
atmosphere

Article

Enhancing the Encoding-Forecasting Model for Precipitation
Nowcasting by Putting High Emphasis on the Latest Data of
the Time Step

Chang Hoo Jeong 1,2, Wonsu Kim 1 , Wonkyun Joo 1, Dongmin Jang 1 and Mun Yong Yi 2,*

����������
�������

Citation: Jeong, C.H.; Kim, W.; Joo,

W.; Jang, D.; Yi, M.Y. Enhancing the

Encoding-Forecasting Model for

Precipitation Nowcasting by Putting

High Emphasis on the Latest Data of

the Time Step. Atmosphere 2021, 12,

261. https://doi.org/10.3390/

atmos12020261

Academic Editor: Javier Estévez

Received: 4 January 2021

Accepted: 12 February 2021

Published: 16 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Data-Centric Problem-Solving Research, Korea Institute of Science and Technology
Information (KISTI), Daejeon 34141, Korea; changhoo@kaist.ac.kr (C.H.J.); wonsukim@kisti.re.kr (W.K.);
joo@kisti.re.kr (W.J.); jmin@kisti.re.kr (D.J.)

2 Department of Industrial & Systems Engineering, Korea Advanced Institute of Science and
Technology (KAIST), Graduate School of Knowledge Service Engineering, Daejeon 34141, Korea

* Correspondence: munyi@kaist.ac.kr; Tel.: +82-42-350-1613

Abstract: Nowcasting is an important technique for weather forecasting because sudden weather
changes significantly affect human life. The encoding-forecasting model, which is a state-of-the-
art architecture in the field of data-driven radar extrapolation, does not particularly focus on the
latest data when forecasting natural phenomena. This paper proposes a weighted broadcasting
method that emphasizes the latest data of the time step to improve the nowcasting performance. This
weighted broadcasting method allows the most recent rainfall patterns to have a greater impact on
the forecasting network by extending the architecture of the existing encoding-forecasting model.
Experimental results show that the proposed model is 1.74% and 2.20% better than the existing
encoding-forecasting model in terms of mean absolute error and critical success index, respectively.
In the case of heavy rainfall with an intensity of 30 mm/h or higher, the proposed model was more
than 30% superior to the existing encoding-forecasting model. Therefore, applying the weighted
broadcasting method, which explicitly places a high emphasis on the latest information, to the
encoding-forecasting model is considered as an improvement that is applicable to the state-of-the-art
implementation of data-driven radar-based precipitation nowcasting.

Keywords: precipitation nowcasting; deep neural network; radar extrapolation; spatiotemporal
modeling; encoding-forecasting

1. Introduction

With the increase in the number of successful cases of application of deep learning
in real life, such as in autonomous driving, healthcare, and smart cities [1–9], various
attempts have been made to apply deep learning to weather-related fields using numerical
models [10] to improve the performance of weather forecasting [11–15]. In the field of
meteorology, nowcasting is a popular research topic in which deep learning techniques are
being actively applied to the analysis of spatiotemporal data, such as radar and satellite
data [16–19].

Precipitation nowcasting is the prediction of the spatiotemporal distribution of rainfall
that will occur within a relatively short period of time. It is a very important weather
forecasting technique for securing a golden time in natural disasters, such as flooding
caused by sudden torrential rain. The extant nowcasting methods can be classified into
traditional methods based on numerical models or optical flows and machine learning
methods based on statistical methods [19]. In the past, optical flow methods were mainly
employed because numerical models required a long initial driving time. Nevertheless, in
recent years, deep learning using statistical methods is being actively studied because it
surpasses traditional methods in performance [19–21].
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A deep learning-based nowcasting method can be defined as a spatiotemporal se-
quence prediction problem that inputs a sequence of past observation data and outputs a
sequence of future changed patterns. Deep learning-based methods are further divided
into image-to-image translation problems using only convolutional neural network (CNN)
and sequence-to-sequence problems using recurrent neural network (RNN) that explic-
itly model temporal phenomena [19]. Because models using only CNN do not explicitly
model temporal phenomena, unlike RNN, the following two methods are used to predict
future time steps. The first method predicts a single step in the future using CNN and
uses the predicted result again as an input to predict the next step repeatedly [22]. The
second method predicts the output channel of the CNN after changing the time of the
RNN to the channel of the CNN [21]. U-Net architecture is mainly used in the CNN-based
methods [19,22–24], and stacked convolutional RNN architecture is mainly used in the
RNN-based methods [20,21,25,26]. Shi et al. [20,21] conducted experiments comprehen-
sively on various methods such as optical flow, 2D CNN, 3D CNN, RNN, and a method of
combining CNN and RNN. Among them, the encoding-forecasting model in which CNN
and RNN were repeatedly stacked showed the best performance.

With the success of the encoding-forecasting model, several follow-up studies have
been conducted to further improve the performance of the model. Most of these studies
are related to model optimization such as tuning hyperparameters or creating an ensemble
model. Tran and Song [18] combined the structural similarity index used to measure the
image quality and distance-based loss functions such as mean absolute error (MAE) and
mean square error (MSE) to improve the existing model. In addition, they decreased the
number of channels in high abstract recurrent layers, unlike the usual methods. Franch
et al. [27] improved the prediction performance of extreme events by creating an ensemble
model based on the existing model. Tran and Song [16] improved the model performance
by introducing a data augmentation technique to RNN as in CNN. Although the encoding-
forecasting model [20,21,26] is currently showing the best performance, it still overlooks the
fact that data of the latest phenomena should be considered more heavily when forecasting
natural phenomena.

By extending the architecture, this study seeks to overcome the shortcomings of the
encoding-forecasting model, which is a state-of-the-art architecture in the field of radar
echo extrapolation and nowcasting [21]. To achieve this goal, we propose an improved deep
learning model incorporating a weighted broadcasting block that explicitly reflects the latest
phenomena. Weighted broadcasting involves transferring the latest feature map generated
from the convolutional layers of the encoding network to the deconvolutional layers of the
forecasting network using skip connection and applying different weights for each time
step of the forecasting network. Using the weighted broadcasting method that deploys
skip connection, the vanishing gradient problem occurring in the encoding-forecasting
model can be alleviated. Herein, the superior performance indices, such as distance and
confusion metrics, of the weighted broadcasting-based encoding-forecasting model were
confirmed by comparing them with those of the existing encoding-forecasting model.

2. Data and Methods

This section explains the construction of the dataset for training and evaluation, and
the details of the proposed model.

2.1. Dataset

Weather radar data reflecting the seasonal characteristics of the Korean Peninsula
during the torrential downpour period in summer from June to September for the period of
2012 to 2017 were used to construct the dataset. This study used the constant altitude plan
position indicator (CAPPI) 1.5 km data provided by the Korea Weather Radar Center, which
represents the horizontal cross-section of data at a constant altitude of 1.5 km, measured
using the volume scans of 11 weather radars (GDK, BRI, GNG, IIA, KWK, KSN, MYN,
PSN, JNI, GSN, and SSP) operated by the Korea Meteorological Administration. A Lambert



Atmosphere 2021, 12, 261 3 of 18

conformal conic projection was applied to the CAPPI, and a dataset was constructed
using 256 × 256 grids with a horizontal resolution of 2 km. Because the CAPPI provides
reflectivity (unit: dBZ), the Z-R relationship [28], which is used to convert reflectivity to
the intensity of rainfall as shown below, was applied to obtain the rainfall rate for every
10 min.

R =

(
10

Z
10

200

) 5
3

(1)

where R is rainfall rate (mm h−1) and Z is reflectivity (dBZ).
Furthermore, the input values were rescaled to (0,1) through the min-max normal-

ization using the range of 0 mm/h (minimum) to 110 mm/h (maximum) during data
preprocessing. Of the entire dataset, odd-numbered days from 2012 to 2017 were used as
training data, and even-numbered days were used as the validation and test sets. From the
even-numbered days, even-numbered months of even-numbered years and odd-numbered
months of odd-numbered years were used as the validation set, whereas the odd-numbered
months of even-numbered years and even-numbered months of odd-numbered years were
used as the test set. By configuring the data as such, the training, validation, and test
datasets showed a similar distribution.

The final configuration of the datasets is as listed in Table 1.

Table 1. Dataset configuration.

Category
Period No of

Instances
Spatial Resolution

(Grid Number)
Temporal

ResolutionYear Month Day

Training 2012–2017 6–9 Odd-numbered days 3335

2 km
(256 × 256) 10 min

Validation
2012, 2014, 2016 6, 8

Even-numbered days 2321
2013, 2015, 2017 7, 9

Test
2012, 2014, 2016 7, 9

Even-numbered days 1894
2013, 2015, 2017 6, 8

For the experiment of the encoding-forecasting model, we prepared an experimental
environment for nowcasting that forecasts rainfall 3 h in the future after observing 3 h of
past data. With a temporal resolution of 10 min, the time-step lengths of both the input
and output sequences of the model were 18 each. Therefore, the total time-step length of a
single data instance comprising input and output sequence was 36 (18+18).

Because of the nature of rainfall (i.e., it does not often rain all day long), a vast
amount of training data was composed of sequences without rainfall. Figure 1 shows the
distribution of the training data by rainfall intensity. As shown, the data distribution is
concentrated at a rainfall intensity of 0.8 or below. When the model is trained in this state,
the model may be trained with the bias toward the periods without rainfall. To address
this issue, this study trained the model using only the data for which the average rainfall
intensity of a data instance comprising 36 × 256 × 256 grids was 0.8 or higher. In this way,
the problem of uneven distribution of rainfall data was mitigated for the training process.

Finally, after filtering the data of each category with a rainfall intensity threshold of
0.8, 3335 training sequences, 2321 validation sequences, and 1894 testing sequences were
used as sequence samples.
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Figure 1. Distribution of the average rainfall intensity for training data.

2.2. Proposed Model

The weighted broadcasting (WB) based encoding-forecasting model proposed in this
study is a model optimized for nowcasting a relatively short term of approximately 3–
6 h in the near future. To improve the performance of the existing encoding-forecasting
model, the concept of weighted broadcasting block (WB-Block), which emphasizes the
latest data in the time step from past observations, is introduced. In addition, we combine
the WB-Block with the convolutional layer of the encoding-forecasting model to improve
nowcasting performance.

2.2.1. Preliminaries

• ConvLSTM Cell

The convolutional long short-term memory (ConvLSTM) cell is the most commonly
used method for spatiotemporal sequence modeling because it can perform simultaneous
spatiotemporal analysis [20]. The ConvLSTM cell achieves stable and powerful spatiotem-
poral modeling performance by combining the long-range temporal dependence analysis
of the existing long short-term memory (LSTM) [29] and the spatial characteristic analysis
capability of the CNN.

The key formulas of each module constituting the ConvLSTM cell are shown in
Equation (2):

it = σ(Wxi ∗ Xt+ Whi ∗ Ht−1+ Wci ◦ Ct−1+ bi)
ft = σ(Wxf ∗ Xt+ Whf ∗ Ht−1+ Wcf ◦ Ct−1+ bf)

Ct = ft ◦ Ct−1+ it ◦ tan h(Wxc ∗ Xt+ Whc ∗ Ht−1+ bc)
ot = σ(Wxo ∗ Xt+ Who ∗ Ht−1+ Wco ◦ Ct+ bo)

Ht = ot ◦ tan h(Ct)
∗ : convolution operator, o : Hadamard product

(2)

Ht, Ct, and Xt represent the short-term state, long-term state, and input value, re-
spectively. ft, it, and ot are used to control the state and input value. More specifically,
ft controls the part of the long-term state that should be erased. it controls the part of
the input value that should be added to the long-term state. ot controls the part of the
long-term state that should be read and output as the result of the current time step. W
and b denote the weight matrix and bias, respectively. Finally, σ and tan h represent the
sigmoid and hyperbolic tangent function, respectively.

• Encoding-forecasting model

The encoding-forecasting model employs a sequence-to-sequence (seq2seq)-based
network structure [30], which combines an encoding network and a forecasting network
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to address the spatiotemporal sequence forecasting problem. The encoding network
analyzes spatiotemporal patterns of past data to generate latent vectors, and the forecasting
network uses latent vectors of the encoding network to forecast future rainfall. In general,
the encoding network is constructed by stacking a convolutional layer, which performs
downsampling and spatial abstraction, and a recurrent layer, which compresses temporal
patterns. The forecasting network is constructed by stacking a deconvolutional layer, which
performs upsampling and spatial concretization, and a recurrent layer, which predicts
future patterns from compressed temporal patterns.

2.2.2. Model Description

This study proposes a model that combines the weighted broadcasting and the
encoding-forecasting model to improve the performance of nowcasting. The architec-
ture of the proposed model is shown in Figure 2, where (A × A, B) denotes the output of
the layer constituting the network, e.g., (128 × 128, 16), (64 × 64, 32), (32 × 32, 64). The
symbols A and B denote the size and number of channels, respectively, of the resulting
feature map, whereas k and s in the convolutional layer represent the size of the kernel and
stride, respectively.
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Before examining the proposed model, it must be noted that the convolutional and
recurrent layers are stacked repeatedly in the encoding and forecasting part of the existing
encoding-forecasting model. While the shallow convolutional layers capture the regional
and detailed features of the spatial distribution of precipitation, the deeper convolutional
layers capture the global and abstracted features; this is the most significant characteristic of
the convolutional layer. In addition, the recurrent layers between the convolutional layers
analyze the past rainfall patterns over time at each level abstracted by the convolutional
layers; this is the most significant characteristic of the recurrent layer. The rainfall pattern
information analyzed in each recurrent layer at each abstraction level of the encoding
network is transferred to the recurrent layer corresponding to the concretization level of
the forecasting network for prediction of the future rainfall pattern. At this stage, the
output information of the deconvolutional layer at each concretization level constituting
the forecasting network is combined to supplement the information generated from the
previous concretization level.

In this study, the performance of the existing encoding-forecasting model is improved
by applying a WB-Block, which puts more weight on the most recent feature map in the
convolutional layer of the encoding network. While predicting future rainfall, patterns
of past observations are analyzed, and the most recent rainfall patterns have the greatest
influence on future patterns. Therefore, when predicting the output radar R’t+1 ~ R’t+n
using the input radar data Rt-m+1 ~ Rt, the module in Figure 3 is added to reflect the feature
map of the t-th time step of the encoding network with greater importance. Essentially,
in the encoding-forecasting model, the recurrent layers of the encoding network and the
forecasting network are combined using a state copy to generate the structure of the seq2seq
model. Hence, m and n, which are the sequence lengths of the encoding network and the
forecasting network, can be different from each other. Figure 3 shows that the WB-Block
broadcasts feature maps of the last time step of the convolutional layer of the encoding
network to all the time steps of the corresponding deconvolutional layer of the forecasting
network. During the process, as the time step of the forecasting network incrementally
increases from t + 1 to t + n, the influence of the feature map at the t-th time step of the
encoding network decreases. The weight change that occurs as the time step increases is
desirable. The influence of the feature maps at the t-th time step should decrease as the
effect of a current event decreases over time. In general, the influence decreases as the
time step increases; however, the reduction is not constant across the time steps. Therefore,
the model should learn these patterns through the data while adjusting the weights to
reflect the natural phenomena represented in the training data. In addition, because
weight variables, represented as W = (wt+1, wt+2, wt+3, . . . , wt+n-2, wt+n-1, wt+n) in Figure 3,
are shared during training through all convolutional layers, there is little overhead for
computation and memory usage. When the time step increases and the effect of weight
decreases, the influence of the latest feature map of the encoding network is reduced, and
the feature map transmitted from the previous recurrent layer of the forecasting network is
used with relatively higher importance to perform prediction. Unlike the existing encoding-
forecasting model, the number of input channels is doubled in the deconvolutional layer of
the forecasting network. Through weighted broadcasting, the feature map is transferred to
the forecasting network via skip connection represented as a feature map concatenation in
Figure 2. The channel is temporarily doubled at the input of each deconvolutional layer
and then reduced to half at the output of the deconvolutional layer. In other words, in
the first deconvolutional layer of the forecasting network the input channel is 128 and the
output channel is 64, and the input and output channels in the second deconvolutional
layer become 64 and 32, respectively. In the third deconvolutional layer, the input and
output channels are 32 and 16, respectively.
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2.3. Experimental Setup and Evaluation Metrics
2.3.1. Experimental Setup

Based on the constructed dataset, experiments using the proposed model and compar-
ison model were repeated 10 times each. The numerical values presented in this section
represent the average values of the results of 10 experiments. We used NVIDIA Tesla
P100 GPU (×2) and Google TensorFlow 2.1 version for the experiment, and for multi-GPU
learning, the “NcclAllReduce” option was used as TensorFlow’s MirroredStrategy. It took
approximately 8 h per experiment. Adam [31] was used as the optimization algorithm
of the neural network, and Adam’s learning_rate, beta_1, beta_2, and epsilon were set to
0.0001, 0.9, 0.999, and 1 × 10−7, respectively. In addition, “glorot_uniform,” “orthogonal,”
and “zeros” were used for kernel_initializer, recurrent_initializer, and bias_initializer of
cells used, respectively. Considering the high-resolution radar data, the batch size was
set to 4, and batch normalization was used as a regularization technique. MSE was used
as the loss function, and early stopping [32] was adapted to terminate training when no
improvement in validation loss was observed within 10 epochs.

2.3.2. Evaluation Metrics

To evaluate the performance of the proposed model, we present a distance-based
metric, which is a basic measure of reconstruction evaluation, and a confusion matrix-based
metric, for evaluation based on rainfall intensity.

First, the distance-based metrics include the MAE, MSE, and balanced MSE (B-
MSE) [21]. B-MSE, adopted from Shi et al. [21], has a feature that applies a greater loss
penalty as the rainfall level increases, reflecting the intensity of damage to humans. The
distance-based metrics do not classify rainfall by level but they calculate the mean error
between the predicted value and ground truth for all cases from light to heavy rainfall.
Therefore, these metrics are used to compare the overall performance of the model for all
categories of rainfall rather than to compare the performance of the model according to the
rainfall levels. The equations used to calculate the metric values are as follows:

MAE =
∑N

n=1 ∑T
t=1 ∑I

i=1 ∑J
j=1

∣∣∣pprediction(n,t,i,j)
− pground truth(n,t,i,j)

∣∣∣
N × T × I × J

(3)
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MSE =
∑N

n=1 ∑T
t=1 ∑I

i=1 ∑J
j=1

(
pprediction(n,t,i,j)

− pground truth(n,t,i,j)

)2

N × T × I × J
(4)

B − MSE =
∑N

n=1 ∑T
t=1 ∑I

i=1 ∑J
j=1 w(n,t,i,j) ×

(
pprediction(n,t,i,j)

− pground truth(n,t,i,j)

)2

N × T × I × J
(5)

In the equations, N, T, I, and J represent the number of test samples, the length of the
future time step, the height of the 2D prediction space, and the width of the 2D prediction
space, respectively. Table 2, which is adopted from Shi et al. [21], summarizes the weight of
the loss penalty according to the level of the rainfall rate when computing the B-MSE.

Table 2. Rainfall rate and weights for the B-MSE [21].

Rainfall Rate (mm/h) Rainfall Level Weight of The Loss Penalty

0 ≤ x < 0.5 None/hardly noticeable 1.0

0.5 ≤ x < 2.0 Light 1.0

2.0 ≤ x < 5.0 Light to moderate 2.0

5.0 ≤ x < 10.0 Moderate 5.0

10.0 ≤ x < 30.0 Moderate to heavy 10.0

30.0 ≤ x Rainstorm warning 30.0

Next, the false alarm rate (FAR), possibility of detection (POD), critical success index
(CSI), and the Heidke skill score (HSS) [33] were obtained using the following formulas
based on the confusion matrix presented in Table 3. A method of measuring predic-
tion performance according to the level of rainfall rate based on the confusion matrix,
which is used in a classification problem, is a common method in the meteorological
field [16,18,20,21,24,25,27]. After predicting rainfall through the model, we generate five
confusion matrices based on the five thresholds (i.e., the rainfall rate of 0.5, 2.0, 5.0, 10.0,
and 30.0 mm/h). We create each confusion matrix by converting the predicted value
and ground truth to 1 if they are above the threshold and 0 otherwise. The confusion
matrix-based metrics are useful for subdividing and evaluating rainfall by level. In other
words, it is possible to determine in detail whether the model’s predictive performance is
excellent in heavy rainfall or light rainfall.

FAR =
FP

TP + FP
(6)

POD =
TP

TP + FN
(7)

CSI =
TP

TP + FP + FN
(8)

HSS =
TP ∗ TN − FN ∗ FP

(TP + FN)(FN + TN) + (TP + FP)(FP + TN)
(9)

Table 3. Confusion matrix.

Event
Forecast

Event Observed

Yes No

Yes TP (Hit) FP (False alarm)
No FN (Miss) TN (Correct rejection)
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3. Results

Table 4 summarizes the results of the distance-based performance metrics obtained
from the experiment. The values in Table 4 were calculated using the values between
0 and 1, rescaled through the min-max normalization of 0 mm/h to 110 mm/h.

Table 4. Experimental results for distance-based metrics (the best results are shown in boldface).

Model MAE MSE B-MSE

Enc.-Fore. 0.5407 × 10−2 0.3886 × 10−3 0.6068 × 10−2

WB-based Enc.-Fore. 0.5313 × 10−2 0.3896 × 10−3 0.6002 × 10−2

In the distance-based performance metrics, a lower value indicates better performance.
Although the MSE of the WB-based encoding-forecasting model is slightly worse (−0.25%),
the MAE (+1.74%) and B-MSE (+1.08%) indicate that the proposed model is superior to the
existing encoding-forecasting model.

Next, the results of the performance metrics based on the confusion matrix are pre-
sented in Tables 5 and 6.

Table 5. Experimental results for false alarm rate (FAR) and possibility of detection (POD) (the best
results are shown in boldface).

Rainfall Rate
(mm/h)

FAR POD

Enc.-Fore. WB-Based
Enc.-Fore. Enc.-Fore. WB-Based

Enc.-Fore.

0.5 0.3258 0.2960 0.6690 0.6403
2.0 0.4302 0.4199 0.4578 0.4513
5.0 0.5076 0.5141 0.2225 0.2409

10.0 0.5297 0.5653 0.1010 0.1126
30.0 0.3066 0.3072 0.0071 0.0110

Table 6. Experimental results for critical success index (CSI) and Heidke skill score (HSS) (the best
results are shown in boldface).

Rainfall Rate
(mm/h)

CSI HSS

Enc.-Fore. WB-Based
Enc.-Fore. Enc.-Fore. WB-Based

Enc.-Fore.

0.5 0.5025 0.5031 0.2881 0.2909
2.0 0.3383 0.3393 0.2307 0.2318
5.0 0.1804 0.1912 0.1455 0.1529

10.0 0.0897 0.0980 0.0806 0.0874
30.0 0.0070 0.0108 0.0068 0.0106

In the FAR and POD performance metrics in Table 5, FAR shows the proportion
of poorly predicted items among predicted items; hence, the lower the value, the better
the performance. POD, on the other hand, represents the ratio of the items that are
properly detected among the items to be detected; thus, the higher the value, the better
the performance. These two are performance indicators that have a trade-off relationship
with each other. As one value improves, the other value tends to deteriorate. As shown in
Table 5, the proposed model has excellent detection capability in heavy rainfall.

In the CSI and HSS performance metrics in Table 6, a higher value indicates better
performance. Here, CSI is an index that represents comprehensive performance evaluation
by expressing the performance of FAR and POD as one metric. For all five categories
of rainfall intensity, the proposed model using weighted broadcasting exhibits superior
performance. In particular, the proposed model using weighted broadcasting shows more
than 30% improved performance in CSI metric than the existing model when the rainfall



Atmosphere 2021, 12, 261 10 of 18

intensity is 30 mm/h or higher, which is the intensity value when the influence of rainfall
on human life becomes substantial, implying that the proposed model can be useful for
applications such as flood prediction [34–36].

Figure 4 shows the CSI and HSS scores of the two compared models while varying the
future time steps. As can be observed in the figure, the proposed model is superior to the
existing model especially in the cases of rainfall with an intensity of 5, 10, and 30 mm/h.
The comparisons for the other metrics corresponding to the future time steps are presented
in Figures A1 and A2 (Appendix A).

As a final step in the quantitative performance evaluation, a Monte Carlo permutation
test [37] was performed to assess whether the quantitative performance metrics had signifi-
cant differences between the two models (see Table A1, Appendix B for details). The Monte
Carlo permutation test is a statistical method for testing whether there is a significant
difference between two groups even when the underlying distribution is unknown. The
Monte Carlo permutation test showed significant differences for 20 metrics out of the
23 metrics examined in this study, indicating that the differences between the two models
were predominantly significant. For only MSE, B-MSE, and HSS-30.0, the p-value was
higher than 0.05.
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Figure 4. CSI and HSS comparisons of the proposed model and the existing model
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Apart from the quantitative evaluation metrics, examples of the actual input frames
and prediction frames for qualitative evaluation that can be interpreted by human visual
perception are presented in Figures 5 and 6. Figure 5 shows an example of 18 radar
observation frames used as inputs, and Figure 6 shows the prediction frames of the two
comparison models (the encoding-forecasting model and WB-based encoding-forecasting
model) and the actual ground truth frames.
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As shown in Figure 6, particularly the predicted frames from time steps t + 3 to t + 8,
the existing encoding-forecasting model shows that the shape of the heavy rainfall rate is
elongated, whereas the WB-based encoding-forecasting model shows that the shape of the
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heavy rainfall rate is similar to that of the ground truth. In addition, the predicted frames
from time steps t + 13 to t + 18 demonstrate that the existing model shows a separation
of the shape of heavy rainfall rate, whereas the proposed model shows a shape similar to
that of the ground truth. However, both models show that the results are smoothed to the
predictable scales overall. In addition, there is not only loss of variance, but also reduction
of precipitation. Nevertheless, we can summarize that the WB-based encoding-forecasting
model shows better performance than that of the existing encoding-forecasting model,
following more closely the shape of the ground truth.

Figure 7 shows the learned weight values of the WB-based encoding-forecasting
model. As mentioned earlier, the model using the WB-Block is designed to learn the weight
on its own according to the provided input data. The values of the weights obtained after
going through 10 experiments are shown in gray line, and the average weight values are
shown in blue line.
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As shown in Figure 7, data at time step t, the most recent rainfall pattern, has a stronger
effect at the beginning of the future prediction; however, its effect gradually decreases as
it moves to the later time steps. This pattern indicates that when information delivered
from the convolutional layers of the encoding network is used in the corresponding
deconvolutional layers of the forecasting network, it has different weights and influences
according to the future time step. In the later part of the time step where the weight
value is decreased, the feature map transferred from the recurrent layer of the forecasting
network is used more heavily. The values of the weights were not manually set by humans;
rather, they were learned by the model as it found an appropriate value according to the
characteristics of the data.

4. Conclusions

In this study, we proposed a WB-based encoding-forecasting model that improves
the performance of nowcasting by applying weighted broadcasting, which emphasizes
the influence of the latest feature map of the observed data in the encoding-forecasting
model. Through experiments, this study verified that the nowcasting approach based on the
proposed model exhibits superior performance in many aspects compared with the existing
encoding-forecasting model. The findings clearly indicate that applying the weighted
broadcasting method that explicitly places more emphasis on the latest information in the
convolutional layer, in addition to the pattern analysis over time implicitly performed in the
recurrent layer, to the encoding-forecasting model improves nowcasting performance. The
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reason weighted broadcasting can improve the performance of nowcasting is that it obtains
and uses important information that could not be analyzed through the recurrent layers
alone. This combinatory approach proves that, when predicting the sequence of natural
phenomena, the phenomenon of the last data transmitted through weighted broadcasting
is crucial.

However, the limitations that can occur in this prediction schema are as follows.
When making a prediction in a section in which the rainfall radar pattern changes in an
instant, the past and future patterns may be completely different. In that case, the effect of
weighted broadcasting may be limited. However, even in such a case, the model can still
be adequate because the weight variable is adjusted according to the data during training,
which automatically reduces the influence of information from the convolutional layers of
the encoding network and increases the influence of the information from the recurrent
layers of the forecasting network. At least, it does not limit the performance of the existing
encoding-forecasting model. Therefore, weighted broadcasting can be used in combination
with the encoding-forecasting model at any time. To calculate the weights of weighted
broadcasting, only additional trainable variables equal to the length of the future time steps
are needed.

In this study, when supplementing information missing from the recurrent layer of the
existing encoding-forecasting model through weighted broadcasting of the convolutional
layer, only the last feature map on the past time step of the convolutional layer was used.
However, because useful information can be found not only in the last feature map but also
in the previous feature map even if the probability is small, it may be further improved by
applying the self-attention technique [38] to the feature map to extract and utilize selectively
the most important feature map. We plan to explore this idea in our future research.
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Appendix A. Model Comparison According to the Future Time Step

Figure A1 shows the model comparisons for distance-based metrics, such as MAE,
MSE, and B-MSE, across the future time steps. As shown in Figure A1, the WB-based
encoding-forecasting model is slightly worse than the existing encoding-forecasting model,
in terms of MSE. However, the WB-based encoding-forecasting model is better than the
existing model in terms of MAE and B-MSE. In addition, when we compare the models in
terms of the MAE, which indicates the simple difference of the error, it can be observed that
the WB-based encoding-forecasting model gradually performs better as the future time
step increases.

Figure A2 shows the model comparisons for the confusion matrix-based metrics,
such as FAR and POD, across the future time steps. FAR and POD are performance
indicators that have a trade-off relationship with each other. As shown in Figure A2, the
existing model has better detection ability in light rainfall intensity such as 0.5 and 2 mm/h;
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however, the WB-based encoding-forecasting model has better detection ability in heavy
rainfall intensity such as 5, 10, and 30 mm/h.
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Appendix B. Monte Carlo Permutation Test

Table A1. P-values of the Monte Carlo permutation tests.

Metric p-Value
(Lower Bound)

p-Value
(Upper Bound) Significance

MAE 0.0127048865051027 0.0174676687141277 O
MSE 0.3887458537481437 0.4079322515204518 X

B-MSE 0.3696391168057983 0.3886537340002310 X
FAR-0.5 0.0 0.0006630497334598 O
FAR-2.0 0.0 0.0006630497334598 O
FAR-5.0 0.0 0.0006630497334598 O

FAR-10.0 0.0 0.0006630497334598 O
FAR-30.0 0.0 0.0006630497334598 O
POD-0.5 0.0 0.0006630497334598 O
POD-2.0 0.0 0.0006630497334598 O
POD-5.0 0.0 0.0006630497334598 O

POD-10.0 0.0 0.0006630497334598 O
POD-30.0 0.0 0.0006630497334598 O

CSI-0.5 0.0 0.0006630497334598 O
CSI-2.0 0.0 0.0006630497334598 O
CSI-5.0 0.0 0.0006630497334598 O

CSI-10.0 0.0037298195795461 0.0075262018267390 O
CSI-30.0 0.0207299852910959 0.0287007076153710 O
HSS-0.5 0.0 0.0006630497334598 O
HSS-2.0 0.0 0.0006630497334598 O
HSS-5.0 0.0 0.0006630497334598 O

HSS-10.0 0.0 0.0006630497334598 O
HSS-30.0 0.1706105467606014 0.1904134072389727 X
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