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Abstract: Precipitation is an essential climate variable in the hydrologic cycle. Its abnormal change
would have a serious impact on the social economy, ecological development and life safety. In recent
decades, many studies about extreme precipitation have been performed on spatio-temporal variation
patterns under global changes; little research has been conducted on the regionality and persistence,
which tend to be more destructive. This study defines extreme precipitation events by percentile
method, then applies the spatio-temporal scanning model (STSM) and the local spatial autocorrelation
model (LSAM) to explore the spatio-temporal aggregation characteristics of extreme precipitation,
taking China in July as a case. The study result showed that the STSM with the LSAM can effectively
detect the spatio-temporal accumulation areas. The extreme precipitation events of China in July
2016 have a significant spatio-temporal aggregation characteristic. From the spatial perspective,
China’s summer extreme precipitation spatio-temporal clusters are mainly distributed in eastern
China and northern China, such as Dongting Lake plain, the Circum-Bohai Sea region, Gansu, and
Xinjiang. From the temporal perspective, the spatio-temporal clusters of extreme precipitation are
mainly distributed in July, and its occurrence was delayed with an increase in latitude, except for in
Xinjiang, where extreme precipitation events often take place earlier and persist longer.

Keywords: spatio-temporal patterns; spatio-temporal scanning; local spatial autocorrelation; extreme
precipitation; climate change

1. Introduction

Precipitation is a climatic variable with high spatio-temporal variability, playing an
important role in the eco-hydrological cycle [1]. An abnormal increase or decrease of precip-
itation will lead to an imbalance in surface runoff and soil moisture content, causing severe
catastrophic effects on socioeconomic development, ecological environmental system and
life safety [2,3]. Due to global climate change, the frequency and intensity of extreme
precipitation events has increased in most regions [4–7]. Many studies have performed
extreme precipitation trends analysis (extreme precipitation, precipitation intensity, precip-
itation distribution patterns, etc.) under global warming [8–10], while little research has
been conducted on the regionality and the persistence of extreme precipitation events [11].
Extreme precipitation events are often more destructive if the intensity and frequency are
relatively high within a certain spatial scope and temporal range [12,13].

Identifying regional persistence and aggregation characteristics of extreme precip-
itation events has mainly gone through three stages. Early studies were mostly based
on extreme precipitation indicators, such as the widely used ETCCDMI (Expert Team on
Climate Change Detection Monitoring and Indices) [14–16]. Those studies can reflect mod-
erate disasters but cannot effectively characterize the disaster’s severity [17,18]. Whereas,
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extreme precipitation events with long durations, which are often more destructive, have
been overlooked.

In the second stage, related researches began to introduce time series to precipitation,
the extreme precipitation events were artificially divided into N days (1 day, 3 days or
5 days). Biondi et al. defined days with precipitation values above a certain threshold
as a complete and continuous extreme precipitation process, achieving good results [19].
Min et al. used the percentile threshold method to define extreme precipitation events and
strong precipitation events by the area index method, then used a single or several uninter-
rupted extreme precipitation events to discover the persistent extreme precipitation events
(1-day, 2-day, 3-day, etc.) [18]. A regional formulation of Intensity–Duration–Frequency
curves of point rainfall maxima in a scale-invariant generalized extreme value (GEV)
framework was proposed by Blanchet, under the assumptions that extreme daily rain-
fall is GEV-distributed, and extremes of aggregated daily rainfall follow simple-scaling
relationships [20]. Gentilucci et al. [21], using GEV, successfully forecast extreme precipita-
tion events.

In the third stage, space-time interaction becomes an essential feature for identifying
extreme precipitation events. Extreme precipitation events are not only related to the
duration of extreme precipitation but are also affected by the scope of coverage. Events
possessing both persistent and regional characteristics often cause the most serious damage.
Jing proposed an intensity–area–duration (IAD) analysis method [22], which was improved
from the severity–area–duration (SAD) method created by Andreadis et al. [23], to define an
extreme precipitation event when considering both time period and spatial continuity. The
temporal range is established when the effective precipitation exceeds the corresponding
extreme precipitation threshold on a certain time scale (1 day, 3 days, 5 days, or 7 days).
The continuous spatial extent is established when adjacent grid points exceed the threshold
during the same temporal range. Although the IAD method can accurately identify the
spatial extent and temporal range of regional extreme precipitation events, the values of time
scale are determined subjectively, separating the continuity of the rainfall process [14,24].
Meanwhile, these extreme precipitation events are mainly concerned with short-term multi-
day extreme precipitation events, but relatively stable continuous extreme precipitation
events are likely to cause greater destructive power [25]. Chen et al. redefined regional
persistent extreme precipitation events (PEPE) with severe disasters by time intervals and
spatial adjacency based on multi-day and single-station PEPEs [25].

Coupling temporal processes and spatial patterns, we can better identify extreme
precipitation events [26–28]. However, the above syntheses just superimpose different time
segments onto spatial pattern, separating space and time. The spatio-temporal scanning
model (STSM) was developed by introducing time dimension into the spatial dynamic
scanning window [29–31], and has been broadly applied in infectious diseases, criminology,
economics, and geography [32–34]. It considered both spatial extent and temporal range
through a scanning window, thus can be used to determine the boundary of extreme
precipitation accumulation areas with significant spatial aggregation characteristics.

The definition of extreme precipitation thresholds also plays an important role in
understanding the spatial and temporal aggregation characteristics of extreme precipitation
events. Early definitions of extreme precipitation thresholds mainly adopted the absolute
critical value method, giving one extreme precipitation threshold, which cannot reflect the
actual distribution of precipitation extremes [35,36]. The catastrophic extreme precipitation
events are related not only to the physical properties, but also to the ecological carrying
capacity, which are highly regional. Regions with small spatial scales and similar climate
characteristics can use absolute thresholds; regions with large spatial scales should use
the percentile method. To better reflect the spatio-temporal characteristics of extreme
precipitation events in China, the percentile method is more suitable to be adopted to
define extreme precipitation [37,38].

In this paper, we combine the spatio-temporal scanning model (STSM) and the lo-
cal spatial autocorrelation model (LSAM) to explore the spatio-temporal aggregation
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characteristics of extreme precipitation. First, we used daily precipitation data from the
China Meteorological Forcing Data during 1979 to 2018 as input data; then integrated the
31× 40 time sliding window and the 95% percentile threshold to extract the extreme precip-
itation threshold in July 2016. Second, the STSM was applied to detect the spatio-temporal
extreme precipitation events in China. The spatio-temporal aggregation characteristics
were evaluated by log likelihood ratio (LLR) and the relative risk (RR). Last, the local
spatial autocorrelation model (LSAM) was integrated to discover the internal distribution
of extreme precipitation in the spatio-temporal accumulation area.

2. Materials and Methods
2.1. Data

Ground-based rain gauge records are stable and have the longest historical precipita-
tion observation data, widely used in hydrology and climate research [39–41]. However,
ground-based rain gauge records are sparse at point scale, and there are not enough to
develop a reliable high-resolution global dataset and capture the spatio-temporal vari-
ation characteristics of precipitation [42]. The China Meteorological Forcing Data [43]
has provided long-standing, globally covered precipitation data through the fusion of re-
mote sensing products, reanalysis dataset and in-situ observation data at weather stations,
improving the extraction accuracy of extreme precipitation events [43–47]. The forcing
dataset is expected to be better with more stations as the input observation dataset. A
large number of stations were used to generate the China Meteorological Forcing Data,
which allowed it to show superior quality. Two ground-based observation data sources are
used in the China Meteorological Forcing Data: China Meteorological Administration’s
China Meteorological Data Service Center, approximately 700 stations; and the National
Oceanic and Atmospheric Administration (NOAA)’s National Centers for Environmental
Information (NCEI), approximately 300–400 weather stations in China [45]. This paper
uses these daily datasets at 0.1◦ × 0.1◦ (longitude, latitude), covering China from 1979 to
2018. The effective precipitation value of each grid point is defined as greater than 1 mm.

2.2. Extreme Precipitation Threshold Extraction Method

The percentile method calculates a percentile as the extreme value for each grid. The
detailed calculation is as followed: for each grid, we obtain a 31-day monthly time series of
effective precipitation using a forward sliding window of 15 days and a backward sliding
window of 15 days; then, we apply the 31-day monthly time range of each grid point from
1979 to 2018 to obtain a 31 × 40 yearly precipitation sequence. Finally, the 95th percentile
of the yearly precipitation sequence is extracted as the extreme precipitation threshold for
the grid. For example, to calculate the extreme precipitation threshold of a certain grid
point on 16 July, the effective precipitation sequence from 1–31 July from 1979 to 2018, and
the 95th percentile of the effective sequence is the extreme precipitation threshold for the
grid point.

2.3. Spatio-Temporal Scanning Model

STSM selects an event in the scanning area as the center of the bottom surface of
the dynamic cylinder scanning window, continuously enlarging the radius of the bottom
surface (the upper limit of the radius is generally set less than or equal to 50% of the total
number of points in the research area) and the height of the cylinder (the upper limit of
the time is generally set greater than or equal to 50% of the maximum time sequence)
until reaching the upper limit. This scanning process will repeat for each event in study
area (Figure 1). Then, the LLR and RR are calculated based on the actual number of
events and expected number of events inside and outside the scanning window. Finally,
the sample data of the scanning area are simulated multiple times using the Monte Carlo
randomization method to obtain a confidence value of the aggregated regions. The window
of the spatio-temporal clustering area needs to satisfy both the LLR greater than 0 (LLR > 0)
and the ratio of extreme precipitation events in the window greater than outside (RR > 1).
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Among all the clustering areas, the clustering area with the maximum LLR is the first-level
accumulation area, indicating that the clustering area has the highest occurrence probability
of extreme precipitation.

Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 14 
 

 

expected number of events inside and outside the scanning window. Finally, the sample 
data of the scanning area are simulated multiple times using the Monte Carlo randomiza-
tion method to obtain a confidence value of the aggregated regions. The window of the 
spatio-temporal clustering area needs to satisfy both the LLR greater than 0 (LLR > 0) and 
the ratio of extreme precipitation events in the window greater than outside (RR > 1). 
Among all the clustering areas, the clustering area with the maximum LLR is the first-
level accumulation area, indicating that the clustering area has the highest occurrence 
probability of extreme precipitation. 

 
Figure 1. Schematic diagram of the spatio-temporal scanning model (STSM). 

There are only two states for the daily precipitation extreme precipitation event data 
(either extreme or not extreme precipitation events), which are suitable for the Bernoulli 
distribution model, also known as a typical 0–1 distribution. Both the shape and size of 
the scanning windows should be considered: based on the structure of the scanning re-
gions and the spatial characteristics of China, we adopted a circular scanning window. 
The principle of the STSM is as followed: 

The probability of extreme precipitation events (P) for the entire study area G can be 
calculated by Equation (1), where m୸  is the actual number of extreme precipitation 
events in the scanning window Z, µ(Z) is the total number of events, µ(G) is the total 
number of extreme precipitation events in all regions G, mୱ is the actual number of ex-
treme precipitation events, p[0,1] is the probability of extreme precipitation events in 
the scanning window, and q[0,1] is the probability of extreme precipitation events out-
side the scanning window. P = pmz൫1−p൯µ(Z)−mzqmg−mz൫1−q൯((µ(G)−µ(Z))−(mg−mz)  (1)

Assuming L(Z) is the likelihood function value of the spatio-temporal scanning win-
dow Z, then Equation (1) can be expressed as Equation (2): 

L(Z)= ቆ mz

µ(Z)ቇmz ቆ1−
mz

µ(Z)ቇµ(Z)−mz ቆ mg−mz

µ(G)−µ(Z)ቇmg−mz ቆ1−
mg−mz

µ(G)−µ(Z)ቇ((µ(G)−µ(Z))−(mg−mz)  (2)

Based on the null assumption, the likelihood function   L0 is given as Equation (3): 

Figure 1. Schematic diagram of the spatio-temporal scanning model (STSM).

There are only two states for the daily precipitation extreme precipitation event data
(either extreme or not extreme precipitation events), which are suitable for the Bernoulli
distribution model, also known as a typical 0–1 distribution. Both the shape and size of the
scanning windows should be considered: based on the structure of the scanning regions
and the spatial characteristics of China, we adopted a circular scanning window. The
principle of the STSM is as followed:

The probability of extreme precipitation events (P) for the entire study area G can
be calculated by Equation (1), where mz is the actual number of extreme precipitation
events in the scanning window Z, µ(Z) is the total number of events, µ(G) is the total
number of extreme precipitation events in all regions G, ms is the actual number of extreme
precipitation events, p ∈ [0, 1] is the probability of extreme precipitation events in the
scanning window, and q ∈ [0, 1] is the probability of extreme precipitation events outside
the scanning window.

P = pmz(1− p)µ(Z)−mzqmg−mz(1− q)((µ(G)−µ(Z))−(mg−mz) (1)

Assuming L(Z) is the likelihood function value of the spatio-temporal scanning win-
dow Z, then Equation (1) can be expressed as Equation (2):

L(Z) =
(

mz

µ(Z)

)mz
(

1− mz

µ(Z)

)µ(Z)−mz
(

mg−mz

µ(G)−µ(Z)

)mg−mz
(

1−
mg−mz

µ(G)−µ(Z)

)((µ(G)−µ(Z))−(mg−mz)

(2)

Based on the null assumption, the likelihood function L0 is given as Equation (3):

L0 =

(
mg

µ(G)

)mg
(
µ(G)−mG

µ(G)

)µ(G)−mg

(3)

K is an indication function. If the probability of an extreme precipitation event in
the spatio-temporal scanning window is greater than the outside of the window, K = 1;
otherwise, it is 0. The maximum LLR in Z has the expression in Equation (4):
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max LLR = maxlog
[

L(Z)
L0

]
K
(

mz

µz
>

mg−mz

µ(G)−µ(Z)

)
(4)

LLR is mainly used to characterize the probability of the spatio-temporal accumulation
area; RR is mainly used to characterize the spatio-temporal persistence through measuring
the number of extreme precipitation grids inside and outside the spatio-temporal clusters.
RR is defined as Equation (5), where ni and Ei represent the number of extreme precipitation
events and the number of expected extreme precipitation events, observed in the spatio-
temporal scanning window i, respectively; N represents the total number of extreme
precipitation grids in the study area; E represents the total expected number of extreme
precipitation grids in the study area. N is equal to E to meet the data requirements of the
spatio-temporal scanning.

RRi =
ni/Ei

(N− n i)/(E− E i)
(5)

To ensure the results are statistically significant (p <= 0.001), this experiment randomly
generates M data sets according to the Monte Carlo test.

2.4. Local Spatial Autocorrelation Model

Spatial autocorrelation is one of the most commonly used models for spatial ag-
gregation [48,49]. It can measure the correlation of the same object in different spatial
locations. Spatial autocorrelation is divided into global spatial autocorrelation and local
spatial autocorrelation. The global spatial autocorrelation assumes that the space is ho-
mogeneous and one trend exists in the entire region. Its value is between −1.0 and 1.0
through normalization. Moran’s I > 0 indicates a positive spatial correlation in the spatial
unit; the larger the value, the more aggregative the units. Moran’s I < 0 indicates a negative
spatial correlation in the spatial unit; the smaller the value, the sparser the units. Moran’s
I = 0 indicates that the spatial unit does not have spatial autocorrelation and is randomly
distributed. However, it can only detect the global spatial aggregation, and cannot locate
the specific accumulation area [50–52]. Therefore, it is necessary to introduce local spatial
autocorrelation to analyse the local aggregation characteristics aggregation, such as LISA
(local indicators of spatial association) and Moran’s I scatter plot.

LISA applies the Moran index to each regional unit, describing the similarities be-
tween the spatial units and its neighborhood. Moran scatter plots use a two-dimensional
coordinate system to visually describe observed variables and spatial lag vectors. The
x-axis represents the normalized observations, and the y-axis represents the spatial lag
vector (the weighted average of the observations around the observation). The coordinate
system is divided into four quadrants (HH, HL, LL, and LH) according to the order of the
combination of high and low, which represent the spatial relationship between a certain
research area and the adjacent area. Among them, the first quadrant indicates a high-value
aggregation (HH), that the Moran index is positive, the z score is positive, and the LISA
value is positive (aggregate). We chose Queen’s case as the spatial weight matrix with eight
neighborhoods. At the same time, the LISA value is calculated according to Equation (6),
where S is the cumulative precipitation difference, ti and tj are the precipitation at i and j,
respectively, t is the mean precipitation, and Z(I i) obeys the standard normal distribution.
Z(I i) is calculated by normalizing the local autocorrelation index Ii to obtain the signifi-
cance p of each grid point. This paper considers p-values that do not exceed 0.001 to be
statistically significant.

S =

{ 1
n ∑n

i=1(ti − t), ti = t
0, ti < t

;

Ii =
(ti − t)

S ∑n
j=1 wi, j

∑n
j=1 wi, j(tj − t);

Z(I i) =
I− E[Ii]√

V[Ii]
;

(6)
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2.5. Experimental Process

The main experimental steps in this paper are shown in Figure 2: first, the extreme
precipitation threshold based on the daily precipitation grid data from 1979 to 2018 by
percentile threshold method was extracted using the 31× 40 time sliding window. Then, the
extreme precipitation threshold and daily precipitation value were compared to select the
extreme precipitation grid. Second, the spatio-temporal clusters of extreme precipitation
in July 2016 were extracted using the Bernoulli distribution’s STSM. Third, the LSAM
was used to detect the hot spots with accumulated precipitation differences to achieve
fine positioning. Finally, the extracted spatio-temporal clusters of extreme precipitation
were compared with the historical extreme precipitation events to evaluate the extraction
accuracy of the STSM.
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3. Results
3.1. Spatio-Temporal Aggregation Characteristics of Extreme Precipitation Events

When using STSM, the parameters have a great influence on the results. In this paper,
we set the spatial scanning window threshold parameter to 5%, 10%, 15%, and 20%, then
applied them to extract the spatio-temporal clusters of extreme precipitation events in
China July 2016.

As Figure 3 shows, when the spatial scanning window parameter is set to 5%, the
scanning result is too fragmented. Almost the whole of China has accumulation areas,
and many accumulation areas are small and dense, which cannot effectively represent the
spatio-temporal aggregation of extreme precipitation events. When the parameter is set to
10%, the accumulation area starts to have a good degree of discrimination, but the number
of accumulation areas is still too high. When the spatial scanning window is set to 15% and
20%, the positions and sizes of the extreme precipitation accumulation areas tend to be
similar. Although the accumulation areas of 20% coincides with the accumulation areas
of 15%, and both show obvious spatio-temporal aggregation characteristics; the number
of accumulation areas are reduced when the parameter is set to 20%, which are relatively
rough, overlooking small areas with extreme precipitation, and may include spurious
accumulation areas where extreme precipitation events did not exist. The spatial scan
window parameter is better set to 15% (an appropriate level of detail and better consistency)
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with the advantage of a stable calculation result. The time scan window parameter is set
to an empirical value of 50% [53]. The results of the 15% scanning window are shown in
Table 1 and Figure 4.
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Table 1. Spatio–temporal scan results of China from 1 to 31 July 2016 (15%).

Cluster Date Cluster
Region

Number of
Events

Expected
Events

Log Likelihood
Ratio Relative Risk p-Value

2016/07/19–2016/07/20 1 6000 707.01 9763.16 8.69 0.001
2016/07/28–2016/07/28 2 3598 287.49 8634.29 12.70 0.001
2016/07/08–2016/07/08 3 6703 1079.89 8130.93 6.36 0.001
2016/07/01–2016/07/04 4 5819 931.85 7091.63 6.38 0.001
2016/07/20–2016/07/25 5 8874 2201.44 6724.74 4.15 0.001
2016/07/21–2016/07/25 6 6505 1903.84 3937.85 3.49 0.001
2016/07/10–2016/07/10 7 2474 390.88 3041.10 6.39 0.001
2016/07/26–2016/07/26 8 677 57.90 1493.53 11.73 0.001
2016/07/05–2016/07/05 9 879 122.00 1221.12 7.23 0.001
2016/07/13–2016/07/13 10 1047 232.35 895.07 4.52 0.001

The STSM detected ten statistically significant (through confidence tests) spatio-
temporal clusters, which better reflected the distribution of extreme precipitation events
in time and space (Figure 4). Cluster 1 is centered on 37.95 N, 115.65 E with a radius
of 393.84 km. From the provincial perspective, it is mainly centered on Hebei, Shanxi,
Shandong and Henan. The accumulation lasted two days from 19 July to 20 July. Its
corresponding LLR is 9763.16, which is 1.13 times the aggregation degree of cluster 2. It’s
RR also reaches the third highest value (8.69). Cluster 2 centered on 33.95 N, 83.95 E with a
radius of 350.26 km, covering the northern Xizang and southern Xinjiang, with the highest
RR (12.52). Cluster 8 reaches the second highest value (11.69). Other statistically significant
clusters (p < 0.001) have relatively small RR values that gradually reduce with a more stable
gradient. Cluster 6, 7, 8, 9, and 10′s LLR are relatively smaller than cluster 1, 2, 3, 4, 5.
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Cluster 5′s LLR is 1.7 times than cluster 6. The extreme precipitation duration is short, and
the detected clusters over three days only include cluster 4, cluster 5, and cluster 6.

Atmosphere 2021, 12, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 4. Spatio-temporal aggregation pattern of extreme precipitation events in July 2016, China. 

The STSM detected ten statistically significant (through confidence tests) spatio-tem-
poral clusters, which better reflected the distribution of extreme precipitation events in 
time and space (Figure 4). Cluster 1 is centered on 37.95 N, 115.65 E with a radius of 393.84 
km. From the provincial perspective, it is mainly centered on Hebei, Shanxi, Shandong 
and Henan. The accumulation lasted two days from 19 July to 20 July. Its corresponding 
LLR is 9763.16, which is 1.13 times the aggregation degree of cluster 2. It’s RR also reaches 
the third highest value (8.69). Cluster 2 centered on 33.95 N, 83.95 E with a radius of 350.26 
km, covering the northern Xizang and southern Xinjiang, with the highest RR (12.52). 
Cluster 8 reaches the second highest value (11.69). Other statistically significant clusters 
(p < 0.001) have relatively small RR values that gradually reduce with a more stable gra-
dient. Cluster 6, 7, 8, 9, and 10′s LLR are relatively smaller than cluster 1, 2, 3, 4, 5. Cluster 
5′s LLR is 1.7 times than cluster 6. The extreme precipitation duration is short, and the 
detected clusters over three days only include cluster 4, cluster 5, and cluster 6. 

  

Figure 4. Spatio-temporal aggregation pattern of extreme precipitation events in July 2016, China.

3.2. Internal Spatio-Temporal Aggregation Characteristics with the Local Spatial
Autocorrelation Model

Combined with the LSAM to further explore the internal aggregation characteristics
of the spatio-temporal accumulation area of extreme precipitation, we selected the largest
LLR (cluster 1) and largest RR (cluster 8) as examples. The difference between the daily
maximum precipitation value and the extreme precipitation threshold was accumulated,
then hot spots in the extreme precipitation areas were extracted by GeoDa. Cluster 1 starts
from 19 July 2016 to 20 July 2016, lasting for two days. The Moran’s I scatter plot (left) and
p-values (right) in space are shown in Figure 5.

China’s cumulative precipitation difference from 19 to 20 July 2016 has a significant
correlation. Moran’s I correlation index reaches 0.984636. The high-high value regions
(extreme precipitation events surrounded by extreme precipitation events) are mainly
distributed in Hebei, Shanxi, Henan, Hubei.

By overlapping the high-high value regions (p > 0.001) and the spatio-temporal clusters
in Figure 4, we found that cluster 1 had obvious hotspots; cluster 4, cluster 5, and cluster
10 also had some hotspots (Figure 6). They decreased outwards from one of the internal
regions, surrounded by low-value regions. The possible reason for this distribution is that
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the cumulative precipitation difference is selected from 19 July 2016, to 20 July 2016, where
extreme precipitation events occurred in these regions; other regions of China are more
stable. These results suggest that the combined use of LSAM is helpful for the exploration
of the internal aggregation characteristics of these clusters.
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China’s cumulative precipitation difference on 28 July 2016 also has a significant
correlation (Figure 7). Moran’s I correlation index reaches 0.91667, slightly smaller than the
highest LLRs Moran’s I, perhaps because of sparser precipitation. The high-high values are
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mainly distributed in cluster 2, cluster 5 and cluster 1, which occurred near 28 July 2016
(Figure 8). In addition, the LISA value on 28 July 2016, which reached 423.97, is larger than
the LISA value on 19 to 20 July 2016, which reached 173.96. This indicates that RR is more
suitable for characterizing the actual spatio-temporal persistence of the accumulation areas,
which is also more catastrophic; LLR is more suitable for characterizing the most likely
spatio-temporal accumulation areas. Although the region with a larger RR has a higher
probability of occurrence (LLR) of extreme precipitation events, there is no clear positive
correlation; that is, the region most likely to have extreme precipitation events does not
necessarily have the strongest RR, and the assessment of catastrophic ability must consider
the local natural environment.
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Taken together, these results suggest that extreme precipitation events are more likely
to occur in eastern and northern China with a significant aggregation, e.g., North China
Plain centered on Hebei, north-western China centered on Gansu, and the Tianshan Moun-
tains.

4. Discussion

Our research, coupled the spatial and temporal properties of extreme precipitation
events using STSM, successfully discovered the spatio-temporal clusters of extreme pre-
cipitation events. To optimize the spatial positions of the extreme precipitation events,
LSAM was used to further detect the internal distribution of extreme precipitation clusters.
According to the meteorological reports provided by the National Information Centre,
extreme precipitation in 2016 was mainly concentrated in East China and North China,
and the North China Plain is the rainstorm center far beyond the same period of national
precipitation from 18 to 20 July 2016 [54,55]. Zhou et al. used 2016 rainwater and typhoon
information collected by the Water Resources and Hydrology Bureau of China to analyze
the extreme precipitation events, finding that the extreme precipitation process began early,
was long lasting, and widely covered China in 2016 [56]. Twenty-eight provinces and cities
were influenced by these extreme precipitation events: the first echelon affected by extreme
precipitation events were along the Yangtze river: Jiangxi, Hunan, Zhejiang, Guangdong,
and Fujian; the second echelon (Guangxi, Shanghai, Anhui, Chongqing, Hubei, Jiangsu,
and Guizhou) was basically located on the outskirts of the first echelon [56]. They are
highly coincident with economically developed regions, causing a major impact on China’s
economic development. Extreme precipitation events have also occurred in the inland
areas, e.g., Xinjiang and Gansu corresponded to cluster 2 and cluster 3. These studies
are highly consistent with our findings, which showed that STSM combined with LSAM
is useful in recognizing the aggregation characteristics of extreme precipitation events.
Particularly, this method contributes to a decrease in subjective and an increase in objec-
tive information when determining the location and range of extreme precipitation areas
through coupling the spatial and temporal scale, and enables the quantitative evaluation of
these areas with LLR and RR.

There are also some limitations in this study. First, although the percentile threshold
method can reduce the influence of spatio-temporal heterogeneity and climate multi-
deformation, it cannot eliminate the influence of the threshold divided subjectivity by
human. Second, the spatial resolution (0.1◦ × 0.1◦) and time scale (d) of the China Mete-
orological Forcing Data are still rough. The extraction accuracy of extreme precipitation
events is insufficient. Third, the fixed window shape of the STSM limits the fine-grained
extraction of spatio-temporal clusters; thus, it is easy to obtain false spatio-temporal clus-
ters. Finally, the RR can reflect the spatio-temporal persistence of the clusters of extreme
precipitation, but it cannot indicate the concentration degrees of different intensities or
frequencies. It is necessary to improve the quantitative description index. If more refined
data and more accurate models can be used, the detection of spatio-temporal clusters of
extreme precipitation events will have more practical significance.

5. Conclusions

In this study, we coupled the spatial extent and the temporal range of extreme pre-
cipitation events to analyze the spatio-temporal aggregation characteristics by using the
STSM (spatio-temporal scanning model) and LSAM (local spatial autocorrelation model),
then applied this method to China. Through the STSM’s dynamic scanning window, the
spatio-temporal clusters break the limitation of subjective divisions, better synthesizing the
temporal and spatial properties of extreme precipitation with an unbiased result. Combined
with LSAM, we can detect the precise location of extreme precipitation in spatio-temporal
clusters. The result showed that China’s summer extreme precipitation events in 2016
are significantly aggregated. The clusters of extreme precipitation events are mainly dis-
tributed in eastern and northern China, such as cluster 1 located on Hebei, cluster 2 and
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cluster 3 located around Xinjiang, cluster 4 located on the middle basin of the Yangtze River
and Xinjiang.

The LLR and RR in STSM are important quantitative evaluation indicators, which are
not only helpful detect the location of extreme precipitation, but also for the quantitative
evaluation of the aggregation degree. Although the clusters of extreme precipitation events
with a larger RR also have a larger LLR, there is no obvious positive correlation among
them. RR is more representable to catastrophic extreme precipitation.
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