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Abstract: Aerosol Optical Thickness (AOT) is one of the important parameters for assessing regional
and global level of climate change. Fog episodes have considerably increased in south Asia because
of environmental factors, and the burning of agricultural residue leads to major social and economic
problems. In present study, Mann-Kendall trend analysis of AOT and active fire events was done,
and their significance were assessed using long-term (October 2012–February 2020) remote sensing
data derived smog maps. Visible Infrared Imaging Radiometer Suite National Polar Partnership
(VIIRS N-PP) was used to map AOT episodes over the northern region of Pakistan and India.
Results reveal that AOT displays a significantly decreasing trend over the northern and eastern
region of Pakistan and a similar decreasing trend from the Western to Eastern region of India.
Furthermore, active fire events have a significantly increasing trend at the Northern region of Pakistan.
However, fire events have a significantly decreasing trend over the southern and southeastern
region of India. Additionally, statistically significant decreasing trends were observed for AOT
over Chakwal (p-value = 0.2, Z_MK = −2.3) and Patiala (p-value = 0.15, Z_MK = −3.2). Fire events
have a significantly increasing trend for Dera Ismail Khan (p-value = 0.01, Z_MK = 1.9), Jhang
(p-value = 0.01, Z_MK = 1.9), and Chakwal (p-value = 0.01, Z_MK = 1.8), while they are significantly
decreasing trend near New Delhi (p-value = 0.2, Z_MK =−0.9), Aligarh (p-value = 0.15, Z_MK = −0.9)
and Patiala (p-value = 0.2, Z_MK = −0.8).

Keywords: AOT; Mann-Kendall test; VIIRS-NPP; remote sensing; active fire events; crop burning

1. Introduction

Atmospheric aerosols are an important constituent of the atmosphere and have direct
influence on climate, weather, and human health [1]. Aerosol Optical Thickness (AOT) is
used to assess information about the quantity of aerosols as it shows how much light is lost
along the vertical columns of the atmosphere. Atmospheric aerosols not only trigger local
phenomena but also influence the regional atmosphere [2]. Aerosols are already pervasive
across South Asia because of air pollution caused by urbanization [3]. Aerosols also affect
the hydrological cycle and atmospheric chemistry [4,5] as well as human health [6]. Their
natural sources include volcanic ash, sea salt spray, and dust storms. Aerosols are heavily
influenced by the human-made activities such as transportation, industrialization, and
the burning of agricultural biomass [7,8]. Aerosols particles also reduce the visibility
and are perceptible through haze, dust, and smoke [9]. Furthermore, emissions from
the burning of fossils fuels from November to January are a common phenomenon in
South Asia as the burning of crop residue is an easy, fast, and inexpensive way to clear
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agricultural fields [10–15]. Haze is an air pollutant that is triggered by large aerosols [16].
Its formation is related to particles emitted from anthropogenic sources under favorable
meteorological conditions (i.e., weak wind speed and high humidity) [17]. During the
last couple of decades there have been cases of regional haze occurring in the eastern part
of Punjab in Pakistan and northwestern part of India [18,19]. Historically, data derived
from satellites have been used to monitor aerosols. In 1975, a first attempt was made for
deriving aerosol products from Landsat sensors [8,20]. For the retrieval of long-term global
aerosols products, satellites used are Moderate Resolution Imaging Spectroradiometer
(MODIS) [8,21–24], Multiangle Imaging Spectroradiometer (MISR), Total Ozone Mapping
Spectrometer (TOMS), Advanced Very High-Resolution Radiometer (AVHRR) [25] and
Visible Infrared Imaging Suite (VIIRS) sensor on board with Suomi National Polar Orbiting
Partnership (S-NPP) [26].

Spatial and temporal distribution of aerosols have the significant uncertainty because
of its complex physical and chemical properties [27]. However, to minimize the uncertainty
correlation of remote sensing data with ground data were anticipated like Huang et al. [28]
determined the uncertainty and accuracy of VIIRS product with Aerosol Robotic Network
(AERONET), seasonal and regional factor were also incorporated; observed accuracy,
precision uncertainty and correlation coefficient of 0.0415, 0.155, 0.16 and 0.741. It was also
noticed that daily timeseries of AOT had most significant variability over eastern India
with strong negative bias during the spring season when that region has the harvesting
season and agricultural biomass burning was occurring at very-large scale.

Meng et al. [29] discovered that AOT550 accessed from AERONET sun-photometer
brings out good agreement (high correlation of 0.907, accuracy −0.058 and precision
of 0.192) with AOT550 derived from VIITS IP. Moreover, regional differences were also
explained in VIIRS IP over south and north china and observed the minor uncertainty
difference of 0.195 verse 0.174.

Meng et al. [29] showed that VIIRS Suomi NPP gives quality results while retrieving
global aerosol optical thickness (AOT) data at M-band pixel 550 nm (VIIRS) than MODIS.
VIIRS exhibits better accuracy and precision because of its large swath size (~3000 km) and
presence of a Day-Night Band (DNB) that facilitates the monitoring and regional extent of
small-to-large events that influence human health [26,30]

The focus of this study is the spatial and temporal variations of AOT and fire events
over cities located in northeastern Pakistan and neighboring India. To date, these have not
been examined in tandem utilizing satellite data. For this purpose, AOT affected districts
from northern Punjab in Pakistan and India were selected. The selected districts are also
high in agricultural production and subsequent crop residue burning practices. This was
cross checked using Normalized Difference Vegetation Index (NDVI) timeseries maps. (See
Figure 1).
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Figure 1. The ‘Study Area’ consists of the northeastern region of Pakistan (31 districts Punjab, along with one district from
Khyber Pakhtunkhwa and Azad Jammu and Kashmir) and India (two provinces Haryana, Punjab, twenty divisions from
Himachal Pradesh, Uttaranchal, Uttar Pradesh, Rajasthan, and New Delhi (capital)).

2. Materials and Methods
2.1. Material

In the current study, two different types of remotely sensed datasets were used. Data
from the Suomi National Polar Orbiting Partnership (SNPP) Visible Infrared Imaging
Radiometer Suite (VIIRS) was acquired for AOT mapping. It is considered a successor for
the Sea-viewing Wide Field-of-view Sensor (SeaWIFS), Advanced Very High-Resolution
Radiometer (AVHRR), and the Moderate Resolution Imaging Spectroradiometer (MODIS).
It was launched in October 2011. It has 22 imaging and radiometry bands, with a swath
size of 3060 km, and a spectral range of 0.402 to 12.488 µm [31]. As aerosols have significant
influences on major climatological processes, aerosol optical thickness (AOT) was acquired
from VIIRS SNPP’s ‘Deep Blue’ data set (AERDB). This dataset consists of daily gridded
aggregated data, and it is derived from a primary level-2 dataset at 550 nanometers (nm)
using specific bands with the spatial resolution of 1◦ × 1◦ of horizontal grid [32]. This
dataset was acquired from LAADS DAAC website (of 1st October 2012 to 29th February
2020 (Table 1) [33].

Table 1. Datasets used in this study with their features.

Product Spatial Resolution Temporal Resolution Used Data Acquisition Dates

Aerosol Optical Depth (AOD) 1◦ × 1◦ 1 day 1 October 2012–28 February 2020
Fire Hotspot 375 × 375 m 3 h (converted to daily) 1 October 2012–28 February 2020

It has been observed that AOT has increased by 40% over several areas of India from
2000 to 2009 due to an increase in urbanization, the burning of biomass and fossil fuels,
and forest fires [34]. The residue burning is used as a means to clear agricultural fields [35].
The counts of residue burning can be mapped from satellite remote sensing, fire event data.
Near real-time SNPP VIIRS fire event data (i.e., VNP14IMGTDL_NRT) was acquired from
National Aeronautics and Space Administration’s (NASA) Fire Information for Resource



Atmosphere 2021, 12, 242 4 of 16

Management System (FIRMS) Near Real-Time (NRT) site [36]. This dataset was originally
prepared as a continuation of the MODIS active fire data [37]. I-band (375 m) and M-band
(750 m) VIIRS satellite data were used for active fire detection. It was available from 20th
January 2012 to 28th February 2020. The point locations for the fire events of study area
were acquired of 1st October 2012 to 28th February 2020 (Table 1).

2.2. Method

Datasets were resampled to the same temporal and spatial resolution to allow for
comparative assessment. Fire events data that was initially in temporal resolution of 3 h
were aggregated to monthly counts and then transformed from vector to raster. Trend
analysis of AOT data was generated by adding the daily values to monthly aggregated
raster. All datasets were transformed to similar projection systems and the same spatial
resolution (i.e., 9813.43 m.) Each dataset consisted of 176 (11 × 16) cells. Each cell was
considered an individual time series. The fog period of October to February for all years
was selected for trend analysis [38]. The trend analysis consisted of Lag-1 autocorrelation
coefficient (r1) for the original time series, the Mann-Kendall test for those cells whose
values were insignificant at 0.05-level; pre-whitening was done for those cells whose values
were significant at 0.05-level before applying the test [39–41].

The process of pre-whitening was performed as the significant positive autocorrela-
tion trends showed sufficient increase in its occurrence even when there was no trend [42]
and underestimated the likelihood of significant negative autocorrelation trends [43]. Von
Storch [42] suggested the process of pre-whitening to eliminate the above case of autocorre-
lation. So, a new time series (x2 − r1x1, x3 − r1x2, . . . .., xn − r1x1 − 1) was calculated and
replaced in place of significantly autocorrelated time series [41]. Thus, pre-whitened [43,44]
time series were used to identify the statistically significant changes over time The Mann-
Kendall test has been used for the identification of time series trends in hydro-climatological
data [41,45–48]. Wang [49] found that non-parametric methods were better when compared
to parametric trend determination methods because they are less sensitive to outliers. The
Mann-Kendall [50] trend tests the null hypothesis (H0) of time series using rank-based tech-
nique and categorized as ‘no trend’, whereas the alternative hypothesis (H1) is categorized
as ‘randomness’ (increasing or decreasing trend). The detailed mathematical explanation
of Mann-Kendall process along with its formulas is [51–53] as follows:

S =
n−1

∑
k=1

n

∑
j=K+1

sgn
(
xj − xk

)
(1)

where:

sgn
(
xj − xk

)
=


+1 i f

(
Xj − Xk

)
> 0

0 i f
(
Xj − Xk

)
= 0

−1 i f
(
Xj − Xk

)
< 0

(2)

In Equations (1) and (2), n represents the length of time series, xj and xk are the
sequential data and S is the Mann-Kendall test statistic. An upward trend is identified by
positive value of S and downward trend by negative values. For a long time-series (n > 10),
S statistic tends to normality along with expectation (E) and variance (Var), as follows:

E(S) = 0 (3)

Var (S)=
1

18

[
n(n− 1)(2n + 5)−

q

∑
p=1

tp
(
tp − 1

)(
2tp + 5

)]
(4)



Atmosphere 2021, 12, 242 5 of 16

In above equation, ‘tp’ is the quantity of observations of ‘pth’ group whereas, the
number of tied groups in the time series is denoted by ‘q’. The calculation of standardized
test statistic (ZMK) can be achieved by following equation:

ZMK =


S−1√
Var (S)

if S > 0
S−1√
Var (S)

if S < 0

0 if S = 0

(5)

The probability-value (p-value) or observed significance level of Mann-Kendall test is
related to standard test statistic (ZMK), which determines the evidence for null hypothesis.
So, positive values of ZMK indicate the increasing trend and negative values of ZMK
indicates a decreasing trend. A two-tailed standardized table can be used to obtain the
corresponding p-value [53,54].

In the current study, Mann-Kendall trend test was applied to entire datasets. Pre-
whitened data was plotted, and linear regression was used for fitting of trend lines using
ordinary least square method. Trend analysis of monthly aggregated data was also done
for all datasets over major cities of interest in study area. It is believed that increasing
episode of haze or smog is related to increasing AOT and fire events.

3. Results and Discussion

Aerosols have been recognized as an important feature that influence global climate
change, the water cycle, precipitation and cloud formation, and the atmospheric transfor-
mation of thermal and solar radiations [55]. The low sun season in Pakistan (December,
January, and February) has been found to be dominated by fog [56]. Smog is common at
both dusk and dawn, near industrial and urban areas because of the nocturnal inversion
layer. Smog reduces visibility considerably. Smog in Pakistan and northwestern India
spreads by western disturbances. However, this type of haze may dissipate when the sun
rises and breaks the inversion layer. Additionally, radiation fog is common over northern
region of the Himalaya and the Gangetic plain. This type of fog forms low stratus clouds,
and persistence time may reach to 2 to 3 days over the Indus Gangetic Plains (IGP) [57].

High levels of air pollution have been noticed over the eastern side of Pakistan.
It was reported that the issues of smog in eastern Pakistan, especially around Lahore,
started form 2006 and now it has been deemed ‘hazardous’ as the air quality index has
increased up to 300 units [58]. Main causes of aerosols in Lahore are biomass burning,
emissions from vehicular and industrial activities [59,60]. It was also reported that aerosols
formation in Lahore is influenced by transportation of particles generated from the burning
of agricultural biomass [12,61–64]. In winters Lahore’s visibility is limited to 50 m or
less [65] causing severe problems for trade and daily commute as well as intercity travel.

Khokhar et al. [66] found the winds that come from India into Pakistan were propa-
gated from the highly inhibited and industrialized parts of Western Uttar Pradesh, New
Delhi, Uttarakhand, and Haryana. Likewise, it was determined that burning of agricultural
residuals are the primary source of fire over the northern areas of India considerably during
the harvesting season of wheat and rice in pre (April and May) and post-monsoon (October
and November), respectively [12,13]. As Punjab in India had the residual burning of about
7 to 8 million tons of residual burning during the post-monsoon season [11].

In Delhi, it was determined that the burning of crop residuals and fireworks during
Diwali raised the AOT to 30% [61]. For example, northern India has been blanketed
with thick pollution for weeks and Delhi has experienced extreme air pollution. In 2015,
4.2 million deaths were recorded because of air pollution and numerous people got ill
because of particulate matter in east and south Asia [67].

In this study, the specific time of October to February for 2012–2020 was separated
for AOT and fire events for each low sun season. The statistics, such as the Lag–1 autocor-
relation coefficient (r1), was calculated for all monthly aggregated datasets. Altogether,
36 time series (cells) out of 183 were found to be significantly autocorrelated at the 95%
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significance level (r1 value exceeding 0.2); pre-whitening was performed over, and the orig-
inal time series were replaced by pre-whitened time series (Table 2). p-values displayed the
significant (or non-significant) trend of datasets. An insignificant time series is determined
with values exceeding 0.2 whereas significant time series is ascertained with values below
0.2 [39,40].

Table 2. Number of times series pre-whitened with respect to different datasets.

Sr. No Variable Name Total no. Of Pixel (Time Series) No. Of Pixel Pre-Whitened

1 AOT 99 8
2 Fire Events 84 28

The non-parametric Mann-Kendall trend test was applied for AOT as shown in the
trend maps (Figure 2c). Lag-1 autocorrelation coefficient for AOT (Figure 2a) had nine
significantly autocorrelated time series, all at the northeastern region of the study area.
p-values were calculated for all-time series of AOT to determine trends (Figure 2b). It
was determined that AOT has a significantly decreasing trend toward the northern region
of Punjab, Pakistan. Similarly, a significantly decreasing trend was also observed at the
western to southeastern territory of India covering the province of Haryana, Punjab (India)
and Delhi (capital). In addition, a non-significant increasing trend was recorded at the
northeastern region of India covering the province of Himachal Pradesh and Kashmir,
whereas identical patterns were identified at the northwestern areas (divisions of Sargodha
and Dera Ismail khan) of Pakistan as depicted in Figure 2c.

It was recorded that the fire event dataset has twenty-eight significant Lag-1 autocor-
related time series (see Figure 3a); thereafter, significantly autocorrelated time series were
replaced by its pre-whitened series substitute. The fire events dataset had a significantly
increasing trend over the northern and northwestern region of Pakistan covering the di-
visions of Sargodha, Rawalpindi, Kohat, Dera Ismail Khan, Faisalabad, and Gujranwala
(see Figure 3b,c). In India, there was a significantly decreasing trend observed from the
western to southeastern region covering the province of Punjab, Haryana, Delhi, the upper
region of Rajasthan and Uttar Pradesh. Conversely, an insignificant increasing trend was
witnessed in the northwestern region covering the divisions of Jammu, Kathua, Kangra,
Chamba and Kullu (see Figure 3b,c).

AOT Over Urban Areas

Relative time series distribution for each monthly aggregated dataset were also an-
alyzed using for fifteen different cities of Pakistan and India. Autocorrelation coefficient
(r), p-value and Mann-Kendall score were also separated for AOT and ’Fire Event’. It was
determined that Shimla had the significantly autocorrelated timeseries at 95% significance
level for AOT dataset. These time series were per-whitened. It was recorded that Patiala
had the significantly (p = 0.15, (ZMK) = −3.15) decreasing trend with the Kendall score of
−119 (Table 3).

It was determined that six cities showed significantly autocorrelated coefficient i.e.,
New Delhi, Bahawalpur, Dera Ismail Khan, Chamba, Multan and Bahawalnagar for
monthly aggregated trend of fire events; pre-whitening was done for these autocorre-
lated time series and replaced by pre-whitened series. It was noticed that Dera Ismail Khan
(p = 0.01, S = 211, (ZMK) = 1.9), Jhang (p = 0.01, S = 206, (ZMK) = 1.9) and Chakwal (p = 0.01,
S = 196, (ZMK) = 1.8) had the significantly increasing trend for monthly aggregated trend,
whereas Aligarh had the significantly (p = 0.15) decreasing trend with the Kendall score of
−98 (Table 4).
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Figure 2. (a) Autocorrelation coefficient (r) for AOT is displayed in which high values are depicted by red color and green
color is for the low values. Highlighted timeseries (a–h) were found significantly autocorrelated (exceeds the range of
value 0.2) and thus replaced by pre-whitening time Scheme 0. 0). Time series those have value of 0.2 were considered
to have significant trend. (b) p-values were high for the northwestern region of Punjab in Pakistan and Northern India.
(c) Mann-Kendall Score for AOT displays the increasing (red color) or decreasing (green color) trend. It was found that
Kendall score for AOT have a significantly increasing trend towards the Pakistani region. (d) Heatmaps of the relative
distribution of monthly mean of AOT among winter season; each month is identified by separate color over fifteen selected
cities in the study area.

AOT were divided into two (1 and 0.5) and determined that high AOT were recorded
over the cities of Aligarh, New Delhi, Lahore and Sirsa, whereas Chamba, Gurdaspur, Dera
Ismail khan and Shimla had the lowest range of AOT (less than 0.5) and the remaining
cities in between 1 and 0.5.

It was also observed that cities located toward the eastern and southern border
of Pakistan-India had the decreasing trend for fire events i.e., Lahore and Bahawalpur,
whereas Bahawalnagar, Multan, DI-Khan, Chakwal and Jhang had the increasing trend.

It was noticed that AOT starts increasing in the month of October and reached its
peak value in November into February (Figure 4). It was observed that Aligarh, New Delhi,
Lahore, and Multan have the high AOT during the month of January and February.
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Figure 3. (a) Autocorrelation coefficient (r) map for ’Fire Events’ displaying high values of by red color and low values by
green color. Time series those exceeds the range of value 0.2 was considered as autocorrelated time series as highlighted
(a) and these autocorrelated timeseries were replaced by pre-whitening timeseries. (b) p-value for ’Fire Events’ map
high values are displayed by red color and low values by green color. Time sires those values does not exceeds 0.2 were
considered to have a significant trend. (c) Mann-Kendall Score for ’Fire Events’ displayed the increasing (red color) or
decreasing (green color) trend. It was recorded that Kendall score for ’Fire Events’ have a the significantly increasing trend
towards the Pakistani region.

Similarly, monthly counts of fire events were also analyzed for all selected cities and it
was determined that the number of fire events was high between October and November
(Figure 4). Patiala, Lahore and Gurdaspur had the highest number of fire events among all
cities. Jhang, Dera Ismail khan, Chakwal and Gurdaspur had the fire events during the
month of February, compared to October and November. Additionally, In Multan there
was an increasing number of fire events and reached its highest level during the month
of February.

NDVI difference maps of the study area were prepared using the pre, and post-harvest
aggregates and a difference map of the two was created. This map was used to see a
correlation between high clearing rates (NDVI losses), to that of fire events in the study
area. While this needs an in-depth analysis in the future of how fire events in some region
will not correlate with the harvest only (Figure 5). And points towards administrative
failures like brick kilns and factories operating, despite restrictions on operations. It
provides a first picture of how the correlation was high between the two in Pakistan. West
of Lahore in Hafizabad (0.8), Jhang (0.7) and Sargodha (0.6). It was also high Southward in
DG Khan (0.5), DI Khan (0.6), in Khushab (0.56), Jhang (0.6) and eastern Bahawalpur (0.7).
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Table 3. Autocorrelation coefficients r1 and the results of Mann-Kendall trend test for AOT over all
cities around the study area.

Nation City r1 p-Value Kendall Score (S) (ZMK)

India Aligarh 0.003 0.717 −31 −0.801
Chamba 0.096 0.866 15 0.374
Churu −0.019 0.468 −61 −1.603

Gurdaspur 0.034 0.866 15 0.374
New Delhi 0.066 0.545 −51 −1.336

Patiala 0.182 0.153 −119 −3.153
Shimla 0.231 * 0.961 −5 −0.107
Sirsa 0.066 0.345 −79 −2.084

Pakistan Bahawalnagar −0.118 0.483 −59 −1.55
Bahawalpur −0.119 0.735 −29 −0.748

Chakwal −0.029 0.287 −89 −2.351
Dera Ismail

Khan −0.187 0.942 7 0.16

Jhang −0.04 0.717 −31 −0.801
Lahore −0.048 0.529 −53 −1.389
Multan −0.073 0.628 −41 −1.069

* Significant at the 5% level; other statistics based on pre-whitened series.

Table 4. Autocorrelation coefficients r1 and the results of Mann-Kendall trend test for ‘Fire Events‘
over all cities around the study area.

Nation City r1 p-Value Kendall Score (S) (ZMK)

India Aligarh 0.111 0.15 −98 −0.902
Chamba −0.237 * 0.884 9 0.074
Churu 0 0.772 3 0.019

Gurdaspur 0.202 * 0.753 27 0.242
New Delhi 0.335 * 0.226 −101 −0.93

Patiala 0.168 0.255 −95 −0.874
Shimla 0.07 0.306 −67 −0.614
Sirsa 0.123 0.232 −96 −0.883

Pakistan Bahawalnagar 0.203 * 0.923 9 0.074
Bahawalpur 0.429 * 0.863 −15 −0.13

Chakwal 0.098 0.018 196 1.813
Dera Ismail

Khan −0.229 * 0.011 211 1.952

Jhang −0.174 0.013 206 1.906
Lahore 0.171 0.506 −56 −0.511
Multan −0.307 * 0.453 63 0.576

* Significant at the 5% level; other statistics based on pre-whitened series.

Figure 4. Scatterplots of monthly values of AOT and fire events in the selected administrative regions of Indian and
Pakistani. High number of fire counts were recorded during the months of October and November.
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Figure 5. (a) A step wise analysis of NDVI loss to harvesting and (b) its correlation with fire events in the study area. The
top (b1) and bottom heatmaps (b2) represents the annual district wise recorded AOT in the study area for Punjab in Pakistan
and Punjab in India, respectively. Districts have been arranged from east to west.

In India, the correlation between crop burning, and loss of NDVI was not high in as
many locations. Suggesting alternate practices there-off and in some places relating to the
reducing trend of AOT. Districts with high correlation between the two include Kapurthala,
Firozpur, Jalandhar, and Amritsar (0.63), Kangra, Hamirpur and Mandi (0.63) and Tehri
Gharwal and Uttarkashi (0.51). While in other districts the trend was negative.
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4. Discussion

Comparability of the results found in this study is limited with the other studies of
narrow usage of VIIRS satellite over this region and the time as no study have included
these cities. As calculated in current study a significantly decreasing trend for AOT were
recorded at northern region of Pakistan, while increasing at the western region. Whereas
fire events had the high significantly increasing trend at the north, and northwestern
region of Pakistan. This contrasts with the general perception and comments in published
literature by Alam et al. [68]. It also shed light on the lack of efficacy of the control measures
being put in place [69]. An increasing trend of AOT were recorded using MODIS and
MIRS over Pakistan including its main cities i.e., Multan and Lahore for the period of
1979 to 2001 [70]. Resulted trend reflected the increment of fire events and local dust that
originates from the Thar Desert, besides the Sahara Desert causing the events at regional
and sub-continental level [71]. Temporal variability was calculated for AOT acquired from
MODIS for winter season from 2012 to 2015 and determined the relation of aerosols with
fog over Indus basin. Moreover, its substantial increment was also reported during the
year of 2015 to 2016 [66].

The seasonal trend analysis of AOT were calculated and analyzed using MODIS data
from 2000 to 2017 over Indian region and determined the low to significant range of AOT
(0.2–1) over north eastern region of India during winter and post monsoon season [72].
Because of local and regional transport, agricultural burning of biomass and fossil fuel [73].
Trend analysis over India was determined for the AOT, NDVI and fire activity from 2003
to 2016 and suggested that the AOT has increased by 54% and peak level of AOT has
been delayed by 5 to 6 days along with the intensity of agricultural burning activity over
Indo-Gangetic Plains and reported the adaptation of mechanized approaches for exceeding
the agricultural production. A 40% increase was recorded in the fire intensity and was
delayed by 2 weeks from 2003 to 2016 [73].

However, a decreasing trend were recorded for AOT and fire events from western
to eastern regions of India, additionally, an increasing trend were recorded over its north-
ern territory. That may be because of shifting of westerlies toward northern side and
variability of relative humidity along with geopotential height during post monsoon and
winter season [73]. It has been reported that prevailing wind transports dust, organic
and carbonaceous aerosol during all seasons. Emission control Planning has been actively
done at governmental level in major cities of India, however implementation might take
longer [74].

Imam and Banerjee [75] observed that trend of AOT and fire events are not correlated
over Multan, Jhang, Chakwal, Churu and Bahawalnagar. This is validated by our findings
where the correlation between the two was low (Figure 5). They found a decreasing trend
for AOT while an increasing trend for active fire events. It was observed that AOT and
active fire events had an increasing trend over Lahore and Patiala by 3% to 7% per year
along with an increase in brightness temperature by 14% and 16% per year, respectively.

However, in this study Lahore and Patiala had a decreasing trend for both AOT and
active fire events. Over Patiala desert storms also leads to the increment of AOT up to
1.5 [76]. It was observed that New Delhi had the moderate to high AOT during the winter
season and linked with local emissions to larger-scale meteorology along with dust borne
aerosols from Thar Desert which degraded the quality of air (Figure 6). Furthermore,
biomass burning in Haryana, western region of Uttar Pradesh, and Punjab increase the
aerosols during the winter and post-monsoon season [77]. Owing to westerlies transported
dust, to the higher altitudes in the Himalayas create a gradient of decreasing values over
the east [78]. Conversely, a decreasing trend was recorded for both dataset AOT and fire
events over the New Delhi in present study. Similar results were also reported about the
decreasing trend of AOT over New Delhi (−0.005/year), Shimla (−0.0032/year) as well as
other cities of IGP (Indo Gigantic Plains) [79–83].
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Figure 6. Seasonal and overall prevailing wind direction in the study area. The winter months and
the overall direction suggests that the winds are primary carriers of pollutants from Punjab in India
Over to the Pakistani side.

5. Conclusions

The study was the first on the region using VIIRS NPP data. Punjab in India and
Pakistan were the focus and we found that:

(1) AOT is decreasing in the studied period over Northern and eastern Pakistan with
a similarly declining trend of fire events. It is however, increasing in the southern
Punjab region.
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(2) This is be due to the strict policy implementation in the north and comparatively
lesser attention towards the southern region. As in the north traffic and trade flow is
high and usually hampered by low visibility.

(3) While on the Indian side fire events have substantially increased in the north and
central Punjab. And the trend in AOT is high in northern regions. Still Sirsa, Patiala
and Lahore led with highest number of fire events from 2012 to 2019 between October
and Feb.

(4) The highest AOT values in the entire study were observed on the Indian side with
26 Indian districts reporting a value above 1.0 followed by Kasur and Lahore In
Pakistan at 0.93.

(5) Similarly, for fire event counts, more than 128,000 events were recorded in Sangrur
district followed by another 16 Indian districts then Kasur and Lahore at ~28,000 each.

(6) For the increasing trend in AOT Yamuna Nagar and Una from India and Vehari from
Pakistan topped the list.

(7) For fire events Sargodha, Khushab, DI Khan and Jhang were notably on the top of
the list.

In our future studies we plan to assess this change in trend in the light of crop
harvesting and cultivation patterns and relate the high incidences to different crop types
and their harvesting period over the studied time.
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