effect (RE) calculations estimated by LibRadtran during 10:00 UTC
on 18 May 2020 for the two scenarios (Hypothetical, Realistic).

18 May 2020, 10:00 UTC

Radiative Effect (RE) Hypothetical Scenario Realistic Scenario

SW BOA (W/m2) −155.2 −159.3
LW BOA (W/m2) 16.9 17.2
Net BOA (W/m2) −138.3 −142.1
SW TOA (W m2) −20.5 −20.9
LW TOA (W/m2) 12.3 12.8
Net TOA (W/m2) −8.2 −8.1

Atm. Heat. rate (K/d)
[1–6 km] 2.6 2.5

In order to further explore the RE in our case (see also Figure A3), we plotted the net
HR of (i) the typical atmosphere (HRtypical

NET ), (ii) the reference atmosphere (HRre f erence
NET ) and

(iii) the dust loaded with reduced pollutants atmosphere (HRloaded
NET ) and their differences:

∆HR(z)i−iii = HRtypical
NET − HRre f erence

NET (Figure 12a) and

∆HR(z)ii−i = HRtypical
NET − HRre f erence

NET (Figure 12b).
In this way, the ∆HR(z)i−iii depicts the absorption of radiation within the atmospheric

column due to the reduced pollutant concentrations, while the ∆HR(z)ii−i depicts the
corresponding absorption of radiation within the atmospheric column due to the additional
dust load.

The net HR of specific altitude ranges is presented in Figure 12a. At the BOA, the
reduced concentrations of the pollutants result in a negative net HR equal to −0.036 K/d
due to the reduced molecular absorption in the SW range, while in a typical atmosphere
this value would be opposite in sign and equal to +0.006 K/d. Additionally, the dust
loaded atmosphere with the reduced pollutants has a positive net HR equal to 0.156 K/d.
Within the dust layer (1–6 km), the net HR of the reference atmosphere is reduced by 50%
compared to the one of a typical atmosphere (+0.004 K/d and +0.008 K/d, respectively).
On the contrary, the net heating rate of the loaded atmosphere is much higher, reaching the
value of +2.470 K/d, due to the high AOD within this range. At the TOA, the highest net
HR is estimated for a typical atmosphere (+2.740 K/d) since the reduction in the pollutants
and ozone is estimated to have a decrease of around 9% (2.490 K/d) compared to the
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aforementioned typical atmospheric conditions. Even a lower net HR equal to 2.420 K/d is
estimated at the same altitude for the dust loaded atmosphere (further decrease of 3%).
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Figure 12. (a) Profiles of the net radiative heating rate (HR) of: (i) a typical atmosphere (black bars),
(ii) the reference atmosphere (orange bars), (iii) the dust loaded with reduced pollutants atmosphere
(green bars); (b) the net HR difference (∆HR) between: (i) the typical and reference atmospheres
(blue bars), and (ii) the reference and the loaded atmosphere (gray bars). The information is given for
specific altitude ranges: BOA, 1–6 km (dust layer), 6–10 km (upper troposphere), 10–20 km (upper
atmosphere) and TOA. The percentages next to the corresponding bars depict the contribution of
each of the two atmospheric conditions to the corresponding ∆HR values.

In Figure 12b, the difference between the typical and the reference atmosphere gives
a positive ∆HR, which reaches the value of +0.042 K/d at the BOA, and this value is
designated by 86% due to the reduction in pollutants within the boundary layer. However,
the presence of the dust layer does not leave the net HR at the BOA unaffected, since despite
the reduced pollutants, the ∆HR reaches the value of +0.192 K/d (scattering and absorption
of the dust particles). Within the dust layer (1–6 km), 98% of the positive ∆HR (equal to
+2.433 K/d) is attributed to the dust loaded atmosphere, where the presence of dust aerosol
led again to an increase in the scattering (increase in the upward and downward diffuse
irradiance) and absorption of, mainly, the SW radiation. In the absence of the dust layer,
the ∆HR would be equal to +0.04 K/d due to the heating that an atmosphere with reduced
pollutants would have created based on a typical atmosphere. In the range of 6–10 km, the
reference atmosphere is the major contributor (52% and 77%, respectively) of each ∆HR
(∆HRi–iii, ∆HRii–i), which reach the positive values of +0.04 and +0.563 K/d, respectively.
Here, the net heating rate is lower compared to the previous altitude range (1–6 km) due
to the significantly lower AOD (absence of dust particles). At the TOA, the ∆HR between
the loaded and the reference atmosphere is negative in sign but close to zero (−0.072 K/d).
On the contrary, the ∆HR between the reference and the typical atmosphere is positive in
sign and equal to +0.248 K/d. Taking into account that the absorption of the Saharan dust
particles is more pronounced at the ultraviolet (UV) spectrum, it could be concluded that its
presence partially balances the effect of reduced levels of ozone on the upper atmosphere.
Otherwise, a higher percentage of the UV radiation would have reached the ground.

6. Conclusions

In the period 10–20 May 2020, the meteorological conditions prevailing over the
eastern Mediterranean enabled the formation of a moderate (in terms of aerosol load)
long-lasting Saharan dust event over Greece. The event was followed by a synergy of
ground-based and space-borne remote sensing, as well as in situ instrumentation. The
measurements were performed during the COVID-19 lockdown period over Greece, which
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was accompanied by a general restriction of transport activities over Europe. As a conse-
quence, during this period the levels of air pollution, especially over the megacity Athens,
were significantly reduced, as in the entire European continent.

High AOD values (even up to 0.6) were observed by both MODIS (at 550 nm) and
ground-based lidar measurements (at 355 and 532 nm). Moreover, high δp355 values ranging
from 23 to 35% were measured inside the dust aerosol layers, which were usually observed
between 1000 and 6500 m asl. The variations in the values of δp355, as well as in those of LR
(from 34 to 63 sr at 355 nm) and AE (from−1.33 to 0.85 for the AEβ355/532), can be attributed
to aging and mixing processes due to the different paths travelled during the long-range
transport of at least 120 h, as estimated by HYSPLIT model (before and after 16 May).
Moreover, instantaneous radiative effect calculations at BOA and TOA were estimated by
LibRadtran for two scenarios. One using typical atmospheric profiles (Hypothetical), and
one using reduced atmospheric pollutants (Realistic) due to the COVID-19 restrictions,
revealed negligible differences in terms of radiative effect, of the order of +2.6% (SWBOA,
cooling behavior) and +1.8% (LWBOA, heating behavior). Within the dust layer (1–6 km),
almost 98% of the positive heating rate is attributed to the dust load. At the TOA, the
reduction in the pollutants and ozone is estimated to have a decrease in the net HR of
around 9%, while an additional decrease of 3% is estimated due to the presence of dust in
the free troposphere, compared to the typical atmospheric conditions.

Overall, the 10-day dust event presented in this work provides valuable information
by revealing the aerosol optical properties of strongly depolarizing Saharan dust particles
and their impact on the climate’s radiative balance and atmospheric dynamics. Moreover,
the aerosol dust measurements, performed during the confined period of the COVID-19
pandemic over Athens aloft, revealed interesting features of the aerosol dust properties,
based on the δp355, LR355, LR532, AEβ355/532 AEβ532/1064 and AEa355/532 values, in the
absence of important air pollution sources over the European continent. Furthermore, we
observed significant differences between the aerosol optical properties observed before and
after 15 May, when the dust circulation pattern changed from the direct advection from
Africa to Greece (before 15 May) to the anticyclonic flow which prevailed after 15 May over
Greece (when the dusty air masses passed over the Balkans and the industrial regions of
Istanbul, Turkey). At ground level, a significantly higher PM10 to PM1 ratio was observed
in the period extending from the 13 to 21 of May. This is an indication of the strong mixing
of Saharan dust and local aerosol in the vertical.
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