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Abstract: In 2020, when the novel coronavirus disease 2019 (COVID-19) broke out as a global
pandemic, cities in Hubei Province first went into lockdown on 23 January and resumed work
and production on 20 March. From February to March 2020, human activities in Hubei decreased
significantly, with the average particulate matter smaller than 2.5 µm (PM2.5) concentration standing
at 40 µg/m3, which is 21% lower than the expected based on a linear fitting trend in thePM2.5

concentration in Hubei. By using the empirical orthogonal function (EOF) method, this paper
comparatively analyzes the spatial-temporal variations of Hubei’s PM2.5 concentration anomaly in
February and March 2020 and the same periods of 2016–2019. The results show that the daytime
peak of the PM2.5 daily variation in Hubei in a low-emission scenario during COVID-19 declined
significantly, to which human activities contributed the most. However, during nighttime, the PM2.5

peak became more prominent, and the meteorological conditions had a more noticeable effect on
the PM2.5 concentration. In addition, during COVID-19, there was a great drop in PM2.5 pollution
accumulated from local sources within the urban circle of Wuhan City, while an increase was
seen in central-western Hubei due to the inter-regional pollutant transport. Thus, the high PM2.5

concentration center in the urban circle of Wuhan disappeared, but the pollution transport channel
cities in central-western Hubei remained as high-PM2.5-concentration centers.

Keywords: COVID-19; PM2.5; inter-regional transport; spatial-temporal variation; empirical orthogo-
nal function (EOF)

1. Introduction

During the Spring Festival holiday in 2020, the abrupt outbreak of the coronavirus
disease 2019 (COVID-19) pandemic produced unprecedented societal impacts on China.
To curb the virus spread among humans, a preventive lockdown was first implemented on
January 23 in Wuhan, Hubei. Other major cities/counties in China subsequently followed
suit. Due to the restriction measures [1] and Spring Festival effects [2], many factories
were shut down, the traffic volume on roads and construction activities reduced obviously,
and fireworks were banned, especially in urban regions, etc. The substantial decrease inhu-
man activities lessened the anthropogenic emission and thus improved the air quality [3].
Up to 90% reduction in certain emissions during the city lockdown period can be identified
from satellite and ground-based observations [4]. The absence of motor vehicles and sus-
pended manufacturing during the COVID-19 pandemic in China created a unique test to
assess the efficiency of air pollution mitigation and provided a possibility for revealing the
refined spatial-temporal characteristics of air pollution and the impact of meteorological
conditions in a low-emission scenario (LES). Many studies have reported changes in air
pollutants because of the COVID-19 pandemic [1,5–11] but have not involved the variation
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of inter-regional pollutants. Now, we are to focus on the inter-regional transport in the LES
during the COVID-19 lockdown period in Hubei Province of Central China.

Atmospheric particulate matters have a long retention time in the air and a wide
range of influence, especially those smaller than 2.5 µm (PM2.5). They can stay in the
air for a few weeks, covering a large area and a long distance, so they have an obvious
inter-regional transport effect [12–14]. The influence of inter-regional PM2.5 transport and
surrounding pollution sources has become the key link and hotspot research problem to
be urgently solved [15].In North China, the rapid generation and elimination changes of
extreme haze events in Beijing are mainly caused by regional transport and north–south air
mass alternation [16,17]. The regional transport contribution of PM2.5 was estimated to be
as high as 53–70%, showing explosive growth [18]. The southwest and southeast channels
are the main channels to transport pollutants and water vapor to the Beijing–Tianjin–Hebei
region, providing material and water vapor conditions for the occurrence and development
of haze [19]. In addition, inter-regional transport has made critical contributions to the
pollutions in many places such as East China [20] and South China [14].

Hubei Province, located downwind of the East Asian winter monsoon over the heavy-
haze-pollution areas of North China, Central Plain of China, and East China, is an important
hub for the regional transport of air pollutants over the central-eastern parts of China.
At the same time, this region has registered an abnormal, sudden increase in atmospheric
aerosol, becoming a new regional haze pollution center [21]. Research shows that the
cold air activity causes the inter-regional transport of atmospheric pollutants over the
central-eastern parts of China, very easily bringing about the convergence effect over the
middle reach of the Yangtze River [22]. The PM2.5 concentration tends to increase rapidly
by the action of strong north winds in Hubei, and pollution transport across the urban
clusters plays an important role in the formation of heavy haze pollution in this region [23].

Hubei’s lockdown in 2020 lasted for almost two months (lockdown on 23 January
onward and resuming work on 20March). Compared to the situation in the same period in
2019, the emission reduction reached 92% [3]. This paper is to study what differences exist
in the spatial-temporal distribution of PM2.5 in Hubei between the 2020 lockdown period
and the previous years and how the pollutants that were transported from other regions
affected the PM2.5 concentration in Hubei in the LES. Therefore, by using the environmental
and meteorological observation data of Hubei Province and the empirical orthogonal
function (EOF) method, this paper decomposes and obtains stable PM2.5 spatial-temporal
feature vectors in February and March of 2016–2020. Besides, the impact of meteorological
conditions on PM2.5 pollution and the effect of inter-regional PM2.5 transport in Hubei
during COVID-19 in the LES is analyzed. The research findings could provide good
references for further improving the air quality condition in Hubei in the future.

This paper is organized as follows: Section 2 introduces observation data, method,
and numerical experiments conducted in this paper, Section 3 presents the results of
the spatial-temporal variation of the PM2.5 concentration in the LES in Hubei Province,
and Section 4 manifests the brief conclusions.

2. Data and Methods
2.1. Data Source

February and March were selected to represent the lockdown period in 2020. The hourly
statistical PM2.5 data of the ambient air quality in Hubei during February and March of 2016–
2020 were obtained from the Department of Ecology Environment of Hubei Province [24],
involving 12 prefecture-level cities, including Wuhan (WH), Yichang (YC), Jingzhou (JZ),
Xiangyang (XY), Jingmen (JM), Shiyan (SY), Suizhou (SZ), Xiaogan(XG), Huangshi (HS),
Huanggang (HG), Xianning (XN), and Ezhou (EZ) (Figure 1). Prefecture-level cities’ air
quality data are the average values of observed pollutants obtained from several state-
controlled monitoring points within the jurisdiction. The meteorological data for the same
period are the hourly resolution data in February and March of 2016–2020 at national
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observation stations archived in the database of the National Meteorological Information
Center (NMIC) of the China Meteorological Administration (CMA).
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Figure 1. Terrain elevation (unit: m) and geographic locations of 12 prefectural cities in Hubei
Province (WH: Wuhan; YC: Yichang; JM: Jingmen; SY: Shiyan; XY: Xiangyang; JZ: Jingzhou;
SZ: Suizhou; XG: Xiaogan; HS: Huangshi; HG: Huanggang; EZ: Ezhou; XN: Xianning).

2.2. EOF Method

Empirical orthogonal function (EOF) [25] analysis is a method that is used to identify
patterns of simultaneous variation [26,27].It is also a method for dimensionality reduction
analysis of spatial-temporal data, being widely used in the field of meteorology, mainly for
the spatial-temporal distribution of meteorological elements. Depending on it, scientists can
decompose the element fields of a large amount of observation data into the sum products
of the time function and the space function so as to objectively and quantitatively reflect
the changes in the element fields [28,29]. Its basic principle is to decompose the variable
matrix Xmn composed of n times observations (sample time length) at m spatial points
into a linear combination of the spatial eigenvector matrix V and the corresponding time
coefficient matrix Z. In environmental data analysis, the eigenvector corresponds to the
spatial sample, named spatial mode, and the principal component corresponds to the
time change, called the time coefficient. In this study, we decompose the hourly PM2.5
observation data of 12 cities into a linear combination of the spatial eigenvector matrix V
and the corresponding time coefficient matrix Z, namely:

Xmn =

 ν11 · · · ν1n
...

νm1 · · · νmn


 z11 · · · z1n

...
zm1 · · · zmn

 (1)

Use Frotran software to process Xmn as an anomaly, we get the eigen root λm and
eigenvector vm of the real symmetric matrix and then calculate the variance contribution
rate ρi of the i-th eigenvector and the cumulative variance contribution rate Pi of the first p
eigenvectors.

ρi = λi/
m

∑
i=1

λi (2)

Pi =
p

∑
i=1

λi/
m

∑
i=1

λi (3)

The eigenvector represents the variability distribution structure of a regional climate
variable field in a region, and its spatial distribution pattern represents the main distribution
structure of the field; when the corresponding time coefficient is positive, it indicates
the same variation trend between the temporal variable and this distribution pattern.
Conversely, when the coefficient is negative, it indicates the contrary variation tendency
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between the two, and the higher the value, the more significant the corresponding spatial
distribution pattern [30].

To investigate the spatial-temporal characteristics of the PM2.5 mass concentration
in Hubei Province during the COVID-19 pandemic, the hourly PM2.5 mass concentration
anomalies in Hubei from February to March during five years (2016–2020) were decom-
posed by the EOF and the main spatial distribution characteristics of PM2.5 were extracted
in this study.

2.3. Numerical Modeling

The Weather Research and Forecasting model coupled with Chemistry (WRF-Chem)
has achieved the two-way coupling of atmospheric dynamics and chemistry, provid-
ing chemical models with online pollutant transport, dry and wet deposition, gas-phase
chemistry, aerosol formation, radiation and photodecomposition rate, aerosol parameter-
ization, and other chemical processes. It has been widely used in international studies
of atmospheric environments [31–35]. The Central China Regional Numerical Prediction
System of Environmental Meteorology, which is primarily based on the WRF-Chem model,
has showed good performance in operational evaluation and application [36,37]. Based on
this model system framework, a 27 km/9 km double-nested model has been designed,
with d01 covering most parts of East Asia and d02 covering Central China. The physical
parameterization schemes include the Yonsei University (YSU) [38] scheme for boundary
layer, the rapid and accurate radiative transfer model (RRTM) [39] for long-wave radiation
and the Goddard scheme for shortwave radiation [40], the Noah land surface model [41],
the Regional Acid Deposition Model version 2 (RADM2) [42] for gas-phase chemistry,
and the Modal Aerosol Dynamics Model for Europe/Secondary Organic Aerosol Model
(MADE/SORGAM)for the aerosol chemical mechanism.

Anthropogenic emissions were taken from the Multi-resolution Emission Inventory
for China [43] for the year 2016 [44], and the onset and end time dates of the control test
(CT) simulation were designed to be 28 December 2019 and 29 February 2020, respectively.
The 1 × 1 National Center for Environmental Prediction’s (NCEP) Final Analysis (FNL)
dataset [45] provided the meteorological initial and boundary conditions. The lateral
boundary was updated every 6 h, model-nudging four-dimensional assimilation process
was used to nudge the model outputs to the observations, and finally, the model spin-up
time was eliminated. On this basis, the emission sources in Hubei Province were closed
for a sensitivity test (ST), and the result could be approximated as the impact of external
source transmission on pollution changes in Hubei, regardless of the nonlinear error of the
chemical reaction.

3. Results
3.1. PM2.5 Concentration Variation in Hubei during COVID-19

Hubei witnessed a downward trend of its average PM2.5 concentration from February
to March of 2016–2019 (Figure 2a). Based on this linear trend, the expected PM2.5 annual
concentration in 2020 was 51 µg/m3, 11 µg/m3 (21%) higher than the actual value of
40 µg/m3. This phenomenon reflects the impact extent of emission reduction during the
COVID-19 pandemic on the PM2.5 concentration in Hubei Province, that is, the less human
activities during the period might contribute to the 11 µg/m3 (21%) drop in the PM2.5
concentration in Hubei Province.

Figure 2b,c shows the spatial differences of the PM2.5 concentrations in the major
cities of Hubei Province and the provincial average PM2.5 concentration from February
to March during 2016–2019 relative to the pollution situation in the same period in 2020.
As shown in the figure, positive anomalies were observed in WH, EZ, XY, JM, JZ, and YC
in 2016–2019 (Figure 2b), i.e., there were two high PM2.5 concentration centers located in
the urban circle of WH and the pollution transport channel cities in central-western Hubei,
respectively [46]. In 2020, negative anomalies were observed in WH, EZ, and JZ due to
COVID-19, while positive anomalies were found in XY, JM, and YC, of which the anomaly
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in JM significantly increased (Figure 2c).This means that in the COVID-19 low-emission
scenario (LES), the high PM2.5 concentration center at the urban circle of WH disappeared,
while another high-value center of PM2.5 remained in the cities of XY, JM, and YC along
the transport channel in central-western Hubei.

Given that the changes in the air pollutant concentration were simultaneously affected
by emission sources, meteorological conditions, and geographical factors, the PM2.5 con-
centration centers in those regions with a high PM2.5 concentration normally contributed
by local emission sources weakened considerably in the LES during COVID-19.In contrast,
those areas affected more by meteorological and geographic conditions(e.g., areas under
the effect of regional pollutant transport and accumulated pollutants in front of mountains)
had higher values of the PM2.5 concentration during the same period. For Hubei Province,
the disappearance of high-value PM2.5 centers in the WH urban circle and the prominent
performance characteristics of high-value PM2.5 centers in the transport channel cities in
central-western Hubei in the LES are to be further discussed below, during which the
EOF spatial-temporal decomposition will be conducted of the Hubei PM2.5 concentration
anomalies for the periods of February to March in 2016–2019 and in 2020.
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Figure 2. Changes in particulate matter smaller than 2.5 µm (PM2.5) during the coronavirus disease
2019 (COVID-19) outbreak in Hubei Province. (a) The February–March average concentration (black
dot) during 2016–2020 (the red dot represents the value for 2020 calculated based on the 2016–2019
linear fitting trend), (b) spatial anomaly of the average PM2.5 concentration in Hubei Province from
February to March in 2016–2019, and (c) spatial anomaly of average the PM2.5 concentration in Hubei
Province during the COVID-19 pandemic.

3.2. Spatial-Temporal Variation Characteristics of PM2.5 Pollution in Hubei Based on
EOF Decomposition

The annual statistics of hourly PM2.5 mass concentration anomalies from February to
March 2016–2020 in 12 prefectural cities in Hubei was analyzed via the EOF. Table 1 gives
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the variance contributions of time coefficients of the first two eigenvectors. The variance
contributions of the first eigenvector in each year of 2016–2020 were at 64%, 64%, 62%,
66%, and 69%respectively, and the variance contributions of the second one were 13%,
14%, 15%, 15%, and 11%, respectively. The accumulated variance contributions of the first
two eigenvectors almost reach about 80%, which can reflect the main characteristics of the
spatial-temporal distribution of the PM2.5 mass concentration in Hubei Province. The EOF
decomposition can extract the relatively stable annual eigenvectors of the main modes. By
comparing the first two main modes from February to March in 2020 and the same period
in 2016–2019, we disclosed the spatial-temporal variation characteristics of PM2.5 in Hubei
in the LES during COVID-19.

Table 1. Variance contribution of the first two eigenvectors of PM2.5 empirical orthogonal function
(EOF) decomposition in Hubei Province.

Eigenvectors/Year 2016 2017 2018 2019 2020

EOF1 64.09 64.01 61.57 65.69 68.95
EOF2 13.43 13.93 14.94 14.78 10.65

EOF1 + EOF2 77.52 77.94 76.51 80.47 79.60

3.2.1. Diurnal Variation Characteristics of PM2.5 in Hubei

The hourly averages from 00:00 to 23:00 local time (LC, UTC +8) calculated based on
the first mode time coefficient in 2016–2020 were used to characterize the daily variation
of PM2.5 in Hubei. Figure 3 shows the daily variation of the first mode time coefficient.
As shown in the figure, the daily variation trend is in line with the double-ridges-and-
one-trough pattern. The corresponding first mode is the pollution distribution across
the whole province (Figure 4a,c). When the daily variation is positive at 20:00–12:00 LC,
it indicates a positive anomaly of the PM2.5 concentration in Hubei, and when it is negative
at 12:00–20:00 LC, it means a negative anomaly.
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By comparing the variation characteristics of daily PM2.5 in 2016–2019 and 2020,
we found that the daytime peak eigenvalue at 08:00–12:00 LC during the 2020 pandemic
declined significantly, but the nighttime peak value did not change much, which indicates
that the former is dominated by human-induced emission, while the latter is controlled
by meteorological conditions. Accordingly, from the view of emission control, human
activities are a major contributor to the PM2.5 peak value at 08:00–12:00 LC. So, the day-
time PM2.5 pollution peak can be effectively reduced by staggering emission control and
weakening the impact of human activities within this time period. Given adverse meteo-
rological conditions at night, the nighttime pollution peak in the LES during COVID-19
was more prominent, and its eigenvalue was even higher than that in the daytime, de-
noting a more significant impact of meteorological conditions on PM2.5 pollution changes
in the LES. Therefore, when more rigorous emission regulations are to be implemented,
the control of night pollution emissions cannot be ignored in order to gradually reduce
night pollution peaks.

Combined with the daily variation of the atmospheric boundary layer height (BLH)
(5-year average from 2016 to 2020), it can be seen that the atmospheric diffusion conditions
are the best in the daytime and the corresponding daily variation in PM2.5 is the maximum
negative anomaly. During the 2020 pandemic, the occurrence time of the maximum
negative anomaly in Hubei was more consistent with the BLH daily variation, which was
1–2 h earlier than that in 2016–2019. This indicates that the PM2.5 concentration in the LES
is more sensitive to the BLH change, i.e., the impact of meteorological conditions on PM2.5
pollution variation is more noticeable in the LES.
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3.2.2. Spatial Variation Characteristics of PM2.5 in Hubei

Figure 4 shows the 4-year average (2016–2019) of the first and second modes of the
PM2.5 concentration anomaly decomposition and the spatial vector distribution in 2020
in Hubei. The spatial vector values of the first mode in each year are all greater than 0
(Figure 4a,c), showing the characteristics of consistent PM2.5 mass concentration variation
in Hubei. When the corresponding time coefficient is greater than 0, the PM2.5 mass
concentration in Hubei is generally high, representing the characteristics of pollution
distribution in Hubei as a whole; when the time coefficient is less than 0, the PM2.5 mass
concentration in Hubei is low. The spatial distribution of the mean difference in the spatial
vector values of the first mode between 2020 and 2016–2019 is displayed in Figure 4e.
As seen from the figure, the difference value is negative in the eastern part and positive in
the western part of Hubei, which indicates that changes occurred in the PM2.5 pollution
variability structure of the first mode, with an increase in the western part and a decrease
in the eastern part.

The spatial vector values of the second mode in each year show an opposite variation
of PM2.5 variability in the eastern and western parts of Hubei (Figure 4b,d).When the
corresponding time coefficient is greater than 0, it means a positive PM2.5 concentration
anomaly in the western part but a negative anomaly in the eastern part; when the time
coefficient is less than 0, the situation is reversed. Figure 4f reveals the spatial distribution
of the average difference of the second mode spatial vector values between the year 2020
and 2016–2019. The difference value of the mode spatial vector fields between the two is
relatively positive in YC, which suggests that the variability of PM2.5 pollution in most
parts of the province reduced due to the emission reduction during the epidemic, except the
increased PM2.5 pollution variability in YC.YC is located in the transition zone from Wuling
Mountains and Qinba Mountains in western Hubei to the Jianghan Plain, surrounded
by mountains on three sides, with the southwest as a plain (Figure 1).Such terrain is
very favorable for the transport of pollutants. During the COVID-19 pandemic in Hubei,
the local calm weather (0–2 m/s) and short-distance southeast wind transport (2–4 m/s
southwest wind, Figure S1) caused the pollution in YC. In other words, the PM2.5 pollution
variability increased in the YC region due to the meteorological conditions and the stacking
effect caused by the terrain.

3.3. Variation Characteristics of Inter-Regional Transport

Figure 5 presents the distribution of the PM2.5 concentration anomaly in WH varying
with the local wind speed and direction in the case of a positive time series (i.e., high
values of PM2.5 concentration over the whole province) in 2016–2019 and 2020. In the past
years, WH had scattered high-value centers of the PM2.5 concentration anomaly (Figure 5a).
The PM2.5 pollution might be caused by not only calm weather but also the pollutants con-
veyed by winds from different directions, of which the major pollution was generated by
the long-distance inter-regional transport of pollutants along with northerly and northeast-
erly winds. This result is consistent with the conclusion by Yu et al. (2020) [22]. However,
during the COVID-19 pandemic, the high-value center of the WH PM2.5 concentration
anomaly (Figure 5b) was mainly concentrated in the area affected by the east-to-northeast
wind at a speed of 2–4 m/s, without any pollution resulting from the locally static and
steady accumulation (0–2 m/s wind speed) and long-distance inter-regional transport
(greater than 4 m/s wind speed).
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Figure 5. Polar plots of hourly variations in wind speed (round radius, unit: m/s) and direction (angles) to the surface
PM2.5 concentration anomaly (color contours, unit: µg/m3) of the first eigenvectors. (a) WH in 2016–2019 and (b) WH
in 2020.

Based on the empirical relationship between wind speed and PM2.5 pollution in dif-
ferent weather patterns, a wind speed of 0–2 m/s represents calm weather, a wind speed
of ≥4 m/s indicates PM2.5 long-distance inter-regional transport, and a wind speed of
2–4 m/s indicates short-distance transport within the urban clusters [22,47,48]. Figure 6
shows the declined percentage of PM2.5 anomalies at different wind speeds during the
COVID-19 pandemic relative to that during 2016–2019. WH and JM are, respectively, typi-
cal cities of the urban circle in the eastern part and the central western pollution transport
channels in Hubei Province. It can be seen from the figure that when the wind speed in
WH (JM) is 0–2 m/s and 2–4 m/s, the PM2.5 pollution concentration anomaly decreases
by 52% (18%) and 16% (9.1%), respectively; when the wind speed is ≥4 m/s, the PM2.5
pollution anomaly decreases by 47% in WH but increases by 8.8% in JM. This means that
during the epidemic period, the PM2.5 concentration greatly reduced in WH due to the less
accumulation of local-sourced and long-distance inter-regional transport of pollutants [49],
but the short-distance transport of PM2.5 was the major pollution in the urban circle. In the
JM area, however, the local accumulation of PM2.5 and the short-distance transport of pol-
lutants weakened to some extent during the pandemic, and the long-distance inter-regional
transport of PM2.5 concentration anomaly increased.
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Figure 6. The percentage reduction in the PM2.5 concentration anomaly of the first eigenvectors in
WH and JM under different wind speed conditions during the COVID-19 pandemic.

In general, WH had a much lower PM2.5 concentration anomaly than JM during the
COVID-19 pandemic. In eastern Hubei, PM2.5 pollution significantly lessened via the
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control measures of local emission sources and long-distance inter-regional transport of
pollutants, while the central-western part of Hubei still observed large-value centers of
the PM2.5 concentration, which was the contribution from the long-distance inter-regional
transport of pollutants.

Based on comparison of the average PM2.5 concentration simulated by the WRF-Chem
control test (CT) and the observations during 1–29 February 2020 (Figure 7a), we can see
the simulation result can basically reflect the actual PM2.5 concentration in the prefec-
tural cities of Hubei Province. Figure 7b shows the sensitivity test (ST) used to simulate
the concentration of PM2.5 pollution in Hubei from external sources during COVID-19.
We found in the figure that the PM2.5 concentration in the pollution transport channel from
XY through JM to YC was significantly higher than that in the eastern part, which denotes
that inter-regional transport of air pollutants intensified PM2.5 pollution in central-western
Hubei. This further shows that during the epidemic period, regional transmission of
pollutants aggravated the PM2.5 changes in the pollution transport channel cities in the
central-western region of Hubei, causing the XY–JM–YC region to remain the high-value
center of the PM2.5 concentration during the epidemic.
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Figure 7. (a) Average PM2.5 concentration (unit: µg/m3) in February 2020 simulated by the Weather
Research and Forecasting Model coupled with Chemistry (WRF-Chem) control test (CT, shaded) and
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from external sources simulated by a sensitivity test (ST).
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4. Discussion and Conclusions

In 2020, when COVID-19 broke out as a global pandemic, WH went into lockdown
on 23 January, followed by all the other cities of Hubei Province. From February to
March 2020, human activities in Hubei greatly decreased, leading to the low-level emission
of pollutants and decreasing the average PM2.5 concentration down to40 µg/m3, 21%
lower than expected. During the pandemic, the spatial distribution of PM2.5 pollution
varied greatly. The high-value center of the PM2.5 concentration in the WH urban circle
disappeared, but persisted in the pollution transport channel cities in the central-western
part of Hubei Province.

EOF analysis, based on the PM2.5 concentration anomaly from February to March in
2020 and the same period in 2016–2019, has shown that the PM2.5 anomaly increased in
the transport channel cities in central-western Hubei but decreased in the urban circle of
WH in eastern Hubei. Under the influence of emission source control during COVID-19,
eastern Hubei saw a great decrease in locally sourced PM2.5 accumulation and long-distance
inter-regional transport, while central-western Hubei experienced an increase in PM2.5
long-distance inter-regional transport. Hu et al. (2020) [50] revealed that the regional PM2.5
transport of Central-East China made large contributions to Hubei’s heavy air pollution,
and such contribution was greater in the western region than in the eastern region. Thus,
it can be seen that the PM2.5 high-value center in the urban circle of WH was dominated by
high-level local emissions, while the high-value center in the transport channel cities in
central-western Hubei was more affected by inter-regional transport. Though the emissions
from the local pollution sources were greatly reduced during the COVID-19 pandemic,
the contributions of meteorological and geographic conditions [51] were still there, so the
inter-regional transport of pollutants kept the role of aggravating the PM2.5 concentration
in the central-western part of Hubei, leading to a prominent PM2.5 high-value center.

During COVID-19, the 08:00–12:00 LC daytime peak eigenvalue of the PM2.5 daily
variation in Hubei Province decreased greatly, while the peak value at night was more
prominent. This is very consistent with the daily variation of the BLH, indicating that the
PM2.5 concentration in the COVID-19 low-emission scenario was more sensitive to a BLH
change. In other words, the meteorological conditions have a more obvious effect on the
variation of PM2.5 pollution in a low-emission scenario; this result is consistent with the
conclusion by Shen et al. (2020) [6]. Accordingly, we can see that human activity is a very
important factor for the peak value of PM2.5 pollution from 08:00 to 12:00 LC. The daytime
PM2.5 pollution peak can be effectively reduced by regulating the emission to weaken the
impact of human activities during this period of time. On the other hand, the control of the
night pollution emissions should be strengthened so as to decrease the nighttime pollution
peaks gradually.

Supplementary Materials: https://www.mdpi.com/2073-4433/12/2/250/s1. Figure S1: A polar
plot of the hourly variations in wind speed (round radius, in m/s) and direction (angles) to surface
PM2.5 concentration anomaly (color contours, in µg/m3) of second eigenvector of YC in 2020.
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