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Abstract: Small low-cost sensing (LCS) devices enable assessment of close-to-reality PM2.5 exposures,
though their data quality remains a challenge. This work evaluates the precision, accuracy, weara-
bility and stability of a wearable particle LCS device, Location-Aware Sensing System (LASS, with
Plantower PMS3003), which is 104 × 66 × 46 mm3 in size and less than 162 g in weight. Real-time
particulate matter (PM) exposures in six major Asian transportation modes were assessed. Side-by-
side laboratory evaluation of PM2.5 between a GRIMM aerosol spectrometer and sensors yielded a
correlation of 0.98 and a mean absolute error of 0.85 µg/m3. LASS readings collected in the summer of
2016 in Taiwan were converted to GRIMM-comparable values. Mean PM2.5 concentrations obtained
from GRIMM and converted LASS values of the six different transportation microenvironments were
16.9 ± 11.7 (n = 1774) and 17.0 ± 9.5 (n = 3399) µg/m3, respectively, showing a correlation of 0.93.
The average one-hour PM2.5 exposure increments (concentration increase above ambient levels) from
converted LASS values for Mass Rapid Transit (MRT), bus, car, scooter, bike and walk were 15.6, 6.7,
−19.2, 8.1, 6.1 and 7.1 µg/m3, respectively, very close to those obtained from GRIMM. This work
is one of the earliest studies applying wearable particulate matter (PM) LCS devices in exposure
assessment in different transportation modes.

Keywords: air pollutant exposure; transport microenvironment; PM micro-sensors; PM sensing;
Asian pedestrian and cyclist exposures

1. Introduction

Particulate matter with an aerodynamic diameter less than or equal to 2.5 µm (PM2.5)
is a major environmental health threat worldwide, with annual means reaching 100 µg/m3

in certain Asian areas [1,2], ten times higher than 10 µg/m3, the recommended value
by World Health Organization [3]. Exposure to PM2.5 may increase risks of acute and
chronic cardiopulmonary diseases [4–6]. According to the Global Burden of Disease Study
2015 [1,7,8], around 5.7 to 7.3 million deaths could be attributable to PM2.5, a classified
human carcinogen [9].

Previous studies have shown that the actual personal PM2.5 exposures are usually
higher than the ambient levels measured by local monitoring stations [6,10,11]. In particular,
Asian residents are often exposed to nearby community sources such as vehicles and
restaurants in close proximity, resulting in significantly higher personal exposure within
their communities [11,12]. Using ambient levels as surrogates underestimates the actual
exposures, resulting in miscalculated damage coefficients of exposure–health relationships.
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For example, when using more spatially resolved exposure estimates [13], an almost four-
fold increase in all-cause mortality with each 10 µg/m3 PM2.5 increase was obtained for
an American Cancer Society (ACS) population as compared with previous findings [14],
indicating the importance of accurate exposure assessment.

Personal exposure has been assessed with personal samplers such as Personal Envi-
ronmental Monitors (PEM, SKC Ltd., Blandford Forum, UK) and real-time instruments
such as GRIMM (GRIMM Aerosol Technik Ainring GmbH & Co. KG, Ainring, Germany).
However, these samplers and instruments have disadvantages of heavy weight, noise
and vibration, posing an extra burden for subjects wearing them. These drawbacks pose
difficulty to subject recruitment and prevent subjects from maintaining daily routines
during monitoring, which might in turn affect the reliability of the assessments. Newly
developed easy-to-carry low-cost sensors (LCS) may offer opportunities and breakthroughs
in exposure assessments [15].

There has been rapid development of LCS devices for air pollutant monitoring in
recent years [15–17]. Clements et al. [18] concluded that the purposeful use of sensors
should be encouraged while taking into account their limitations. The current challenge of
applying LCS devices to research is data quality. Several PM2.5 sensors have been evaluated
in the laboratory and field against research-grade instruments; data of some LCSs showed
good agreement [16,17,19–22]. LCS devices can be built by assembling these sensors with
data transmission and power supply components. Currently, several commercialized LCS
devices for particulate matter (PM) monitoring are available, such as PurpleAir II. However,
some commercial products are not wearable, while some have unreliable readings (Air
Quality Sensor Performance Evaluation Center [23].

Humidity interference is a serious concern for PM LCS devices [24]. First, water
droplets are aerosols by definition; therefore, higher humidity would result in higher
PM2.5 measurements, especially for instruments and sensors developed according to
light-scattering principles, causing a discrepancy in PM2.5 concentrations compared with
measurements obtained by filter weighing. For regulatory purposes, the United States
Environmental Protection Agency (USEPA) has specified a relative humidity (RH) of 30–
40% to be maintained for filter weighing [25]. Nevertheless, LCS devices also serve other
purposes such as exposure assessment [26]. We argue that exposure assessment does not
require humidity control because water droplets are already present in PM2.5 inhaled.
Ions, such as sulfates and nitrates, could be dissolved in water droplets resulting in health
impacts if inhaled. From a health perspective, it is important to examine the PM2.5 actually
inhaled. Another impact of humidity is the interference of water droplets in measurements
of certain instruments and sensors, resulting in unstable readings under high humidity
environments. It was found that the signals of infrared light sensors fluctuated under RH
exceeding 75%, while those of laser sensors did not show any significant changes under
RH reaching 90% [27].

Several sensors have been tested for their performances under different environmental
conditions. PMS3003 (Plantower Co., Ltd., Beijing, China) designed with a fan for drawing
air in for exposure to laser-induced light and a photo-diode detector for the detection of 90◦

scattered light, was found to give stable readings and better performance compared with
TSI DustTrack 8530 and GRIMM 1.109 [28]. Previous tests reported the correlation coeffi-
cients between PMS3003 and GRIMM measurements to be as high as 0.992 for PM2.5 and
0.988 for PM10 [29]. In addition, PMS3003 had good performance in comparison with other
new developed low-cost sensors, like AirBeam, Dylos 1700, SDS011 and Shinyei [28,30–33].
Hence, PMS3003 was selected for our study.

This work evaluated the performance of a wearable LCS device incorporated with
PMS3003 in exposure assessment during commuting, a human activity with one of the
highest exposure levels, which may differ depending on modes of transportation [34–36].
Previous studies reported the median PM2.5 levels of commuters walking, riding buses
and taking the subway in Beijing, China, to be 26.7, 32.9 and 56.9 µg/m3, respectively [34].
In Delhi, India, commuters’ exposures when walking, biking or taking two-wheelers,
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cars, buses and subways ranged from 48 to 380 µg/m3, which were 10–40% higher than
the ambient levels [35]. Kumar et al. [36] reviewed PM2.5 exposures in Asian transport
microenvironments and pointed out that exposure levels when walking and riding on cars
and buses in cities in Asia were usually 1.2 to 3 times higher than those of cities in the USA
and Europe. In this study, we focused on the assessment of personal PM exposures in six
different transportation microenvironments, which cover most of the urban transportation
modes in Asian countries. In addition, due to the differences in personal motions, the
wearability and stability of the wearable LCS devices could also be evaluated.

This work aims to evaluate the applicability of a wearable LCS device complementing
research-grade instruments in real-time personal PM exposure assessment in different
transportation modes. The field campaign was carried out to assess real-time PM exposures
of commuters in six transportation microenvironments in Taiwan. Exposure increments
(concentration increase above ambient levels) in these transportation modes were obtained.
The advantages and disadvantages of this LCS device are also presented. The lessons
learned can shed light on the applicability of LCS devices in exposure assessment.

2. Materials and Methods
2.1. LCS Device

The Location-Aware Sensing System (LASS) [37] is an LCS device developed through
the collaboration of information scientists, environmental scientists and a local maker
community in Taiwan. Its prototype, LASS Field Try (LASS FT), has been previously
introduced [29]. Modified from LASS FT, the LASS used in this study (Figure 1) comprises
an upgraded temperature/humidity sensor, BME280 (BOSCH, Stuttgart, Germany) and
the same PM sensor, Plantower PMS3003 (Plantower, Beijing, China) but expanded with a
real-time-clock module and GPS (built-in LinKit One, Mediatek Hsinchu, Taiwan). The
various components are detailed in Supplemental Materials (hereafter SM). The LASS is
104 × 66 × 46 mm3 in size and less than 162 g in weight. Its basic manufacturing cost
is around USD 150 excluding research and development expenses. Real-time data are
transmitted wirelessly with a built-in Wi-Fi module through a 4G router to the cloud
database with a log interval of 30 s.
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To assess sensor performance, 16 sets of PMS3003 were evaluated against a research-
grade instrument, GRIMM (1.109, GRIMM Aerosol Technik Ainring GmbH & Co, Ainring,
Germany). GRIMM 1.109 is an aerosol spectrometer for the detection of aerosols in the
size range of 0.25–32 µm in 31 size channels with a flow rate of 1.2 L/min. PMS3003 has
a laser light with its wavelength (650 ± 10 nm) close to that of GRIMM (655 nm) [28].
The evaluation was conducted for 2.5 days (64 h) in the laboratory under temperatures of
22.6–25.6 ◦C, RH of 49.2–75.6% and PM2.5 concentrations of 0.7–55.3 µg/m3. The labora-
tory was located in a building with central air-conditioning systems; the indoor air was
affected by infiltration of outdoor air with wind blowing in through stairs and hallways.
Traffic-related sources accounted for more than 60% of PM2.5 in ambient air of Taipei
metropolitan [38]; the ambient air affected indoor air in our laboratory, which did not have
any significant sources like smoking or cooking.

2.2. Monitoring Strategy

Real-time exposures of commuters on the same route in six different transportation
modes, namely Mass Rapid Transit (MRT), bus, car, scooter, bike and walking, were
evaluated. These six transportation microenvironments include air-conditioned (AC)
underground subway without platform screen doors, AC single-decker buses with sealed
windows and two doors (one in the front and one in the middle), re-circulated AC cars
with closed windows, scooters, bicycles on the sidewalks with bike lanes in certain sections
and pedestrians on the sidewalks. All monitoring for these six transportation modes was
conducted along the same route, a stretch of around 2.4 km between two MRT stations on
a major boulevard in Taipei City (Figure S1a). Research staff conducted the monitoring by
commuting in the transportation modes, carrying the LASS near the chest with a mobile
battery in a bag (Figure S2). The LASS measurements were transmitted to cloud storage
in real-time.

Monitoring campaigns were conducted during 6–30 July 2016 with three monitoring
periods a day, namely morning (7–9 a.m.), noontime (11 a.m.–12 p.m.) and afternoon
(5–7 p.m.). One-hour monitoring was carried out for one specific transportation mode with
repeated trips on this route during monitoring periods (one sample per hour). For example,
it usually took six round trips in MRT and five round trips in a car to complete one-hour
monitoring. For each hour, monitoring was simultaneously carried out for three of the six
modes, following a designed rotation scheme in order to obtain similar sample sizes for all
modes with LASS.

In some cases, paired comparisons were conducted in which two research staff com-
muted in pairs, with one carrying GRIMM and the other carrying LASS. While LASS was
small enough to be worn near the chest, GRIMM needed to be carried like a messenger bag
and hung near the waist due to its size and weight of almost 2.5 kg. For the scooter mode,
two research staff shared the same scooter, with one carrying GRIMM in the front and the
other carrying LASS in the back. For the bike mode, two staff rode on two separate bikes
either side by side or one behind the other, depending on the traffic conditions. For the
other four modes, the two staff stuck together most of the time unless being forced apart
by the crowds during rush hours, leading to different PM2.5 exposure levels depending on
their proximity to sources.

Results from earlier campaigns in August 2004 and April 2005 in Taipei were also
presented to evaluate whether the relative exposure differences among transportation
modes have changed over the years. A typical instrument at that time, PEM (761-203B,
SKC Ltd., Blandford Forum, UK), was used to assess PM exposure, thus offering a unique
opportunity to compare results with different equipment. Campaigns were conducted for 5
days each year, with three monitoring periods in a day, morning (8–10 a.m.), noon (11 a.m.–
3 p.m.) and afternoon (5–7 p.m.). PM2.5 exposures of commuters in three transportation
modes (MRT, car and scooter) were assessed simultaneously between two MRT stations
(Figure S1b). To ensure sufficient PM mass collected with filters, 2- or 4-h monitoring
was conducted with repeated commuting on the same route; mean PM2.5 concentration



Atmosphere 2021, 12, 270 5 of 16

during one commuting duration was counted as one sample. Taipei metropolitan is in a
basin with pollutant levels in ambient air quite uniformly distributed spatially (Table S1).
Even with different routes, relative exposure patterns among transportation modes can be
compared 11–12 years apart. No in-depth data analysis (such as regression) was intended
for 2004/2005 data.

2.3. Data Analysis

The stability of devices on the move was evaluated by plotting the time series of
LASS and GRIMM readings to identify the sudden emergence of a high value without
an ongoing trend (ghost peaks) or negative values. Five-minute averages of GRIMM and
LASS were taken to evaluate data precision and accuracy of side-by-side comparisons.
Sample sizes in each period with the exclusion of rainy hours are listed in SM Table S2a,b.
LASS readings in field campaigns were converted into GRIMM-comparable values using
correction equations obtained in the laboratory. In addition, paired t-tests were conducted
to compare 5 min PM between GRIMM and converted LASS in paired trips. PM10 results in
the following sections were from GRIMM only, since the comparison results of LASS were
not satisfactory (shown in Figure S3a,b for laboratory and field tests, respectively). These
results were supported by a previous study showing that PMS sensors were ineffective in
measuring PM10 since it was difficult for large particles to make 90-degree turns before
passing the laser/photodetector [39].

Hourly means of both LASS and GRIMM were obtained for further data analysis.
Monitoring data (from humidity-controlled beta-gauge instruments but not Federal Equiv-
alent Methods (FEM) instruments, VEREWA-F701, VEREWA Ltd., Germany) from the
nearest station of Taiwan Environmental Protection Agency (Figure S1) during the monitor-
ing periods were converted to GRIMM-comparable values using the regression equation
(PM2.5 GRIMM = 0.7696 × PM2.5 EPA + 6.311 with correlation coefficient (r) = 0.86 for
hourly means) previously established based on a 4 day collocation comparison in summer
2015 under temperatures of 26–35 ◦C, RH of 49–87% and concentrations of 5–34 µg/m3. In
short, EPA data were converted to GRIMM-comparable data to obtain PMincrements in the
left term of the following Equation (1).

In the transportation microenvironments, PM exposure was the sum of ambient
PM level (from the nearest EPA station, SM Table S3) added to PM increments due to
commuting activities. To minimize the interference of day-to-day variations, hourly PM
increments (calculated by subtracting the hourly ambient PM levels from hourly PM
exposure levels obtained from LASS or GRIMM) were input into the regression analysis in
order to quantify exposure source contributions. Regression analysis was then applied, as
in earlier publications [12,40,41], to evaluate the hourly PM exposure increments attributed
to different transportation modes as in Equation (1) with focus on PM2.5 only.

PMincrements = β0 +
5

∑
1
βi × Xi +

2

∑
1
αi × Environi. (1)

β0 is the intercept and αi and βi are regression coefficients of environmental factors
Environi (temperature and RH) and emission sources Xi (dummy variables representing
different transportation modes), respectively. The dummy variable for the car mode was
taken as the base case (not put into the model to avoid collinearity) because the exposures
inside the cars were the lowest. The relative magnitudes of day-to-day variations were
represented by the hourly EPA measurements, although different monitoring principles of
EPA instrument and LASS may result in higher standard errors in the coefficient estimates.

In addition, a multiple regression equation was applied to clarify if the converted
LASS PM2.5 readings needed to be adjusted by air temperature and RH in the different
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transportation modes. The regression Equation (2) for the paired monitoring in each of the
six transportation modes was as follows:

PMconverted LASS = β0+ βi × PMGRIMM +
2

∑
1
αi × Environi. (2)

PMconvertted LASS and PMGRIMM were PM2.5 data of the converted LASS readings and
GRIMM measurements for the paired monitoring, respectively. β0 is the intercept and αi
and βi are regression coefficients of environmental factors Environi (temperature and RH)
and GRIMM data, respectively.

3. Results and Discussion
3.1. Performance Evaluation

In the laboratory tests, the r value of 5 min PM2.5 between PMS3003 and GRIMM
was 0.98 with small intercepts (Figure 2a). Although PMS3003 overestimates PM2.5, its
good precision allows conversion between PMS3003 and GRIMM measurements with
the established regression. The mean absolute error (MAE) between converted PMS3003
data and GRIMM measurements was 0.85 µg/m3. Moreover, inter-sensor variability was
assessed as the percentage coefficient of variation (%CV = standard deviation/mean (%))
of the 5 min averages of 16 sensors. The mean %CV of PM2.5 among 16 sensors in the entire
testing period was only 20% ± 12%. Only one regression equation was established for the
correction of PM2.5 (Figure 2a).
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In fieldwork, one GRIMM and one LASS were evaluated in pairs in the six transporta-
tion modes under ambient conditions with temperatures of 23.4–42.5 ◦C, RH of 25.2–84.4%
and PM2.5 concentrations of 0.7–72.1 µg/m3 (see details in SM). After adjustment by regres-
sion in Figure 2a (obtained under similar RH conditions as those in the field), 5 min PM2.5
of the converted LASS and GRIMM in field campaigns had highly correlated (r = 0.93,
Figure 2b, n = 1673), with a slope of 0.7944. Additionally, the mean absolute percent dif-
ference between these two devices (absolute value of (GRIMM-LASS)/GRIMM (%)) was
21% ± 18% for 5 min PM2.5.

It should be noted that certain discrepancies in measurements may be caused by LASS
being worn near the chest and GRIMM near the waist. Moreover, different PM2.5 levels
may have been encountered when two staff carrying GRIMM and LASS were forced apart
by traffic or crowds. Considering 6% ± 6% differences in previously paired PEMs [42], the
absolute percentage difference of 21% ± 18% for 5 min PM2.5 between GRIMM and LASS
was deemed acceptable. The MAE between LASS and GRIMM was only 3.3 µg/m3 as
shown in Table S4. Compared to the reported side-by-side comparisons between LCSs and
research-grade instruments with R2 reaching 0.89, MAE values reaching 5.7–14.6 µg/m3

and relative errors reaching 9–55% [16,21,30], our results revealed good performance
of LASS.

In addition, it was evaluated whether temperature and RH affected the relationship
of GRIMM and LASS measurements with the Equation (2). There were 40.9% of the
measurements obtained under the conditions of RH above 60%. The regression coefficients
of temperature and RH were mostly statistically insignificant (p-value > 0.05) (Table S5),
except RH in the car mode with a coefficient of 0.04 (p-value ≤ 0.05), which was under
air-conditioning. Therefore, temperature and RH were considered to have very minor
effects on the relationship of GRIMM and LASS in the study. Thus, for LASS conversion,
we applied the regression line in Figure 2a without temperature and humidity adjustment.

One critique might be that the present laboratory evaluation was not under prescribed
temperature and humidity conditions. Taiwan has high humidity all year [43]; therefore,
some instruments that have good performance under those prescribed conditions may not
function well in Taiwan. This work aimed to test LASS under the actual environmental
conditions to ensure the applicability of the developed device in Taiwan. The RH (the
environmental factor considered to affect the PM LCS performance most) and PM2.5
concentrations in the laboratory have covered the majority of the humidity and PM2.5
concentrations in field campaigns. Most importantly, in-field LASS readings converted
with the correction equation obtained in the laboratory had good agreement with in-field
GRIMM measurements, demonstrating the applicability of the correction equation obtained
in the laboratory and the reliability of LASS under the actual environmental conditions.

In terms of wearability, in contrast to GRIMM and PEM, which are (with the addition
of a pump) nearly 2–2.5 kg in weight, LASS weighs under 400 g together with the mobile
battery and is free of vibration and noise, making it less disturbing than GRIMM and
PEM. In terms of data recovery, percentage completeness for MRT, bus, car, scooter, bike
and walk were 91.9, 91.6, 82.8, 86.2, 88.8 and 91.0%, respectively. Data loss was mainly
attributed to unstable wireless transmission. For measurement reliability, no ghost peaks
or negative values were found.

3.2. PM Exposure Levels in Six Transportation Modes

The mean 5 min PM concentrations in all monitoring trips averaged across six trans-
portation modes were 16.9 ± 11.7 µg/m3 (n = 1774) for PM2.5 and 21.4 ± 14.2 µg/m3 for
PM10 (n = 1774) with GRIMM instruments and 17.0 ± 9.5 µg/m3 (n = 3399) for PM2.5 with
LASS after conversion. Mean PM2.5 level from LASS (17.0 µg/m3) was very close to that
from GRIMM (16.9 µg/m3), with less variability due to larger sample size.

Table 1a presents hourly averages of PM exposures for different transportation modes
from both GRIMM and converted LASS. The lowest PM2.5 means were observed for car
drivers, while the highest occurred in MRT, with either LASS or GRIMM; the same pattern
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holds for PM10 with GRIMM. Additionally, larger variability was observed for PM2.5 and
PM10 exposures of scooter riders and bikers with both GRIMM and LASS compared with
other modes, presumably due to closer contact with vehicle emissions. The 5 min PM2.5
levels which were obtained from LASS for scooter riders and bikers were 4.6 and 5.3 µg/m3

lower than those from GRIMM (paired t-tests, p-value ≤ 0.05), respectively, while those
in the other four modes were not statistically significantly different (Table 1b). It was
speculated that GRIMM worn at the waist may be closer to vehicle emissions near the
ground. In the other four modes with more homogeneous PM2.5 concentrations, converted
LASS readings were very close to those of GRIMM.

Table 1. PM exposure levels (µg/m3) in different transportation modes. (a) Hourly averages of PM with GRIMM and LASS
in 2016, (b) 5 min averages of PM with GRIMM and LASS in 2016 and (c) hourly PM2.5 with PEM in 2004 and 2005.

(a)

Mode
PM2.5 with GRIMM

in 2016
PM2.5 with LASS

in 2016
PM10 with GRIMM

in 2016
Mean (SD) n Mean (SD) n Mean (SD) n

MRT 29.6 (8.0) 11 27.6 (4.7) 53 35.4 (8.9) 11
Bus 20.8 (7.5) 13 17.2 (6.2) 53 27.9 (7.3) 13
Car 5.6 (3.6) 62 4.6 (3.3) 60 6.7 (4.0) 62

Scooter 22.7 (8.9) 58 18.0 (7.9) 57 28.4 (9.5) 58
Bike 25.9 (14.6) 14 16.9 (8.3) 56 34.1 (16.2) 14
Walk 21.3 (6.3) 12 18.8 (7.6) 58 29.4 (7.6) 12

(b)

Mode
PM2.5 with GRIMM

in 2016
PM2.5 with LASS

in 2016
PM10 with GRIMM

in 2016

Mean (SD) Max/Mean 1

(Range) 2 n Mean (SD) Max/Mean
(Range) n Mean (sd) Max/Mean

(Range) n

MRT 29.8 (9.2) (1.1, 1.3) 114 27.6 (5.4) (1.0, 1.4) 565 35.5 (10.4) (1.1, 1.3) 114
Bus 19.9 (8.0) (1.1, 1.7) 120 17.5 (7.1) (1.0, 1.9) 493 27.0 (11.7) (1.2, 3.1) 120
Car 5.9 (4.2) (1.0, 3.4) 666 4.9 (4.0) (1.0, 3.6) 614 7.1 (5.6) (1.1, 5.2) 666

Scooter 22.3 (9.5) (1.0, 2.3) 614 17.8 (8.3) (1.0, 2.7) 574 28.2 (11.9) (1.0, 3.2) 614
Bike 25.7 (13.7) (1.0, 1.2) 122 17.2 (8.4) (1.0, 2.7) 541 34.2 (16.0) (1.0, 1.9) 122
Walk 21.3 (6.9) (1.1, 1.4) 138 18.6 (8.0) (1.0, 2.1) 612 29.6 (10.2) (1.2, 2.9) 138

(c)

Mode
PM2.5 with PEM

in 2004
PM2.5 with PEM

in 2005
Mean (SD) n Mean (SD) n

MRT 128.7 (73.4) 15 68.1 (33.7) 15
Bus - - - - - -
Car 104.5 (64.0) 15 75.6 (35.1) 15

Scooter 179.8 (70.2) 14 153.3 (67.2) 15
Bike - - - - - -
Walk - - - - - -

1 max/mean: maximum PM2.5 /mean PM2.5 of a one-hour trip; 2 (Range) presents the minimum value of the max/mean to the maximum
value of the max/mean

To avoid the influence of speed fluctuation on measurements, the staff carrying
GRIMM and LASS were instructed to drive at a stable speed and not too fast. The speed
limit was 50 km/hr on the planned route. The speeds were maintained below 40 km/hr
for scooter riders and below 10 km/hr for bikers, except when being stopped by traffic
lights. In addition, PMS3003 with a volume-scattering detection approach obtained PM
measurements independent of the flow rate [44]. Thus, our results were not significantly
affected by the speed fluctuation.

The ratios of the maximum 5 min PM2.5 during a one-hour trip over the mean PM2.5
levels were calculated. The maximum of the max/mean ratios were 1.4, 1.9, 3.6, 2.7,
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2.7 and 2.1 for MRT, bus, car, scooter, bike and walking, respectively (Table 1b). The
difference between peak and mean exposure levels could be as large as 3.6-fold. Direct
exposure to traffic exhaust caused 2.1–2.7-fold differences for commuters in scooter, bike
and walking modes. Integrated personal samplers such as PEM would miss the important
characteristics of peak exposures. LASS can assess peak exposures and pinpoint the
activities or environmental conditions the peaks occur.

Comparing the present measurements with 2004–2005 campaigns shows much lower
exposure levels in 2016 (Table 1c). In addition, although exposures of car drivers re-
mained the lowest, the exposures of scooter riders were higher than those of MRT riders in
2004–2005 with opposite patterns in 2016. Ambient PM2.5 levels have decreased over these
12 years (Table S3), with levels in 2004 (26.8 µg/m3) and 2005 (49.2 µg/m3) being 144%
and 266% higher than those in 2016 (18.5 µg/m3), respectively. The dramatic reduction in
PM2.5 exposures of scooter riders was likely due to ambient PM2.5 decrease, while the MRT
users may have been exposed to other indoor sources [36], resulting in higher exposures
than those of scooter riders in 2016.

Figure 3a,b show exposures in the six transportation modes with GRIMM and LASS,
respectively, along with EPA data. Higher exposures were observed in certain transporta-
tion modes in rush hours compared to EPA levels. This was attributed to subjects being in
closer proximity to emission sources during commuting. Moreover, the relative comparison
of observations between different transportation modes at different periods from LASS
readings were similar to those from GRIMM.
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Figure 3. PM2.5 levels in six transportation modes obtained from (a) GRIMM and (b) LASS (converted)
along with those of Taiwan Environmental Protection Agency during the monitoring periods; error
bars represent standard deviations of these measurements.
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Regression analysis performed on LASS observations shows that the average hourly
exposure increments with MRT, bus, car, scooter, bike and walking were 15.6, 6.7, −19.2,
8.1, 6.1 and 7.1 µg/m3, respectively, very close to those obtained from GRIMM (Table 2a,b).
With GRIMM, statistically significant coefficients were only obtained for the MRT and
scooter modes at p-value ≤ 0.05 and for the bike mode at p-value ≤ 0.10. The high cost
limits the use of multiple sets of GRIMM to conduct parallel monitoring and obtain sample
sizes large enough for statistically significant estimations of the coefficients. However,
multiple LASS sets can be applied in parallel to obtain the coefficients with statistical
significance for modes of MRT, bus, scooter and walking at p-value ≤ 0.05 and for the
modes of car and bike at p-value ≤ 0.10. The exposure increment for the scooter mode is
higher from GRIMM compared to that from LASS, possibly because GRIMM was carried
in the front seat, exposing it to higher PM2.5 compared to LASS, which was in the back seat.

Table 2. T Hourly exposure increments (µg/m3) from different transportation modes with (a) GRIMM
(n = 155, adj R2 = 0.65) and (b) LASS (n = 309, adj R2 = 0.62).

(a)

Mode Parameter Estimate Standard Error p-Value

Intercept (car) −26.7 15.2 0.081
MRT 15.9 3.9 0.000
Bus 4.6 3.8 0.226

Scooter 9.9 4.8 0.040
Bike 9.3 5.1 0.068
Walk 4.9 5 0.329

Air temperature −0.1 0.4 0.843
Relative Humidity 0.4 0.1 0.002

(b)
Mode Parameter Estimate Standard Error p-Value

Intercept (car) −19.2 11.4 0.095
MRT 15.6 2.4 0.000
Bus 6.7 2.6 0.010

Scooter 8.1 3.6 0.025
Bike 6.1 3.6 0.092
Walk 7.1 3.6 0.048

Air temperature −0.3 0.3 0.261
Relative Humidity 0.3 0.1 0.000

PM2.5 exposures in the six transportation modes were compared with those from
previous studies. Kumar et al. [36] comprehensively reviewed and summarized exposures
in different transportation modes in Asia in comparison with the USA and Europe up to
2015 (Table 3). Research articles focusing on PM2.5 exposures in multiple transportation
modes in cities of Asia, USA and Europe using wearable or portable sensing devices with
conditions similar to ours are also listed [34,35,45–49].

For the subway, 5 min PM2.5 exposures from GRIMM (29.8 ± 9.2 µg/m3) and LASS
(27.6 ± 5.4 µg/m3) in Taipei were similar to those in Hong Kong 2015 and London, UK;
higher than those in Hong Kong in 2014; and lower than those in Beijing and Xian,
China and Delhi, India. The highest PM2.5 exposures occurred in Delhi, India, with
87 ± 141 µg/m3, about 3 times those in Taipei. For the AC bus mode, 5 min PM2.5 expo-
sures from GRIMM (19.9 ± 8.0 µg/m3) and LASS (17.5 ± 7.1 µg/m3) in Taipei were similar
to those in Hong Kong 2014; higher than those in Sacramento, CA, USA and London,
UK; and lower than those in Hong Kong 2015, Beijing and Xian, China, Delhi, India and
Asia, Europe and USA in general. Again, Delhi, India had the highest PM2.5 exposures,
with one order of magnitude higher than our results in Taipei. Therefore, commuters in
subways and buses, the most commonly used public transportation systems in Taipei, were
generally exposed to lower PM2.5 levels compared to those in other countries with few
exceptions. Characteristics of subway systems such as wear processes at rail–wheel–brake
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interfaces, construction dates, existence of platform edge doors, ventilation systems and
passenger volume may explain the differences of their PM2.5 exposures [34,47,49–51]. In
addition, diversities in fuel specifications and emission standards among countries may
explain the large variations of PM2.5 exposures in AC buses across Asia [36].

Table 3. PM2.5 concentrations in multiple transportation modes summarized from the literature.

Location
Transportation Mode Instrument Year of

Field Work Reference

Subway AC Bus AC Car Scooter Bike Walk

Asia,
review - 76 (62) 74 (61) 86.3

(55.7) 49 (27) 42 (31) varied
instrument 1 before 2014 Kumar et al. [36]

Beijing,
China 61.8 (21.6) 38.9 (26.3) - - - 49.9

(51.7) TSI DustTrak 2011 Yan et al. [34]

Delhi,
India - 315 (105) - - 347 (94) 231 (72) TSI DustTrak 2014 Goel et al. [35]

January
Delhi,
India 87 (141) 140 (56) 56 (44) - - 234 (184) TSI DustTrak 2014 Goel et al. [35]

April

Hong Kong 19 (1.1) 19 (2.1) - - - 38 (3.2) TSI DustTrak II 2014 Che et al. [45]
lunchtime

Hong Kong 23 (1.5) - - - - 43 (3.6) TSI DustTrak II 2014 Che et al. [45]
evening

Hong Kong 31 (13) 39 (21) - - - - TSI DustTrak 2015 Li et al. [46]
Xian,
China 43.2 (24.2) 54.4 (7.15) 10.1 (6.63) - - 71.6

(5.11) GRIMM 1.109 2016 Qiu et al. [47]
morning

Xian,
China 43.4 (9.72) - 8.95 (1.08) - - 65.8

(11.0) GRIMM 1.109 2016 Qiu et al. [47]
afternoon

US, review - 59 (59) 46 (36) - 11 (5) 35 (13) varied
instrument 1 before 2014 Kumar et al. [36]

Sacramento,
CA, US - 7.47 (2) 7.1 (3.3) - 9.56 (4) - TSI DustTrak 2014-2015 Ham et al. [48]

Europe,
review - 47 (37) 32 (30) - 43 (27) 26 (18) varied

instrument 1 before 2014 Kumar et al. [36]

London,
UK 2 34.5 (2.9) 13.9 (1.7) 7.3 (2) - - - GRIMM EDM

107 2016 Rivas et al. [49]

1 These were obtained from different studies with various instruments such as TSI DustTrak and GRIMM; 2 Data with geometric mean and
geometric standard deviation.

For AC cars, 5 min PM2.5 exposures from GRIMM (5.9 ± 4.2 µg/m3) and LASS
(4.9 ± 4.0 µg/m3) in Taipei were lower than most of the published values and less than
1/10 of the highest reported PM2.5 exposure levels, namely the summarized means in Asia
(without specified ventilation status mentioned) [36]. For scooters, 5 min PM2.5 exposures
were 22.3 ± 9.5 µg/m3 (GRIMM) and 17.8 ± 8.3 µg/m3 (LASS) in Taipei, less than 1/4
of the summarized values in Asia of 86.3 ± 55.7 µg/m3. Generally speaking, car drivers
and scooter riders in Taipei had much lower exposures than those reported in Asia. The
practices of keeping windows closed with re-circulated AC in cars and the relatively clean
ambient air may explain these low PM2.5 exposures in Taipei.

The bikers’ 5 min PM2.5 exposures of 25.7 ± 13.7µg/m3 (GRIMM) and 17.2 ± 8.4 µg/m3

(LASS) in Taipei were higher than those reported in the USA but lower than those in Asia
and Europe. The pedestrians’ 5 min PM2.5 exposures of 21.3 ± 6.9 µg/m3 (GRIMM) and
18.6 ± 8.0 µg/m3 (LASS) in Taipei were lower than those reported. The highest PM2.5
exposures of both bikers and pedestrians were in Delhi, India, at one order of magnitude
higher than ours. Since bikers and pedestrians were directly exposed to the street air with
traffic exhaust, the relative PM2.5 exposures among different cities could represent their
relative urban PM2.5 levels in the streets.

In terms of comparison among different transportation modes, we focus on expo-
sures of single cities [34,35,45–49] rather than the summarized means in the review [36].
Commuters in AC cars had the lowest PM2.5 exposures among the transportation modes
studied, consistent with our findings. The commuters’ exposures in the subway mode
were the highest compared to the modes of walking and AC buses in Beijing, China [34],
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with the same order as ours. The subway riders’ exposures in London, UK were higher
than those on AC buses and in AC cars [49], also with the same order as ours.

Previously, PM2.5 measurements in multiple transportations modes were performed
using large and pricy instruments (much more than 500 USD) such as TSI or GRIMM
(Table 3). With the development of LCS devices, personal PM2.5 exposures could be more
easily assessed. Portable LCSs were applied to assess personal PM2.5 exposures in indoor,
outdoor and commuting microenvironments [52,53]. For the measurement of personal
PM2.5 increments by traffic, portable LCS devices serve as a more flexible option compared
to stationary ones [40]. Although portable LCS devices have been increasingly applied for
personal PM2.5 exposure assessments, mainly daily exposures were measured and studies
on individual transportation modes seem few. For example, PM2.5 exposures of 73 subjects
for 4 days in Hong Kong in 2015–2016 was assessed using Alphasense OPC-N2, a type
of LCS [54]; R2 of side-by-side comparison between the sensors and pDR-1500 ranged
from 0.95 to 0.99. In another study, 31 subjects carried a portable aerosol nephelometer for
their exposure measurements of PM1, PM2.5 and PM10 in Beijing in 2018 and this sensor
was compared with TSI DustTrank showing R2 ranging from 0.49 to 0.66, not as good
as the performance of PMS3003 [55]. Our present work is markedly one of the earliest
studies to apply wearable LCS devices for the assessment of PM2.5 exposures in different
transportation modes.

Furthermore, this work contributes to fill the current research gaps of pedestrians’
and cyclists’ exposures in Asian cities [36]. In Taipei City, pedestrians are mostly walking
on narrowed sidewalks in close proximity to traffic. In addition, there are bike lanes on
the sidewalks of some streets. Moreover, pedestrians, cyclists and scooter riders all need
to gather near the traffic-light zones when crossing the streets and are thus exposed to
concentrated PM emissions from the crowded vehicles, resulting in similar mean or even
peak exposures among them. Nevertheless, if exposure duration is taken into account,
it takes longer for pedestrians to reach the same destination. Therefore, for cumulative
exposures (µg/m3-hr) on the same route, pedestrians are exposed to higher total exposure.

Attempts have been made to quantify the contribution of different transportation
modes to human exposures with different methods, such as time series analysis and
ratio calculation (e.g., [35,49]). This work used regression analysis to quantify exposure
increments. With LASS applied to collect data with a larger sample size, the standard
errors of the contribution estimates of transportation modes are reduced. This also widens
the application of LASS in PM2.5 exposure assessment in locations with potentially high
exposure sources, such as restaurants, temples and so forth.

Although personal exposures in transportation microenvironments are influenced by
several factors [36], the exposure patterns among different transportation modes mostly
still hold for the same city of the same season in the same year. Moreover, the quantified
exposure levels can be used by the authorities to support the necessary control strategies
such as implementing countermeasures to reduce exposure increments of MRT users.
Furthermore, quantitative evidence would convince the public more easily of the need for
behavioral changes to reduce exposure increments and associated health risks. In this case,
the potential behavioral changes may be avoiding crowded environments in front of traffic
lights and wearing masks in the MRT.

3.3. Advantages and Disadvantages of LASS

No ghost peak was observed with the easy-to-carry LASS under movements in these
transportation modes. The r values of PM2.5 between PMS3003 and GRIMM were 0.98 and
0.93 in the laboratory and field, respectively. With good precision, accuracy, stability and
wearability, LASS provided a promising alternative for scientists to obtain real-time PM2.5
exposure data if expensive instruments, such as GRIMM, could not be afforded.

Exposure scientists expect subjects to maintain their daily routines. However, due
to the heavy weight, bulkiness and striking look of traditional instruments like GRIMM
and PEM, subjects carrying these instruments may shy away from crowded environments
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and avoid activities involving more movements, thus missing certain high-exposure activ-
ities. The wearability of LASS near the breathing zone allows subjects to maintain their
daily routines so that scientists can identify/evaluate PM2.5 increments of high-exposure
activities such as visiting night markets which might be skipped if wearing traditional
instruments. Thus, the first advantage of LASS is enabling scientists to assess the close-to
reality exposures of subjects. Moreover, the light-weight and free-of-vibration-and-noise
LASS provides enhanced incentives for the participation of the targeted population, thus
increasing sample size (second advantage). With cost reduction, scientists can also afford
to conduct more sets of parallel monitoring to collect more data with higher statistical
power and lower errors of regression estimates for differentiating the exposures in different
categories of microenvironments, in this case, transportation modes.

Furthermore, new features of LASS provide greater potential to reduce data loss
and to assess exposure factors. For example, wireless transmission in real time allows
scientists to check on data and to identify potential problems immediately to minimize
data loss. Additionally, more information such as temperature, humidity and GPS can
be collected by a single device to assess potential factors. Besides, the mean time to
failure of PMS3003 is over 3 years as reported by the manufacturer [56] and based on own
experiences. Since sensor evaluation is time- and resource-consuming, applying a stable
LCS is more important than using new ones with unknown drawbacks.

There are other drawbacks associated with the current version of LASS. During the
trials, up to one-third of the data in one trip were lost due to unstable wireless transmission.
This issue was solved by repeated checking on transmission and data in cloud storage
throughout the monitoring periods. Development of an improved version with a memory
card was also suggested to reduce data loss. Secondly, some of the laboratory-made
LASS devices had unstable electric connections. As a result, about 10% of the devices
malfunctioned in the trial. This could be improved by a customer-made production from
a machine shop to ensure a smooth electric connection. Moreover, LASS still needs to
be compared against a research-grade instrument for data correction. The side-by-side
comparison in the laboratory and field takes both time and manpower, which also need to
be taken into account by scientists intending to use these devices.

4. Conclusions

This work demonstrates a successful PM2.5 exposure assessment for commuters
with LASS. The commuters’ PM2.5 exposure levels assessed with LASS were 27.6 ± 4.7,
17.2 ± 6.2, 4.6 ± 3.3, 18.0 ± 7.9, 16.9 ± 8.3 and 18.8 ± 7.6 µg/m3 for MRT, bus, car, scooter,
bike and walking, respectively. These exposure levels and the exposure increments assessed
with LASS and GRIMM were very close to each other. These results showed that LASS can
be used as an alternative for exposure studies.

The advantages of applying low-cost, light-weight, easy-to-carry and free-of-vibration-
and-noise LASS to exposure assessment include (1) assessing actual and typical exposure
levels in high-exposure situations without interfering with daily routines of subjects;
(2) easier recruiting of subjects and conducting more sets of parallel monitoring to increase
statistical power for differentiating exposure factors; and (3) collecting other parameters
at the same time. Especially for developing countries with high-PM2.5 levels, LASS is a
good scientific tool to measure PM2.5 exposures with a much lower cost than traditional
instruments. This work is one of the earliest demonstrating the applicability of a wearable
LCS device, LASS, in assessing human exposure in different transportation modes in
high spatiotemporal resolutions. The methodology and findings would shed light on the
potential applications of the wearable LCS in PM exposure assessment.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-4
433/12/2/270/s1, Table S1. The correlation coefficients of five air quality stations in Taipei in
2016; Table S2. Sample size of monitoring with (a) LASS in 2016, (b) GRIMM in 2016, (c) PEM
in 2004 and (d) PEM in 2005; Table S3. Ambient PM levels from nearby monitoring stations of
Taiwan Environmental Protection Administration; Table S4. Mean values of absolute error and
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accuracy of LASS measurements in the six transportation modes; Table S5. The results of multiple
regression analysis with the converted LASS, GRIMM, temperature and relative humidity (RH) in
the six transportation modes; Table S6. Coefficients of regression analysis with dummy variables
for different transportation modes; Figure S1. Monitoring Routes in (a) 2016 (the green line) and (b)
2004 and 2005 (car and scooter on the blue line; MRT on the yellow line) in Taipei. Figure S2. Two
research staff carried GRIMM and LASS; GRIMM and LASS are marked with red cycles, Figure S3.
Comparison of GRIMM with (a) PM10 of PMS3003 in laboratory (n = 12208) and (b) PM10 of LASS
observations in field converted by the correction equation shown in (a) (n = 1673); the data presented
were 5 min averages.

Author Contributions: Conceptualization, S.-C.C.L. and L.-J.C.; methodology, W.-C.V.W. and S.-
C.C.L.; software, W.-C.V.W. and C.-H.L.; validation, W.-C.V.W. and C.-H.L.; formal analysis, W.-
C.V.W., C.-H.L. and T.-Y.J.W.; investigation, W.-C.V.W., C.-H.L., T.-Y.J.W. and S.-C.H.; resources,
S.-C.C.L.; data curation, W.-C.V.W. and C.-H.L.; writing—original draft preparation, W.-C.V.W. and
S.-C.C.L.; writing—review and editing, W.-C.V.W. and S.-C.C.L.; visualization, W.-C.V.W. and S.-C.H.;
supervision, S.-C.C.L.; project administration, W.-C.V.W. and C.-H.L.; funding acquisition, S.-C.C.L.
All authors have read and agreed to the published version of the manuscript.

Funding: This study was funded by Project No. 022324 “Establishment of PM2.5 Mobile Sensing
Technology,” the Thematic Project “Integrated Multi-source and High-resolution Heat Wave Vulnera-
bility Assessment of Taiwan (AS-104-SS-A02)” and “Trans-disciplinary PM2.5 Exposure Research in
Urban Areas for Health-oriented Preventive Strategies (AS-SS-107-03)” from Academia Sinica, Taipei,
Taiwan and Project No. NSC-93-2111-M-001-005 and NSC-94-2111-M-001-005 from the Ministry of
Science and Technology, Executive Yuan, Taiwan.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used in this study are available from the corresponding
author upon request (sclung@rcec.sinica.edu.tw).

Acknowledgments: The authors thank those who assisted in field campaigns and the LASS maker
community for the technical support. The contents of this paper are solely the responsibility of the
authors and do not represent the official views of the aforementioned institutes and funding agencies.

Conflicts of Interest: The authors declare that no known competing financial interests or personal
relationships could have appeared to influence the work reported in this paper.

References
1. Brauer, M.; Freedman, G.; Frostad, J.; Van Donkelaar, A.; Martin, R.V.; Dentener, F.; Van Dingenen, R.; Estep, K.; Amini, H.;

Apte, J.S.; et al. Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013. Environ. Sci. Technol.
2016, 50, 79–88. [CrossRef]

2. Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of Satellite Observations for Long-Term Exposure Assessment of
Global Concentrations of Fine Particulate Matter. Environ. Health Perspect. 2015, 123, 135–143. [CrossRef]

3. World Health Organization. Ambient (Outdoor) Air Quality and Health. Available online: http://www.who.int/mediacentre/
factsheets/fs313/en/ (accessed on 20 June 2020).

4. Pope, C.A., III; Dockery, D.W. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006,
56, 709–742. [CrossRef] [PubMed]

5. Pope, C.A., III; Dockery, D.W.; Spengler, J.D.; Raizenne, M.E. Respiratory health and PM10 pollution: A daily time-series analysis.
Am. Rev. Respir. Dis. 1991, 144, 668–674. [CrossRef]

6. United States Environmental Protection Agency (USEPA). Air Quality Criteria for Particulate Matter. Available online: https:
//cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=87903 (accessed on 25 June 2020).

7. Forouzanfar, M.H.; Afshin, A.; Alexander, L.T.; Anderson, H.R.; Bhutta, Z.A.; Biryukov, S.; Brauer, M.; Burnett, R.; Cercy, K.;
Charlson, F.J.; et al. Global, regional and national comparative risk assessment of 79 behavioural, environmental and occupational
and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the Global Burden of Disease Study. Lancet 2016,
388, 1659–1724. [CrossRef]

8. Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature
mortality on a global scale. Nature 2015, 525, 367–371. [CrossRef] [PubMed]

9. International Agency for Research on Cancer IARC. IARC Scientific Publication No.161: Air Pollution and Cancer. Available online:
http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-And-Cancer-2013 (accessed on
10 July 2020).

http://doi.org/10.1021/acs.est.5b03709
http://doi.org/10.1289/ehp.1408646
http://www.who.int/mediacentre/factsheets/fs313/en/
http://www.who.int/mediacentre/factsheets/fs313/en/
http://doi.org/10.1080/10473289.2006.10464485
http://www.ncbi.nlm.nih.gov/pubmed/16805397
http://doi.org/10.1164/ajrccm/144.3_Pt_1.668
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=87903
https://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=87903
http://doi.org/10.1016/S0140-6736(16)31679-8
http://doi.org/10.1038/nature15371
http://www.ncbi.nlm.nih.gov/pubmed/26381985
http://publications.iarc.fr/Book-And-Report-Series/Iarc-Scientific-Publications/Air-Pollution-And-Cancer-2013


Atmosphere 2021, 12, 270 15 of 16

10. Mohammed, M.O.A.; Song, W.W.; Ma, W.L.; Li, W.L.; Ambuchi, J.J.; Thabit, M.; Li, Y.-F. Trends in indoor-outdoor PM2.5 research:
A systematic review of studies conducted during the last decade (2003–2013). Atmos. Pollut. Res. 2015, 6, 893–903. [CrossRef]

11. Lung, S.-C.C.; Mao, I.-F.; Liu, L.-J.S. Residents’ particle exposures in six different communities in Taiwan. Sci. Total Environ. 2007,
377, 81–92. [CrossRef]

12. Lung, S.-C.C.; Hsiao, P.-K.; Wen, T.-Y.; Liu, C.-H.; Fu, C.B.; Cheng, Y.-T. Variability of intra-urban exposure to particulate matter
and CO from Asian-type community pollution sources. Atmos. Environ. 2014, 83, 6–13. [CrossRef]

13. Jerrett, M.; Burnet, R.T.; Ma, R.; Pope, C.A., III; Krewski, D.; Newbold, B.; Thurston, G.; Shi, Y.; Finkelstein, N.; Calle, E.E.; et al.
Spatial analysis of air pollution and mortality in Los Angeles. Epidemiology 2006, 17, S69. [CrossRef]

14. Pope, C.A., III; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality
and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [CrossRef]

15. Snyder, E.G.; Watkins, T.H.; Solomon, P.A.; Thoma, E.D.; Williams, R.W.; Hagler, G.S.W.; Shelow, D.; Hindin, D.A.; Kilaru, V.J.;
Preuss, P.W. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. [CrossRef]

16. Gao, M.; Cao, J.; Seto, E. A distributed network of low-cost continuous reading sensors to measure spatiotemporal variations of
PM2.5 in Xi’an, China. Environ. Pollut. 2015, 199, 56–65. [CrossRef] [PubMed]

17. Holstius, D.M.; Pillarisetti, A.; Smith, K.R.; Seto, E. Field calibrations of a low-cost aerosol sensor at a regulatory monitoring site
in California. Atmos. Meas. Tech. 2014, 7, 1121–1131. [CrossRef]

18. Clements, A.L.; Griswold, W.G.; Rs, A.; Johnston, J.E.; Herting, M.M.; Thorson, J.; Collier-Oxandale, A.; Hannigan, M. Low-Cost
Air Quality Monitoring Tools: From Research to Practice (A Workshop Summary). Sensors 2017, 17, 2478. [CrossRef]

19. Austin, E.; Novosselov, I.; Seto, E.; Yost, M.G. Laboratory evaluation of the Shinyei PPD42NS low-cost particulate matter sensor.
PLoS ONE 2015, 10, e0141928.

20. Cao, T.; Thompson, J.E. Portable, Ambient PM2.5 Sensor for Human and/or Animal Exposure Studies. Anal. Lett. 2017,
50, 712–723. [CrossRef]

21. Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors
for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. [CrossRef]

22. Badura, M.; Batog, P.; Drzeniecka-Osiadacz, A.; Modzel, P. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring.
J. Sens. 2018, 2018, 1–16. [CrossRef]

23. Air Quality Sensor Performance Evaluation Center. PM Sensor Evaluations. Available online: http://www.aqmd.gov/aq-spec/
evaluations/summary-pm (accessed on 20 July 2020).

24. Kuula, J.; Mäkelä, T.; Aurela, M.; Teinilä, K.; Varjonen, S.; González, Ó.; Timonen, H. Laboratory evaluation of particle-size
selectivity of optical low-cost particulate matter sensors. Atmos. Meas. Tech. 2020, 13, 2413–2423. [CrossRef]

25. United States Environmental Protection Agency USEPA. Quality Assurance Handbook for Air Pollution Measurement Systems:
“Volume II: Ambient Air Quality Monitoring Program”. Available online: https://www3.epa.gov/ttn/amtic/qalist.html
(accessed on 9 September 2019).

26. United States Environmental Protection Agency USEPA. Air Sensor Guidebook. Available online: https://cfpub.epa.gov/si/si_
public_record_report.cfm?Lab=NERL&dirEntryId=277996 (accessed on 9 September 2019).

27. Jayaratne, R.; Liu, X.; Ahn, K.-H.; Asumadu-Sakyi, A.; Fisher, G.; Gao, J.; Mabon, A.; Mazaheri, M.; Mullins, B.; Nyaku, M.;
et al. Low-cost PM2.5 Sensors: An Assessment of Their Suitability for Various Applications. Aerosol Air Qual. Res. 2020,
20, 520–532. [CrossRef]

28. Kelly, K.; Whitaker, J.; Petty, A.; Widmer, C.; Dybwad, A.; Sleeth, D.; Martin, R.; Butterfield, A. Ambient and laboratory evaluation
of a low-cost particulate matter sensor. Environ. Pollut. 2017, 221, 491–500. [CrossRef] [PubMed]

29. Chen, L.-J.; Ho, Y.-H.; Lee, H.-C.; Wu, H.-C.; Liu, H.-M.; Hsieh, H.-H.; Huang, Y.-T.; Lung, S.-C.C. An Open Framework for
Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [CrossRef]

30. Borghi, F.; Spinazzè, A.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.M. Precision and Accuracy of a Direct-Reading
Miniaturized Monitor in PM2.5 Exposure Assessment. Sensors 2018, 18, 3089. [CrossRef]

31. Han, I.; Symanski, E.; Stock, T.H. Feasibility of using low-cost portable particle monitors for measurement of fine and coarse
particulate matter in urban ambient air. J. Air Waste Manag. Assoc. 2016, 67, 330–340. [CrossRef]

32. Liu, H.-Y.; Schneider, P.; Haugen, R.; Vogt, M. Performance Assessment of a Low-Cost PM2.5 Sensor for a near Four-Month
Period in Oslo, Norway. Atmosphere 2019, 10, 41. [CrossRef]

33. Wang, W.-C.V.; Lung, S.-C.C.; Liu, C.H.; Shui, C.-K. Laboratory Evaluations of Correction Equations with Multiple Choices for
Seed Low-Cost Particle Sensing Devices in Sensor Networks. Sensors 2020, 20, 3661. [CrossRef] [PubMed]

34. Yan, C.; Zheng, M.; Yang, Q.; Zhang, Q.; Qiu, X.; Zhang, Y.; Fu, H.; Li, X.; Zhu, T.; Zhu, Y. Commuter exposure to particulate
matter and particle-bound PAHs in three transportation modes in Beijing, China. Environ. Pollut. 2015, 204, 199–206. [CrossRef]

35. Goel, R.; Gani, S.; Guttikunda, S.K.; Wilson, D.; Tiwari, G. On-road PM2.5 pollution exposure in multiple transport microenviron-
ments in Delhi. Atmos. Environ. 2015, 123, 129–138. [CrossRef]

36. Kumar, P.; Patton, A.P.; Durant, J.L.; Frey, H.C. A review of factors impacting exposure to PM2.5, ultrafine particles and black
carbon in Asian transport microenvironments. Atmos. Environ. 2018, 187, 301–316. [CrossRef]

37. Location-Aware Sensing System (LASS). Available online: https://lass-net.org/ (accessed on 15 August 2020).
38. Liang, C.-S.; Yu, T.-Y.; Chang, Y.-Y.; Syu, J.-Y.; Lin, W.-Y. Source Apportionment of PM2.5 Particle Composition and Submicrometer

Size Distribution during an Asian Dust Storm and Non-Dust Storm in Taipei. Aerosol Air Qual. Res. 2013, 13, 545–554. [CrossRef]

http://doi.org/10.5094/APR.2015.099
http://doi.org/10.1016/j.scitotenv.2007.01.092
http://doi.org/10.1016/j.atmosenv.2013.10.046
http://doi.org/10.1097/00001648-200611001-00154
http://doi.org/10.1001/jama.287.9.1132
http://doi.org/10.1021/es4022602
http://doi.org/10.1016/j.envpol.2015.01.013
http://www.ncbi.nlm.nih.gov/pubmed/25618367
http://doi.org/10.5194/amt-7-1121-2014
http://doi.org/10.3390/s17112478
http://doi.org/10.1080/00032719.2016.1190736
http://doi.org/10.1080/02786826.2015.1100710
http://doi.org/10.1155/2018/5096540
http://www.aqmd.gov/aq-spec/evaluations/summary-pm
http://www.aqmd.gov/aq-spec/evaluations/summary-pm
http://doi.org/10.5194/amt-13-2413-2020
https://www3.epa.gov/ttn/amtic/qalist.html
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=277996
https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=277996
http://doi.org/10.4209/aaqr.2018.10.0390
http://doi.org/10.1016/j.envpol.2016.12.039
http://www.ncbi.nlm.nih.gov/pubmed/28012666
http://doi.org/10.1109/ACCESS.2017.2723919
http://doi.org/10.3390/s18093089
http://doi.org/10.1080/10962247.2016.1241195
http://doi.org/10.3390/atmos10020041
http://doi.org/10.3390/s20133661
http://www.ncbi.nlm.nih.gov/pubmed/32629896
http://doi.org/10.1016/j.envpol.2015.05.001
http://doi.org/10.1016/j.atmosenv.2015.10.037
http://doi.org/10.1016/j.atmosenv.2018.05.046
https://lass-net.org/
http://doi.org/10.4209/aaqr.2012.06.0161


Atmosphere 2021, 12, 270 16 of 16

39. Sayahi, T.; Butterfield, A.; Kelly, K. Long-term field evaluation of the Plantower PMS low-cost particulate matter sensors. Environ.
Pollut. 2019, 245, 932–940. [CrossRef]

40. Lung, S.C.C.; Wang, W.C.V.; Wen, T.Y.J.; Liu, C.H.; Hu, S.C. A versatile low-cost sensing device for assessing PM2.5 spatio-temporal
variation and quantifying source contribution. Sci. Total Environ. 2020, 716, 137145. [CrossRef]

41. Zwack, L.M.; Paciorek, C.J.; Spengler, J.D.; Levy, J.I. Characterizing local traffic contributions to particulate air pollution in street
canyons using mobile monitoring techniques. Atmos. Environ. 2011, 45, 2507–2514. [CrossRef]

42. Lung, S.-C.C.; Kao, M.-C. Worshippers’ exposure to particulate matter in two temples in Taiwan. J. Air Waste Manag. Assoc. 2003,
53, 130–135. [CrossRef]

43. Taiwan Central Weather Bureau. Monthly Mean Temperature. Available online: https://www.cwb.gov.tw/V8/E/C/Statistics/
monthlymean.html (accessed on 30 July 2020).

44. Zheng, T.; Bergin, M.H.; Johnson, K.K.; Tripathi, S.N.; Shirodkar, S.; Landis, M.S.; Sutaria, R.; Carlson, D.E. Field evaluation of low-cost
particulate matter sensors in high- and low-concentration environments. Atmos. Meas. Tech. 2018, 11, 4823–4846. [CrossRef]

45. Che, W.; Frey, H.C.; Lau, A.K.H. Sequential Measurement of Intermodal Variability in Public Transportation PM2.5 and CO
Exposure Concentrations. Environ. Sci. Technol. 2016, 50, 8760–8769. [CrossRef]

46. Li, Z.Y.; Che, W.W.; Frey, H.C.; Lau, A.K.H.; Lin, C.Q. Characterization of PM2.5 exposure concentration in transport micro-
environments using portable monitors. Environ. Pollut. 2017, 228, 433–442. [CrossRef]

47. Qiu, Z.; Song, J.; Xu, X.; Luo, Y.; Zhao, R.; Zhou, W.; Xiang, B.; Hao, Y. Commuter exposure to particulate matter for different
transportation modes in Xi’an, China. Atmos. Pollut. Res. 2017, 8, 940–948. [CrossRef]

48. Ham, W.; Vijayan, A.; Schulte, N.; Herner, J.D. Commuter exposure to PM2.5, BC and UFP in six common transport micro-
environments in Sacramento, California. Atmos. Environ. 2017, 167, 335–345. [CrossRef]

49. Rivas, I.; Kumar, P.; Hagen-Zanker, A. Exposure to air pollutants during commuting in London: Are there inequalities among
different socio-economic groups? Environ. Int. 2017, 101, 143–157. [CrossRef]

50. Grass, D.S.; Ross, J.M.; Family, F.; Barbour, J.; Simpson, H.J.; Coulibaly, D.; Hernandez, J.; Chen, Y.; Slavkovich, V.; Li, Y.; et al.
Airborne particulate metals in the New York City subway: A pilot study to assess the potential for health impacts. Environ. Res.
2010, 110, 1–11. [CrossRef]

51. Kam, W.; Ning, Z.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Chemical Characterization and Redox Potential of Coarse and Fine
Particulate Matter (PM) in Underground and Ground-Level Rail Systems of the Los Angeles Metro. Environ. Sci. Technol. 2011,
45, 6769–6776. [CrossRef] [PubMed]

52. Lung, S.C.; Tsou, M.M.; Hu, S.; Hsieh, Y.; Wang, W.V.; Shui, C.; Tan, C. Concurrent assessment of personal, indoor and outdoor
PM 2.5 and PM 1 levels and source contributions using novel low-cost sensing devices. Indoor Air 2020. [CrossRef] [PubMed]

53. Chatzidiakou, L.; Krause, A.; Popoola, O.A.M.; Di Antonio, A.; Kellaway, M.; Han, Y.; Squires, F.A.; Wang, T.; Zhang, H.; Wang,
Q.; et al. Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments.
Atmos. Meas. Tech. 2019, 12, 4643–4657. [CrossRef] [PubMed]

54. Yang, F.; Lau, C.F.; Tong, V.W.T.; Zhang, K.K.; Westerdahl, D.; Ng, S.; Ning, Z. Assessment of personal integrated exposure to fine
particulate matter of urban residents in Hong Kong. J. Air Waste Manag. Assoc. 2018, 69, 47–57. [CrossRef] [PubMed]

55. Liang, L.; Gong, P.; Cong, N.; Li, Z.; Zhao, Y.; Chen, Y. Assessment of personal exposure to particulate air pollution: The first
result of City Health Outlook (CHO) project. BMC Public Health 2019, 19, 1–12. [CrossRef] [PubMed]

56. Sayahi, T.; Kaufman, D.; Becnel, T.; Kaur, K.; Butterfield, A.; Collingwood, S.; Zhang, Y.; Gaillardon, P.-E.; Kelly, K. Development
of a calibration chamber to evaluate the performance of low-cost particulate matter sensors. Environ. Pollut. 2019, 255, 113131.
[CrossRef] [PubMed]

http://doi.org/10.1016/j.envpol.2018.11.065
http://doi.org/10.1016/j.scitotenv.2020.137145
http://doi.org/10.1016/j.atmosenv.2011.02.035
http://doi.org/10.1080/10473289.2003.10466140
https://www.cwb.gov.tw/V8/E/C/Statistics/monthlymean.html
https://www.cwb.gov.tw/V8/E/C/Statistics/monthlymean.html
http://doi.org/10.5194/amt-11-4823-2018
http://doi.org/10.1021/acs.est.6b01594
http://doi.org/10.1016/j.envpol.2017.05.039
http://doi.org/10.1016/j.apr.2017.03.005
http://doi.org/10.1016/j.atmosenv.2017.08.024
http://doi.org/10.1016/j.envint.2017.01.019
http://doi.org/10.1016/j.envres.2009.10.006
http://doi.org/10.1021/es201195e
http://www.ncbi.nlm.nih.gov/pubmed/21728353
http://doi.org/10.1111/ina.12763
http://www.ncbi.nlm.nih.gov/pubmed/33047373
http://doi.org/10.5194/amt-12-4643-2019
http://www.ncbi.nlm.nih.gov/pubmed/31534556
http://doi.org/10.1080/10962247.2018.1507953
http://www.ncbi.nlm.nih.gov/pubmed/30081767
http://doi.org/10.1186/s12889-019-7022-8
http://www.ncbi.nlm.nih.gov/pubmed/31174508
http://doi.org/10.1016/j.envpol.2019.113131
http://www.ncbi.nlm.nih.gov/pubmed/31521992

	Introduction 
	Materials and Methods 
	LCS Device 
	Monitoring Strategy 
	Data Analysis 

	Results and Discussion 
	Performance Evaluation 
	PM Exposure Levels in Six Transportation Modes 
	Advantages and Disadvantages of LASS 

	Conclusions 
	References

