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Abstract: Short-lived and intense rainfall is common in Hong Kong during the wet season and
often causes disruption to daily lives. As global numerical weather prediction (NWP) models are
progressively improved, representation of sub-synoptic or mesoscale systems associated with intense
rainfall is better parametrized and resolved than ever before, but their quantitative precipitation
forecasts (QPFs) still tend to underestimate the magnitude of intense rainfall. This study calibrated
model QPFs over the region of Hong Kong by two frequency-matching methods. In both methods,
conversion schemes between the direct model output (DMO) and calibrated forecasts were first es-
tablished by matching the cumulative distribution to that of the observed data. The “Adaptive Table”
method updated the conversion scheme whenever the latest observation fell out of its expected range
in the existing scheme, whereas the “Sliding Window” method reconstructed the conversion scheme
using data from the most recent two years. The calibration methods had been verified against actual
rainfall events with different thresholds, and it was found that both methods could improve model
performance for moderate and heavy rainfall in short-range forecasts with similar effectiveness.
They were also able to reduce the systematic bias of precipitation forecasts for significant rainfall
throughout the verification period.

Keywords: QPF; short-range; NWP models; calibration; frequency-matching

1. Introduction

Hong Kong receives abundant amounts of rainfall in the wet season due to the
influence of the southwest monsoon, monsoon troughs and tropical cyclones [1]. Based on
climatological data for 1981–2010 from the Hong Kong Observatory [2,3], about 80% of
annual rainfall was recorded between May and September, and there are approximately
seven days a year on average when Hong Kong experiences rainfall of 30 mm within an
hour. As Hong Kong is densely populated and many buildings are situated on or near
slopes, short-lived and intense rainfall can cause disruptions to daily lives and even pose
threats to lives and properties. Accurate and timely quantitative precipitation forecast
(QPF) guidance is essential to the reduction of socioeconomic losses and helpful for the
general public to plan their activities or take precautions.

Numerical weather prediction (NWP) models provide essential input to weather fore-
casting generally up to a medium range, but it remains a challenge to predict precipitation
quantitatively at a specific time and location due to its intermittent nature, high variability,
and dependence on spatiotemporal scales [4]. The forecast uncertainty of intense rainfall
in numerical models is particularly high, because convective cells are short-lived and rely
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heavily on the performance of cumulus parametrization in the models [5]. The related
processes depend not only on the synoptic situation, but also sub-grid-scale processes such
as the phase change of water and convective transport of heat and moisture, which are
often not explicitly resolved by NWP models [6]. As a result, intense precipitation events
are usually studied within a small area in the context of short-range forecasts.

Short-range QPF often involves nowcasting methods. For example, the Hong Kong
Observatory developed a radar-based precipitation nowcasting system named Short-range
Warning of Intense Rainstorms in Localized Systems (SWIRLS) in 1999, which predicts the
movement and intensity of mesoscale systems in the next few hours [7]. The algorithm of
SWIRLS has evolved throughout the year, with the latest version adopting semi-Lagrangian
advection and variational optical flow [8], and now operates up to 9 forecast hours. In recent
years, Shi et al. [9] have pioneered the development of radar-based precipitation nowcasting
through deep-learning methods and found that using a convolutional Long Short-Term
Memory (LSTM) method outcompetes the original optical flow method. Shi et al. [10]
further proposed a method called Trajectory Gated Recurrent Units (TrajGRU) and replaced
the original loss function to assign a higher weighting to intense precipitation events,
so that the movement of the rain bands is taken into consideration with a higher impact-
based significance. Their techniques are now widely applied in the field of radar-based
short-range QPF [11,12].

Although nowcasting techniques were proven useful in capturing events of intense
precipitation, these methods are only limited to a short forecast period and the method-
ologies do not take into account the physics of precipitation processes. To provide reliable
QPF guidance with sufficient time to respond to intense rainfall, the use of NWP models
is inevitable. The Hong Kong Observatory has attempted to blend radar-based products
with the use of regional NWP models to produce short-range QPF up to 15 forecast hours
at 2 km resolution, and the model is run every hour. This better represents the physics of
mesoscale systems to optimize short-range forecasts, by avoiding model spin-up in early
forecast hours of NWPs and poor extrapolation of radar echoes in later forecast hours
when radar-based methods are used [13,14]. A mesoscale non-hydrostatic model was also
developed as a reference to short-range QPF up to 72 h, running every 3 h [14].

Global NWP models are still currently the major references for assessing day-to-day
weather conditions including heavy rainfall episodes, as skills of short-range forecasting
tools decrease with increasing forecast range. Since most global NWPs are hydrostatic and
the horizontal resolution is generally limited to around 10 km or above [15], mesoscale activ-
ities with violent updrafts and downdrafts are not well-represented under the assumption
of hydrostatic balance, and their horizontal extents of several tens of kilometers are not
well-resolved by models. Previous verification efforts found global models such as the
European Centre for Medium-Range Weather Forecasts (ECMWF) and National Centers for
Environmental Prediction (NCEP) have a tendency to underestimate heavy rainfall [16,17].
Correcting model biases would improve the predictability of heavy rainfall events and is
therefore highly valuable to operational weather forecasting.

Calibration is a class of most direct and essential methods to post-process model QPFs.
Various methods of calibration have been developed to correct model biases, some of which
involve the use of ensemble forecasts. Dong [18] compared ECMWF ensemble forecasts
with the climatological distribution of precipitation of the simulated climate to deduce the
extremity of daily precipitation for calibration against the true distribution of precipitation.
A Bayesian approach has also been adopted in various research to assign higher weights
for more reliable ensemble members [19] and the family of logistic regression methods
calibrates ensemble members to give probabilities of the target events through one or more
predictors [20,21]. Calibration can also be applied to individual members of the ensemble
forecast or the deterministic forecast. Voisin et al. [22] calibrated each ensemble member
against a network of rain gauges through various downscaling techniques and also the
analogue method, which compares the current model forecast with a range of previous
forecasts for phenomenologically similar previous events, diagnosing differences with



Atmosphere 2021, 12, 247 3 of 24

actual precipitation to derive a better estimate of a future event. Zhu and Luo [23] studied
QPFs from NCEP ensemble over the continental United States and applied a frequency-
matching method by weighing the cumulative distribution functions of precipitation over a
specified number of days using a decaying average, in effect adjusting the frequency biases
in the calibration with emphasis to more recent data. The calibration of model outputs
against climatological data through cumulative distribution functions is also referred to as
quantile mapping [24] and the graphical representation is known as the Q-Q plot [25].

This study focuses on the calibration of QPF through frequency-matching, and the
Adaptive Table method applied in this study is inspired and modified from a statistical
post-processing method developed by the Japan Meteorological Agency (JMA) [26]. In the
method adopted by JMA, 3 h QPFs averaged over 20 km × 20 km grids were used as the
predictand and Kalman filter was first applied, with 9 associated atmospheric elements
that might affect the intensity of precipitation, such as different components of winds at
850 hPa and orographic precipitation index. The filter considered the previous performance
of the model and the correlation of QPF with the atmospheric elements to reduce the root-
mean-square error of the forecast. After that, the filtered output was further corrected by a
conversion table that relates the cumulative distribution functions of historically forecasted
and observed QPF to minimize the frequency biases of the model. The Adaptive Table
method in this study is mainly developed upon the tabulation step of the methodology of
JMA and will be further discussed in the next section. Another method adopted in this
study, the Sliding Window method, also took into account the previous performance of
deterministic models and was calibrated against the cumulative distribution functions for
a fixed time window.

2. Data and Methodology

Owing to the fact that intense rainfall in Hong Kong is mostly brought about by
severe convections and tropical cyclones, and global NWP models are relatively weak in
convective parameterization, the purpose of this study is to provide a more accurate short-
range QPF guidance based on global models by correcting the systematic underestimation
of significant rainfall over the region of Hong Kong. Moreover, the stochastic nature of
heavy convective precipitation in the tropics makes it difficult even for mesoscale models to
pinpoint each event, hence the frequency-matching methods chosen below would indicate
the appropriate order of magnitude once those events took place, rather than to improve
the predictability of each event, due to model constraints. In the calibration, 6 h model
QPFs from the ECMWF and JMA were used for the experiment. The lead times of the 6 h
QPF were defined to start at 00, 06, 12 and 18 h local time (UTC + 8) to meet operational
needs. The 18 and 00 h forecasts were based on 00 Z (UTC) model runs and the 06 and 12 h
forecasts were based on 12 Z model runs. 6 h accumulated precipitation at lead times of 6,
12, 18, 24 and 30 h were re-calibrated for every start time. Since the temporal resolution from
the original model guidance is 3 h starting at 08 or 20 h local time, QPFs were interpolated
to match with the local 6 h QPF. Model QPF from the beginning of 2012 to the end of
2017 had been extracted. Data of the first two years formed the training set to establish
the initial conversion schemes between the model QPF and the observed precipitation.
Data of the remaining four years constituted the verification set for the two calibration
methods. In operation, the Hong Kong Observatory verifies precipitation forecasts through
the precipitation averaged over seven specific rain-gauge stations in Hong Kong (Figure 1)
to represent the intensity of precipitation over the territory [27], which is denoted by
forecast verification (FCV) precipitation hereafter. The Direct Model Output (DMO) QPF is
defined as the average of the interpolated precipitation of the seven locations, and these
DMO values are calibrated against the total FCV precipitation within the concerned 6 h
forecast period.
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Figure 1. The locations of the rain gauges used for forecast verification (FCV).

2.1. The f-t Conversion

The two different methods of calibration applied to DMO forecasts share the same
concept of frequency-matching: the QPFs should be adjusted to the values of past observa-
tions of the same cumulative frequencies. Both conversion schemes utilized past forecast
(F) and observation (T) data to construct a conversion table with pairs of DMO values ( fi)
and calibrated values (ti), where i = 0, 1, 2, . . . , n. Table 1 shows an example of such f -t
conversion table. The two calibration schemes differ in the initialization and the update of
such conversion table.

Here, we first describe the general initialization and usage of the conversion table
that both schemes have in common. During the initialization, in the training set, all 6 h
model QPFs available at lead times 6, 12, 18, 24 and 30 h from a specific model were used to
construct the initial cumulative distribution of forecast precipitation of that model, while all
6 h accumulated FCV precipitation records were extracted for the cumulative distribution
of observed precipitation. To avoid the possibility that zero-forecast precipitation would
correspond to a non-zero calibrated precipitation or vice versa, the conversion table must
start from ( f0, t0) = (0, 0). Both ti and fi values were arranged in ascending order and
joined in the f-t conversion table, so that the cumulative frequency of fi and ti within
the time window would match (in the Adaptive Table method, this f-t table was further
processed and replaced by sampling itself at selected values, which will be described in
greater detail in the next subsection).

When carrying out a calibration using the f-t conversion table, it would be highly
likely that a DMO value f does not fall upon any value of fi, therefore, a multiplication
factor M was introduced such that the calibrated forecast t = f × M. The calibrated value
t is based on the linear interpolation of M from ( fi, ti) and ( fi+1, ti+1) pairs with respect to
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f , where fi ≤ f ≤ fi+1. If f > fn, then ( f , t) is extrapolated based on the ratio of fn and tn.
In summary, M is defined as follows:

=


f
f1
× t1

f1
, for 0 ≤ f < f1

ti
fi
+
(

ti+1
fi+1

− ti
fi

)
× f− fi

fi+1− fi
, for fi ≤ f ≤ fi+1 < fn

tn
fn

, for f ≥ fn

(1)

After the initial f-t conversion schemes were established, the experiment ran through
the verification set chronologically. The calibration was dynamical as the conversion
schemes were updated whenever new pairs of forecast and observed precipitation become
available, so that the schemes can better reflect recent model performances. The two
methods of updating the conversion schemes are described in the following subsections.

Table 1. An example of the f-t conversion table (this is the f-t table of the Adaptive Table method for
ECMWF as on 1 January 2014 00 h, the start of the verification period).

f
(Sorted Past Forecasts, DMO)

(mm)

t
(Sorted Past Observations, Calibrated Value)

(mm)

0.0 0.0
0.8 0.1
1.0 0.2
1.2 0.3
1.3 0.4
1.5 0.5
2.3 1.0
3.0 1.5
3.4 2.0
3.8 2.5
4.0 3.0
4.2 3.5
4.5 4.0
4.7 4.5
5.0 5.0
5.6 6.0
6.0 7.0
6.6 8.0
6.9 9.0
7.5 10.0
9.4 15.0
10.8 20.0
14.4 30.0
16.7 40.0
20.1 50.0
25.4 60.0

2.2. The Adaptive Table Method

The Adaptive Table method [26] adjusts the conversion table whenever the newly
available pair of observation Tnew and forecast Fnew does not fall on or between pairs
of ( fi, ti) and ( fi+1, ti+1). The values of ti are fixed throughout the experiment in this
method and their counterparts fi are allowed to fluctuate. The set of ti was selected as
follows: every 0.1 mm from 0 to 0.5 mm, every 0.5 mm from 0.5 to 5 mm, every 1 mm
from 5 to 10 mm, every 5 mm from 10 to 20 mm and every 10 mm from 20 to 60 mm.
Observed rainfall of over 60 mm in 6 h is extreme and cumulative statistics may not be
representative, hence extrapolation by M = tn/ fn, as mentioned in the previous subsection,
was applied when ti > 60. To start with a f-t table with such ti values, the fi values are
obtained by simple linear interpolation at those ti values between the f-t pairs from the full
f-t table containing all the sorted forecast and observation values in the training set. In the
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update, for each calibrated value ti lower (higher) than Tnew, but with the corresponding
DMO value fi higher (lower) than Fnew, the corresponding DMO value fi is decreased
(increased) by the adaptation speed parameter α. If we denote ( fi, ti) at time τ to be

(
f τ
i , tτ

i
)
,

the adaptation can be mathematically expressed as:

f τ+1
i =


f τ
i × (1 + α) , if tτ

i > Tnew and f τ
i < Fnew.

f τ
i × (1 − α) , if tτ

i < Tnew and f τ
i >Fnew.

f τ
i , otherwise.

(2)

The conversion table is brought closer to the latest (Fnew, Tnew) pairs, so that it can
adapt to recent model changes in precipitation bias. The update of the conversion table is
based on the 6 h accumulated precipitation at lead time of 12 h (T + 12), as the models take
several forecast hours to spin up fine-resolution features from the initial conditions [27].
In case the T + 12 QPF is not available due to the missing outputs from the model runs,
T + 18 will be used instead. The adaptation speed parameter, α, controls how fast the
conversion table adapts to model changes. The values of α have to be selected with care as
it is the core to determine how well the calibration scheme accommodates itself towards
the change of model behavior. If α is too small, the adaptation is basically inert, however,
if α is too large, the values of fi will be unstable, especially when a miss or false alarm
triggers adaptation of a reasonably large domain of ti. Li et al. [27] suggested that α = 1%
would be an adequate adaptation parameter for short-range QPF in the region of Hong
Kong and this value is applied in this study.

2.3. The Sliding Window Method

The Sliding Window method updates the conversion table using the most recent pool
of data with a constant temporal span, i.e., a sliding window. In this study, the table is
updated before every set of calibration is done, by reconstructing it with 6 h DMO QPFs
(F) and FCVs (T) at all the 5 specified lead times from the most recent two years, i.e.,
using a two-year time window. Unlike the Adaptive Table method, the values of ti are
not selected in advance. The duration of two years was chosen to cater for inter-annual
variations. On the one hand, if the time window is too long, models would have already
gone through a number of updates over a longer period. On the other hand, windows of
shorter periods would provide insufficient data points for calibration, especially for high
rainfall values. Calibration using a one-year time window would also be too dependent on
the behavior and performance of the models in that year. The cumulative frequencies of
DMO and observed values are directly matched to avoid arbitrariness of ti. In other words,
the f-t table used in calibration is exactly the full f-t table constituting of all forecasts and
observations in the past two years. As both DMO and observed precipitation are discrete
datasets, the difference between ti and ti+1 will be quite large over high rainfall intensities,
so interpolation based on the multiplication factor is still necessary.

2.4. Verification Metrics

To determine the effectiveness of DMO and calibrated forecast, model performances
on actual precipitation events with different intensities were evaluated. In particular,
the effectiveness of calibration was verified with thresholds of 6 h accumulated precipitation
above 10, 20 and 30 mm, respectively. Based on the 2 × 2 contingency table of observed
and forecast events in Table 2, the verification metrics of Probability of Detection (POD),
False Alarm Ratio (FAR), Critical Success Index (CSI) and Frequency Bias (FB) [28,29] are
defined as:

POD =
a

a + c
(3)

FAR =
b

a + b
(4)

CSI =
a

a + b + c
(5)
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FB =
a + b
a + c

(6)

Table 2. A 2 × 2 contingency table of observed and forecast events.

Event Observed
Yes No

Event Forecast
Yes a b
No c d

Wilks [29] suggested several attributes to measure the quality of forecasts, such as
accuracy, bias, reliability, resolution, discrimination and sharpness, and there are various
classes of verification metrics to address these attributes. CSI is the percentage of hits
among all predicted or observed events and would address accuracy. POD is the percent-
age of successfully forecasted events out of all the observed events and would address
discrimination. Higher CSI and POD imply a better forecast, and CSI is a more essential
metric for a successful forecast because a high CSI means both false alarms and misses
are minimized in the denominator. In contrast, FAR indicates the percentage of an event
not happening although the forecast predicted it to happen, so a lower value is preferred.
It addresses reliability and resolution. FB is the ratio of the frequency of predicted events
over that of observed events, indicating whether the forecast system has an overall bias of
over- or under-estimating the frequency. The calibrated QPF is expected to have a FB close
to 1 as the conversion table matches the frequency of observed events and forecast events.
A Q-Q plot [25] will also be presented to show that the frequency-matching methods could
successfully solve the problem of systematic bias, and a box-and-whisker plot of errors
conditioned on observations will show the improvement of discrimination and accuracy
over different rainfall intensities. The majority of the statistical analyses and visualization
were performed with the package “ggplot2” in R, while some of the graphs were produced
using Microsoft Excel and PowerPoint.

3. Results and Discussion
3.1. The Stability of the Calibration Methods

We first examine the stability of both calibration methods, i.e., whether the calibrated
forecasts would fluctuate too much. The multiplication factor, M, along with the calibrated
forecasts of ECMWF and JMA by both calibration methods across time are shown in
Figures 2 and 3. In Figure 2, the black contour lying over the white region represents
a multiplication factor of 1, meaning that the DMO value remained unchanged during
calibration, and it fluctuated between DMO values of about 2 to 5 mm. Below that value,
the frequency was overestimated by the model and therefore the DMO forecasts were
adjusted downwards, and vice versa. Looking across time for both figures, we see that
both schemes tended to be more stable during the winter than the summer, as most of
the extreme rainfall events occur in the summer. Events with observation ≥ 30 mm only
occurred from mid-March to late October during the verification period, whereas events
with lower intensity occurred over the whole course of the year, but with higher density
around the summer.

The fluctuations in the Sliding Window method were found to be much greater than
the other method, as depicted in Figures 2 and 3. The Sliding Window calibration scheme
would include or exclude extreme events whenever they enter or exit the sliding window
from time to time and “fully adapt” to them all of a sudden, whereas the Adaptive Table
scheme has an adaptation speed parameter α, which fixes the rate of change, disregard-
ing the extent of over- or under-estimation. The discrepancy between the two calibration
schemes became significant for JMA towards the end of the period, as seen in Figure 3,
whereas the discrepancy for ECMWF was much less obvious.
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3.2. The Behavior of Updates in the Sliding Window Method

A more detailed discussion for the effects of update in the Sliding Window method
is given here. As the data window slides through time as time proceeds, new forecast-
observation pairs are included, and some old ones are excluded. For simplicity, let us first
consider just an addition of one forecast–observation pair. Its effect on the f-t table could
be categorized into 3 cases, as shown in Figure 4. In Case 1, the new forecast has a lower
rank on the existing f list than the new observation does on the existing t list. In Case
3, it is the other way round, whereas in Case 2, both have the same rank. Note that the
separation of these cases is based on the difference in ranks in f and t lists, but not whether
the new forecast–observation pair itself is an under- or over-estimation. This is illustrated
in the example of Case 3 in Figure 4. However, in general, the cases do imply whether the
new forecast would be an under- or over-estimation after calibration with the existing f-t
conversion table (for Case 2, ignoring the possibility of under- or over-estimation brought
by interpolation between f-t pairs). In Case 1 (Case 3), the calibrated forecast would still
be an underestimation (overestimation) under the existing conversion. After addition of
the new pair and re-ranking of the f and t lists, the original f-t pairs of ranks between
the new forecast and observation (shaded in grey in Figure 4, termed “affected pairs”
hereafter) now have new partners and form new f-t pairs that relieve the under- or over-
estimation reflected by the new forecast–observation pair. In Case 2, the re-ranking does
not cause changes in the original f-t pairs, but the new forecast–observation pair serves
as a new f-t pair, a new node for interpolation, so that the updated f-t table could bring
future conversions closer to the new pair. For removal of an old forecast–observation pair,
its effect would simply be the reverse of an addition of it.
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Figure 4. An illustration of the effects on the f-t conversion table considering just an addition or
removal of one forecast–observation pair for the Sliding Window method. Values shaded in grey
are original f -t pairs which get affected. A removal shares the same cases as an addition but with
reversed effects.

In the Sliding Window method, the magnitude of change in calibrated values, in-
stead of being invariant as in the Adaptive Table method, depends on the density of f
and t values near the affected pairs. Inclusion or exclusion of a forecast–observation pair
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would cause a shift of ranks, and then new pairings of f and t would be established by
matching their new ranks. The new counterparts for the f and t values in the affected pairs
would be one rank higher or lower than their old counterparts or would be the newly
included forecast or observation values. If the density were low, the rainfall amounts
would differ a lot between neighboring values. In such case, the f-t conversion would
change greatly over the range of the affected pairs, and, due to the interpolation of the
multiplication factor, the effect on the actual calibration would spread to the f-t pair one
rank upwards and downwards from the affected pairs. Since extreme values of rainfall
always set over low-density regions of f and t, M fluctuates more significantly at high
rainfall values. Smoothing of M could be a solution to increase the stability of M, but this
would sacrifice the instant reflection of f-t correspondence at high rainfall values within the
sliding window, which is the concern of this study. Also, the concept of gradual change in
f-t correspondence has already been implemented in the Adaptive Table method through
the adaptation speed parameter.

Over the whole course of this calibration experiment, the calibration values of the
Sliding Window method for both ECWMF and JMA experienced several abrupt changes.
Here, we investigate two episodes of such changes. Figure 5 shows the change in calibrated
values against DMO and time during the episodes. Figure 6 shows the change in the
f -t conversion table along with the forecast–observation pairs moved into, moved out of,
or kept inside the sliding window meanwhile.
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Figure 5. Calibrated values which would be obtained given different DMO values at different time by
the Sliding Window method covering the two episodes of abrupt changes: (a) the ECMWF episode
from 20 May 2015 12 h to 23 May 2015 18 h, and (b) the JMA episode from 17 July 2017 12 h to 22 July
2017 00 h. Grey and black contours are in intervals of 2 and 10 mm respectively, starting from 0 mm
at the bottom.

One episode is the calibration for ECMWF from 20 May 2015 12 h to 23 May 2015 18
h, as shown in Figure 5a, and is divided into two sub-periods in Figure 6a1,a2. The first
sub-period corresponds to the increase in calibrated values between 20 May 12 h and 21
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May 12 h (drop of contours), whereas the second one corresponds to the following decrease
in calibrated values between 21 May 12 h and 23 May 18 h (rise of contours).
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During the first sub-period, from Figure 6a1, we can see that almost all of the newly
included pairs (red “+” markers) had their observations higher than the calibrated forecasts
they would have under existing f-t conversion (the solid green line), meaning that they
would still be underestimated even after the current calibration (Case 1 in Figure 4). On the
other hand, the excluded pairs (blue “×” markers) had their observations more or less
balanced on the two sides (reverse of both Case 1 and 3 in Figure 4). Therefore, calibrated
values increase overall, as seen in Figure 5a, as the response. The minimum and maximum
rainfall involved in the newly included or excluded pairs (red “+” or blue “×” markers)
were about 1 mm, which was a forecast, and about 65 mm, which was an observation,
respectively. Therefore, the change in calibrated values in Figure 5a during the first sub-
period was confined to the region between around 1 mm of DMO (y-axis) and 65 mm of
calibrated value (contours). Meanwhile, the contours of ≥70 mm remained unchanged,
as none of the newly included or excluded pairs involved that range of intensity. It can
also be seen that the drop in calibrated value contours of around 50 to 60 mm were greater.
This could be related to the fact that f-t pairs were few over such a range of observed
rainfall, as seen by the sparse grey dots in Figure 6a1, so a few new pairs of such observed
rainfall intensity in the window would affect the calibrated values much greater than other
ranges of them. In contrast, the change in calibrated value contours below around 20 mm
were unobvious where the f-t pairs were densely situated.

During the decrease in calibrated values in the later sub-period, as shown in Figure 6a2,
significant under-forecasts with observed rainfall as high as about 105 mm moved out of
the window (blue “×” markers), and significant over-forecasts with forecast rainfall as
high as about 50 mm moved into the window (red “+” markers). It means that the scheme
has forgone the previous underestimation and discovered a more recent overestimation
(reverse of Case 1, and Case 3 as is in Figure 4), pulling down the calibrated values
over all ranges of rainfall during the update of the scheme over this sub-period. Again,
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the calibration over high rainfall intensities was more greatly affected, as the sample size
was smaller.

Another episode is the calibration for JMA from 17 July 2017 12 h to 22 July 2017
00 h, as shown in Figures 5b and 6b. The calibrated values experienced increases (drop of
contours) during the episode. The newly included pairs over the range of 40–80 mm
observation, where t values were sparse, were all under-forecasts (Case 1 in Figure 4).
Other newly included pairs had their forecast and observation located among dense f and t
values, leading to little effect. The excluded pairs over sparse ranges of f and t values were
mostly over-estimation over the range of 15–40 mm forecast, corresponding to 25–80 mm
t values in the original f-t conversion table (reverse of Case 3 in Figure 4). Therefore,
the update caused a decline in calibrated value contours of 25–80 mm, which means an
increase of calibrated values with respect to unchanged DMO over the corresponding
range. In Figure 5b, the increase was the most obvious over the range of around 40–64 mm
calibrated values, as we can see in Figure 6b, that, over that range of 40–64 mm observation
values plus the corresponding range of around 17–27 mm forecast values obtained from the
original f-t table, the number of newly included pairs plus excluded pairs together (red “+”
and blue “×” markers together) was comparable to the number of the pairs kept inside the
window (grey dots).

3.3. Performance of the Calibration Methods in Terms of Percentage Errors

The calibrated forecasts of both calibration methods and models were verified. Figure 7
shows the density distribution of percentage errors of calibrated forecasts against the
ground truth. As expected, there were significant underestimation biases over all three
intensity categories of DMO from the two models. The bias increased with the rainfall
intensity, while ECMWF had smaller biases than JMA in general. Both calibration methods
were effective in reducing the underestimation peak, spreading it towards zero and positive
errors, improving the accuracy of the forecasts. The reduction in the underestimation peak
also increased with rainfall intensity. This means the methods managed to overcome the
problem of underestimation and adjust DMO rainfall towards the expected amount of
rainfall. Generally, the two calibration methods performed quite similarly, as it can be seen
in Figure 7 that both curves have little separation. The Adaptive Table calibration gave
higher density near-zero error and lower density over positive errors than the other, thus a
better accuracy and an overall slightly better performance.

From Figure 8, we see that the percentage error of the calibrated forecasts was basically
a function of the DMO percentage error, with little fluctuation due to the update of calibra-
tion schemes over time. Their relationship was virtually constant for all lead times over the
whole period (only lead time of +12 h is shown in the figure), with such clear and obvious
dependence of the percentage error of calibrated forecasts on their DMO counterpart as
the calibration forecast generally stretches the forecast range. The performance of the
calibrated forecasts ultimately depends on whether the models successfully capture the
rainfall event. Such captured events are brought closer to the true amount of rainfall by the
calibration schemes.

The calibration worked best when the DMO forecasts underestimated the actual
rainfall by about half. The calibrated forecasts would then have nearly zero error. For cases
with observations of 10–20 mm (20–30 mm, ≥30 mm), a DMO percentage error of around
−75% (around −85%, around −95%) is the watershed of whether the forecasts were
calibrated upwards or downwards. These percentages of different observation categories
point to the same amount of rainfall, around 2 to 5 mm, which is where the contour of 1 lies
in the graph of the multiplication factor (Figure 2). Note that the graph axis is in logarithmic
scale, so the DMO range with worsened performance is actually small. For those worsened
forecasts, their DMO were below 2 to 5 mm. In general, for such a small DMO, it could
be said that the rain episode is not captured by the model to begin with. On the contrary,
if a rain episode is successfully captured by the model, its DMO forecast would likely
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be greater than this intensity. It implies that calibration does improve such captured but
underestimated rain episodes.
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In general, the two calibration schemes showed little difference between themselves.
There are only two observable differences among the two. For ECMWF cases with obser-
vation ≥ 30 mm, where the DMO percentage error was around zero, the Sliding Window
method performed slightly better than the other with less overestimation. For JMA cases
with observation ≥ 30 mm, where the DMO percentage error was around −50%, the Slid-
ing Window method performed slightly worse than the other with more overestimation.
Such discrepancies may be due to extreme rainfall cases, for which the sample size is small,
and the calibration schemes fluctuate greater.
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3.4. Performance of the Calibration Methods in Terms of Verification Metrics

The performance of the calibration methods in terms of verification metrics is pre-
sented in Figure 9. Both calibration methods improved the forecasts in terms of all the
metrics except the expected worsened FAR. Due to the nature of frequency-matching
calibration, the forecasts over the intensity range of the thresholds of 10, 20 and 30 mm
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were calibrated upwards. As convective parameterization remained a challenging issue
of model forecasts, models may not be able to capture the spatiotemporal occurrence
of intense rainfall events accurately, so calibration would not improve the accuracy for
those cases.
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However, the POD, which is an indicator of how many over-threshold episodes were
successfully forecasted, was greatly increased. POD is especially important from the
operational perspective. Despite the fact that increasing it would likely simultaneously
lead to an increase in FAR, a high POD while having an acceptable degree of over-warning
(false alarms) is preferred over striking a perfect balance with misses, in order to avoid
the socioeconomic losses caused by severe weather. The increased POD can serve as a
great improvement in alerting forecasters for possible extreme rain episodes. Stretching the
diminished range of rainfall in the model to the full range in reality can avoid the forecasters
from having a false sense of weaker rainfall intensity during significant rainfall events.

It is known that POD can always be increased by over-warning the targeted event,
so CSI was also considered, which is a comprehensive index considering all the hits,
misses and false alarms. CSI did show improvement for all lead times and intensities,
indicating that the gain in increased hits outbalanced the loss in increased false alarms.

FB also came much closer to 1, indicating that the forecasts were less biased to un-
derestimation after calibration, which is what frequency-matching methods aim to do.
Comparing between the two calibration methods, the Sliding Window method gave similar
FB as the Adaptive Table method for ECMWF, but it gave better FB for JMA over all
thresholds. On the other hand, the mean error of both models was calibrated nearer to
zero by the Sliding Window method than the Adaptive Table method. These results could
be due to the fact that the Adaptive Table method does not strictly follow the concept
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of frequency-matching in its update scheme with the introduction of a fixed adaptation
speed parameter, whereas the Sliding Window method is always frequency-matching.
Such better bias calibration of the Sliding Window method compared to the other is also
seen in Figure 10, which shows the Q-Q plot of the observations against the DMO and the
two calibrated forecasts over the verification period. For ECMWF forecasts, the Adaptive
Table turned the underestimation bias of the DMO into overestimation bias, while the
Sliding Window method calibrated it to nearly no bias. For JMA forecasts, the Adaptive
Table calibrated forecasts still had a low bias for forecasts below 80 mm, whereas the Sliding
Window followed quite tightly along the “no-bias” diagonal.
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For mean absolute error (MAE) and root-mean-square error (RMSE) in Figure 9,
while the Sliding Window method gave similar values for both models, the Adaptive
Table method outperformed it for JMA but underperformed it for ECMWF. Both calibration
methods gave worse MAE and RMSE than DMO, but this was expected, as the calibration
stretched the range of rainfall intensity, thus increasing the variance of error in general.
A possible reason why the Adaptive Table method gave smaller MAE and RMSE for JMA
is that it did not stretch the range of rainfall intensity as extensively as the Sliding Window
method did, which is especially obvious towards the end of period, as shown in Figure 3.

Inspired by conditional quantile plots in Wilks’ work [29], Figure 11 shows the box-
and-whisker plot of the error distribution of the forecasts against observation categories.
The performance of both calibration methods for ECMWF and JMA is similar. In general,
the bias of underestimation increases with the observation intensity. After calibration,
for all categories except the lowest one, the third quartile of error obviously gets a lot
closer to zero, meaning that calibration is effective for DMO that adequately captures an
event and does not fall far short of the observed intensity. The reduced absolute error also
implies that calibrated forecasts are closer to their corresponding observation categories
than their DMO counterparts, which indicates improved discrimination across categories
of rainfall intensity.
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4. Case Studies of Actual Rainfall Events
4.1. Failure due to Limitation of Global NWP Models

The following shows a typical example of underestimation of rainfall due to inca-
pability of global NWP models in capturing the time of occurrence and intensity of the
rain episode. As both calibration methods are based on frequency-matching for year-long
statistics, an event that cannot be captured by models cannot be effectively calibrated as
well. On 23 July 2017, following the departure of Tropical Cyclone Sonca towards Vietnam,
Hong Kong was affected by moist low-level southeasterlies, under the confluence of an
anticyclone near Taiwan and the tropical cyclone. At the same time, an inverted trough
was being pushed northwestwards along the southern periphery of the 500 hPa subtropical
ridge towards the Guangdong coast (Figure 12). Isolated intense radar echoes began to
develop that night (Figure 13) and an Amber Rainstorm Warning Signal was issued at
22:30 h that day. As these echoes moved further northwestwards and weakened, the signal
was cancelled at 00:45 h the next day.

In the 6 h period from 18:00 h on 23 July to 00:00 h the next day, 24.3 mm of rainfall
from FCV stations were recorded. ECMWF depicted a rain episode in the 6 h period before
and JMA forecasted the rain episode would be 06:00–12:00 h the next day, and both models
expected a DMO rainfall of 5–6 mm. The FCV, DMO and calibrated 6 h rainfall data are
listed in Figure 14. In fact, a calibrated 6 h rainfall of about 10 mm would have sufficient
indication for moderate or heavy showers, but the time of occurrence could be inaccurate
even for a short-range forecast. Further looking into the respective forecasts by models,
ECMWF expected the area of heavier rain would pass to the north of Hong Kong during the
daytime of 23 July and a few millimeters of rainfall was still expected, and JMA expected
a weak 500 hPa trough near Hong Kong in the morning of 24 July, expecting a later rain
episode (Figure 12a–c). This would be an illustration that a spatio-temporal shift of rain
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band or failure of models to capture the associated synoptic systems would lead to poor
calibration results, so the judgment of forecasters based on meteorological knowledge and
experience would still be essential.
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4.2. A Successful Example

One of the successful examples was the rain episode on the morning on 23 June 2015,
in which over 30 mm of rainfall was recorded territory-wide from 00 to 12 h. For the
synoptic pattern in this case, Tropical Cyclone Kujira already made landfall over Hainan
Island and was about to enter the Gulf of Tonkin. With a deep layered subtropical ridge
over the Western North Pacific and a ridge axis of about 22◦ N, Hong Kong was situated in
an active confluence zone of southerlies between the two systems (Figure 15). Bands of
north-to-south-oriented convective echoes developed over the northern part of the South
China Sea and Guangdong crossed Hong Kong one after another (Figure 16), causing inter-
mittent heavy showers over the entire morning. FCV and model forecasts are summarized
in Figure 17.
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Figure 15. (a,b) The predicted 500 hPa moisture (RH shaded) and wind fields (streamlines) of
(a) ECMWF, (b) JMA for 23 June 2015 00 Z. (c) Ground truth of the same time based on ECMWF
analysis field.

Despite that both models forecast a longer rain episode than actual, they managed
to capture the peak of heavy rainfall correctly and were able to suggest above 10 mm of
DMO 6 h rainfall. Both models gave a similar pattern of 500 hPa flow, but both underesti-
mated the amount of moisture (Figure 15). Since global NWP models have a tendency to
underestimate heavy rainfall for reasons mentioned earlier, frequency-matching is useful
in adjusting model QPF upwards to the same order of magnitude. If models manage to
forecast the triggering systems correctly, then the calibration methods will be able to reflect
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the magnitude of rainfall to be anticipated and serve as a reference for forecasters to issue
early alerts.
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4.3. Diverged Performance with a Trough in Springtime

During springtime, trough of low pressure is a common weather pattern that favors
heavy rainfall over south China, when weak cold air mass interacts with warmer air mass
from the South China Sea. On 20–21 May 2016, an active trough of low pressure lingered
near the Guangdong coast. Convections were enhanced by an 850 hPa southwesterly jet
over Guangdong, which provided abundant moisture transport, and a 500–700 hPa low-
latitude trough over southwestern China was migrating eastwards. An Amber Rainstorm
Warning Signal was issued at 01:55 h following the active development zone shifted
towards Hong Kong from the west (Figure 18). As major rain bands gradually shifted to
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the east, the signal was cancelled at 06:15 h. On that morning, over 70 mm rainfall was
recorded overnight in the territory and more than 200 mm over northeastern Hong Kong.

Atmosphere 2021, 12, 247 21 of 24 
 

Despite that both models forecast a longer rain episode than actual, they managed to 
capture the peak of heavy rainfall correctly and were able to suggest above 10 mm of DMO 
6 h rainfall. Both models gave a similar pattern of 500 hPa flow, but both underestimated 
the amount of moisture (Figure 15). Since global NWP models have a tendency to under-
estimate heavy rainfall for reasons mentioned earlier, frequency-matching is useful in ad-
justing model QPF upwards to the same order of magnitude. If models manage to forecast 
the triggering systems correctly, then the calibration methods will be able to reflect the 
magnitude of rainfall to be anticipated and serve as a reference for forecasters to issue 
early alerts. 

4.3. Diverged Performance with a Trough in Springtime 
During springtime, trough of low pressure is a common weather pattern that favors 

heavy rainfall over south China, when weak cold air mass interacts with warmer air mass 
from the South China Sea. On 20–21 May 2016, an active trough of low pressure lingered 
near the Guangdong coast. Convections were enhanced by an 850 hPa southwesterly jet 
over Guangdong, which provided abundant moisture transport, and a 500–700 hPa low-
latitude trough over southwestern China was migrating eastwards. An Amber Rainstorm 
Warning Signal was issued at 01:55 h following the active development zone shifted to-
wards Hong Kong from the west (Figure 18). As major rain bands gradually shifted to the 
east, the signal was cancelled at 06:15 h. On that morning, over 70 mm rainfall was rec-
orded overnight in the territory and more than 200 mm over northeastern Hong Kong. 

 
Figure 18. Radar imagery at 03:00 h on 21 May 2016. 

Both ECMWF and JMA managed to capture the associated synoptic features and ex-
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Figure 18. Radar imagery at 03:00 h on 21 May 2016.

Both ECMWF and JMA managed to capture the associated synoptic features and
expected a rain episode across both days. From Figure 19, ECMWF predicted the time of
the peak rainfall correctly with very close magnitude after calibration, while JMA expected
an earlier peak with less rainfall, but still suggested moderate rainfall. From Figure 20,
it can be seen that JMA suggested the 850 hPa trough would be less active and more
fast-moving, and the low- to mid-level troughs were less aligned, leading to a more relaxed
surface trough; as for ECMWF, the alignment of low- to mid-level features were more
favorable for convective activities and forecasted strong 850 hPa southwesterlies. In this
case, the divergence of model forecast would lead to different results, so scrutinizing the
actual observations and recent model performance would be essential to assess the likely
timing and intensity of the rain episode.
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5. Conclusions and Further Work

Intense rainfall events are often underestimated by global NWP models due to the
low skills in convective parametrization and coarse resolution of grids with order of 10 km.
This study introduced two frequency-matching methods to calibrate DMO QPFs from
ECMWF and JMA against actual 6 h rainfall over Hong Kong. Forecast rainfalls were
calibrated through establishing relations between the past forecast and observed rainfall,
i.e., the f-t conversion, and the conversion tables would be updated after new observations
were available. The Adaptive Table method updates the conversion table whenever the
model QPF under- or over-estimates the observed rainfall with certain significance, and the
Sliding Window method updates the table with forecasts and observations in the most
recent two years, with a sliding time window.

The two global models captured rain episodes of 2–5 mm/6 h without significant
bias, while overestimating light rainfall and underestimating intense rainfall. The bias
of intense rainfall increased with rain intensity, and JMA in general showed a greater
bias than ECMWF. Both frequency-matching methods managed to improve both the
POD and CSI of intense rainfall events, providing more guidance and alerts from an
operational perspective ahead of heavy rain, although FAR also increased as model QPFs
were calibrated upwards, but actually over-warned some of the events. These methods
redistributed intense rainfall events of significant underestimation towards zero bias and
worked the best when the rainfall event was practically captured by the models and
the intensity being underestimated by half. It was also found that the Adaptive Table
method showed a higher density distribution near zero bias, and did not fluctuate as
much as the Sliding Window method, because the latter would be affected by significant
misses or false alarms of events exiting or entering the time window. On the other hand,
the Sliding Window method more effectively reflected model performances in a fixed
two-year timeframe.

The results of calibration should be interpreted with caution as frequency-matching
methods can only fine-tune the QPF of rainfall events being captured by models, but do not
cater for misses or false alarms of models due to model error propagation, resolution and
parametrization. A better solution to address these problems would be an analogue forecast
method or ingredient-based approach. Still, the frequency-matching methods presented
could provide a better reference of the order of magnitude of the precipitation events based
on recent model performance. The two calibration methods can be generically applied to
regions with different climatological characteristics by constructing their corresponding
set of f-t conversion tables. For places with sparse distribution of rain gauges, rain gauge
measurements can be replaced by radar quantitative precipitation estimation (QPE) to
establish the relation. From a grid-based perspective, the frequency-matching approach
would also help us understand the biases of a grand ensemble of model deterministic and
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ensemble QPF against observations or QPE and find more objective indications of intense
rainfall events.
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