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Abstract: The weighted mean temperature (Tm) is a key parameter when converting the zenith
wet delay (ZWD) to precipitation water vapor (PWV) in ground-based Global Navigation Satellite
System (GNSS) meteorology. Tm can be calculated via numerical integration with the atmospheric
profile data measured along the zenith direction, but this method is not practical in most cases
because it is not easy for general users to get real-time atmospheric profile data. An alternative
method to obtain an accurate Tm value is to establish regional or global models on the basis of its
relations with surface meteorological elements as well as the spatiotemporal variation characteristics
of Tm. In this study, the complex relations between Tm and some of its essentially associated
factors including the geographic position and terrain, surface temperature and surface water vapor
pressure were considered to develop Tm models, and then a non-meteorological-factor Tm model
(NMFTm), a single-meteorological-factor Tm model (SMFTm) and a multi-meteorological-factor Tm

model (MMFTm) applicable to China and adjacent areas were established by adopting the artificial
neural network technique. The generalization performance of new models was strengthened with
the help of an ensemble learning method, and the model accuracies were compared with several
representative published Tm models from different perspectives. The results show that the new
models all exhibit consistently better performance than the competing models under the same
application conditions tested by the data within the study area. The NMFTm model is superior
to the latest non-meteorological model and has the advantages of simplicity and utility. Both the
SMFTm model and MMFTm model show higher accuracy than all the published Tm models listed in
this study; in particular, the MMFTm model is about 14.5% superior to the first-generation neural
network-based Tm (NN-I) model, with the best accuracy so far in terms of the root-mean-square error.

Keywords: weighted mean temperature; artificial neural network; ensemble learning; zenith wet
delay; precipitation water vapor; GNSS meteorology

1. Introduction

Water vapor is a minor constituent of the Earth’s atmosphere and is mainly dis-
tributed in the lower atmosphere. Although it occupies a small portion of the atmosphere’s
mass, it plays key roles in weather and climate systems due to the changeability of its
content [1–3]. Traditional techniques for detecting water vapor include water vapor ra-
diometry, radiosonde and satellite remote sensing, but they cannot satisfy the demands
of developing meteorological applications in an increasing trend due to their respective
limited resolutions. The technique for sensing water vapor with the Global Navigation
Satellite System (GNSS) benefits from its low cost, high precision, high spatiotemporal
resolution and all-weather operation, etc. It has become more attractive than traditional
techniques as a result of its advantages [4–6]. The precipitable water vapor (PWV) value
derived from GNSS, which refers to the depth of water in a column of the atmosphere if all
the water vapor in the column condenses into liquid water, has been in widespread use in
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many fields, such as in research on climate change, weather forecasting and the monitoring
of extreme weather events [3,7–12].

Water vapor is partly responsible for the delay when the electromagnetic signal
emitted from a navigation satellite travels through the neutral atmosphere. The delay
created by water vapor measured along the zenith direction is known as zenith wet
delay (ZWD) [13]. Thus, there should be some connection between ZWD and PWV.
Askne et al. [14] concretized this connection and derived the conversion formula between
ZWD and PWV: once the ZWD is estimated from GNSS measurements, the PWV can be
calculated by multiplying ZWD with a conversion factor Π. Π is a nonlinear function of
the weighted mean temperature (Tm) and can be calculated by integrating the water vapor
pressure and absolute temperature of each height level along the zenith direction [15].
Therefore, the key to deriving accurate PWV from GNSS measurements is to obtain an
accurate Tm.

The atmospheric profiles measured by sounding balloons released from radiosonde
stations give the closest results to the actual situation; thus, Tm calculated by numerical
integration from these balloons should be the most accurate, but they are rarely applied
in actual GNSS–ZWD and PWV conversion due to the sparse distribution of radiosonde
stations and poor temporal resolution of observation data [4,16]. The products from numer-
ical weather prediction (NWP) models generally have higher spatiotemporal resolutions,
such as reanalysis data from the European Center for Medium-Range Weather Forecasts
(ECMWF) and the America National Centers for Environmental Prediction (NCEP), but
they are typically updated with some time delay on the web and thus cannot be applied to
real-time or even near-real-time Tm estimation [17,18]. Therefore, an empirical Tm model
with good performance could help to enhance the utility and efficiency of obtaining Tm,
thus enabling real-time conversion from ZWD to PWV in GNSS meteorology.

Many empirical Tm models have been developed in recent years. These models
can be broadly divided into two categories according to their application conditions and
modeling principles. One is called as the surface meteorological factor (SMF) model,
which represents a series of models developed based upon the relations between Tm and
surface meteorological elements (e.g., surface temperature Ts, pressure Ps and water vapor
pressure es). Measured surface meteorological elements are required to calculate Tm with
SMF models. The most typical and widely used SMF model is the Bevis model, which
is established based upon the approximate linearity between Tm and Ts [19]. The other
category is the non-meteorological factor (NMF) model, which refers to models established
according only to the spatiotemporal variation characteristics of Tm, such as the Global
Weighted Mean Temperature (GWMT) model [20], Global Pressure and Temperature 2 wet
(GPT2w) model [21], Global Weighted Mean Temperature-Diurnal (GWMT-D) model [22],
Global Tropospheric Model (GTrop) model [23], Hourly Global Pressure and Temperature
(HGPT) model [24] and GTm_R [25] model etc. The Earth’s surface is usually divided into
a series of grids according to latitude and longitude in the development of NMF models,
and a trigonometric function is used to simulate the periodic variation characteristics of
Tm over each single grid. The input variables of NMF models are usually the geographic
coordinates of a specific location and the day of year (doy); sometimes the hour of day (hod)
is included, but no meteorological element is required as an input when calculating Tm
with NMF models. However, many studies have shown that the Tm values derived from
NMF models were usually less accurate than those from SMF models [17,23,26]. In reality,
surface or near-to-surface meteorological elements at a specific location are not difficult
to measure.

Bevis et al. [19] first specified the formula for calculating Tm as Tm = 70.2 + 0.72 · Ts
with 8718 radiosonde profiles of 13 stations distributed in North America. However, it
was found that the coefficients of the Bevis formula vary with the geographical location
and season [27–29], so it is necessary to estimate the coefficients through measurements in
a specific region and period of time. Li et al. [29] established regional Tm models for the
Hunan region, China, including models with one meteorological factor (Tm–Ts), two mete-
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orological factors (Tm–Ts, es) and three meteorological factors (Tm–Ts, es, Ps). It was found
that the two-meteorological-factor model and three-meteorological-factor model performed
similarly, and they both outperformed the one-meteorological-factor model. Yao et al. [26]
established a one-meteorological-factor model (GTm) and a multi-meteorological-factor
model (PTm) with data from 135 radiosonde stations distributed globally; the results
showed that the PTm model was about 0.5 K better than the GTm model in terms of the
root-mean-square error. They further took the seasonal and geographic variation character-
istics of the Tm–Ts and Tm–Ts, es relations into account to develop the GTm-I model and
PTm-I model, the accuracy of which were greatly improved compared with the GTm model
and PTm model, respectively, on a global scale. Jiang et al. [28] developed a time-varying
grid global Tm–Ts model (TVGG) considering the significant spatiotemporal variation
characteristics of the Tm–Ts relation. However, the relations between Tm and surface meteo-
rological elements are very complex [30] and are difficult to simulate sufficiently with a
simple linear equation. Ding [17] first tried the neural network technique to develop the
first-generation neural network-based Tm (NN-I) model for global users, but this required
the Tm estimates of the GPT2w model (an excellent empirical model for estimating slant
delays as well as other meteorological elements in the troposphere) and measured Ts as
inputs. NN-I model shows excellent performance for predicting Tm values on a global
scale, but its accuracy in a specific region has yet to be verified.

Most of the published Tm models that consider the geographic and seasonal variation
of relations between Tm and surface meteorological elements are designed for global users.
There is still a lack of Tm models designed for users in China. China has a vast territory with
complex terrain and diverse climate system, but the distribution of radiosonde stations is
limited and extremely uneven, so Tm models with good performance are urgently needed to
carry out nationwide GNSS water vapor remote sensing. In this study, we took into account
the geographic and seasonal variation characteristics of Tm, as well as the relations between
Tm and surface meteorological elements (Ts, es), and adopted the neural network technique
to develop Tm models applicable to China and adjacent areas. The definition of Tm and
methods for determining Tm values are introduced in Section 2, the modeling process of
new models are presented in Section 3, their generalization performances are discussed
in Section 4, and the accuracies of new models compared with several representative
published models are presented in Section 5.

2. The Determination of Tm

2.1. The Definition of Tm

PWV can be derived from GNSS observations with some data processing. Firstly,
the zenith tropospheric (total) delay (ZTD), which consists of zenith wet delay (ZWD)
and zenith hydrostatic delay (ZHD), can be directly estimated from GNSS measurements.
The ZHD is mainly caused by dry gas in the atmosphere and varies regularly, while the
ZWD is the delay mainly caused by the water vapor in the troposphere, which depends on
weather condition and is difficult to model [13,31,32]. ZHD can be calculated with some
kind of meteorological element; the ZHD, calculated with a widely used formula [33], can
be expressed as

ZHD =
(2.2779± 0.0024)Ps

1− 0.00266 cos 2ϕ− 0.00028Hell
(1)

where Ps is the pressure in hPa above the station, Hell is the height in kilometers above the
reference ellipsoid and ϕ is the latitude. The ZWD can be calculated by subtracting ZHD
from ZTD, and then PWV can be generated via a linear equation:

PWV = Π× ZWD = Π× (ZTD− ZHD) (2)
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where the conversion coefficient Π is defined as

Π =
106

ρwRv

(
k′2 +

k3
Tm

) (3)

where ρw = 1× 103 kg/m3 is the density of liquid water, Rv = 461 J/(K · kg) denotes
the specific gas constant of water vapor, and k

′
2 = (22.1± 2.2) K/hPa and k3 = (3.739±

0.012)× 105 K2/hPa are the atmospheric refraction constants suggested by Bevis et al. [15].
The weighted mean temperature (Tm) is defined as a function related to temperature and
water vapor pressure at different heights along the zenith direction:

Tm =

∫ ht
hs

e
T dh∫ ht

hs
e

T2 dh
(4)

where e and T are the water vapor pressure (hPa) and absolute temperature (K) of the
atmosphere along the zenith direction, respectively, hs is the height of the station and ht is
the height of the tropopause.

Of the five parameters for calculating the conversion factor Π, only Tm is the variable
parameter to be estimated. The relative error of mapping GNSS-ZWD estimates to PWV
(∆PWV) created by the Tm error (∆Tm) could be expressed as∣∣∣∣∆PWV

PWV

∣∣∣∣ =
∣∣∣∣∣ k3 + k

′
2Tm

k3 + k′2(Tm + ∆Tm)

(
Tm + ∆Tm

Tm

)
− 1

∣∣∣∣∣ ≈
∣∣∣∣∆Tm

Tm

∣∣∣∣ (5)

The value of Tm generally varies between 220 K and 320 K. It can be determined that a
|∆Tm| of 5 K would result in a relative error of 1.6% to 2.3% when mapping GNSS–ZWD to
PWV. Therefore, it is very important to get an accurate Tm value to derive a precise PWV in
GNSS meteorology.

2.2. Tm Determined by the Numerical Integration Method

In general, we cannot know the accurate temperature and water vapor along the
zenith direction from the surface to the tropopause, but we can collect a series of discrete
sampling data of the profile and then calculate Tm by numerical integration. Equation (4),
used for calculating Tm, could be discretized into

Tm =
∑n

i=1
1
2

(
ei
Ti
+

ei+1
Ti+1

)
(hi+1 − hi)

∑n
i=1

1
2

(
ei
T2

i
+

ei+1
T2

i+1

)
(hi+1 − hi)

(6)

where ei, Ti, hi and ei+1, Ti+1 and hi+1 denote the water vapor pressure, absolute tempera-
ture and height of two adjacent levels of the zenith atmospheric profile, respectively.

This method has been widely used for calculating Tm with either measured data
from sounding balloons or products from numerical weather prediction models (NWPs).
Although the NWPs have much higher spatiotemporal resolutions than data collected
via radiosounding on a global scale and have been widely used for climate analysis and
modeling globally, considerable uncertainties exist in terms of simulating meterological
elements (temperature, water vapor pressure etc.) and calculating Tm from them [18,34].
An example is the ECMWF Re-Analysis-Interim (ERA-Interim) dataset, which is a modern
reanalysis product produced by the ECMWF using the assimilation system. The majority
of the data used to produce ERA-Interim are from satellites, although radiosonde data
have also been assimilated into it [28,35]. However, a test at 20 GNSS sites showed that
the root-mean-square error between the surface temperature calculated by ERA-Interim
and the measured surface temperature reached 2.0 K, while another test at 20 radiosonde
stations showed that the relative error of Tm calculated from ERA-Interim compared with
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Tm calculated by radiosonde data reached 0.5% [36]. The radiosonde data are all collected
via sounding balloons, and thus the Tm calculated from the data should be closer to the
actual situation than that from NWPs; therefore, we chose radiosonde data to perform
modeling and analysis in this study.

At present, the radiosonde profile data of over 1500 stations distributed globally are
served by the Integrated Global Radiosonde Archive (IGRA). The radiosonde data are
generally organized according to IGRA station with a resolution of 12 h (i.e., at 00:00 UTC
and 12:00 UTC every day) and mainly consist of meteorological profiles including reported
pressure, temperature, water vapor pressure and other parameters such as the geopotential
height of each level, etc.

2.3. Tm Calculated with Empirical Models

An empirical Tm model with good performance can be used to calculate Tm, which
would help with the real-time conversion from GNSS–ZWD to PWV. Many studies on Tm
modeling have been carried out in recent years, as mentioned in Section 1; the vast majority
of the published Tm models can be described by the following equation:

Tm = T1(Ts, es) + T2(doy) + T3(doy) + T4(hod) (7)

where T1(Ts, es) corresponds to the part simulated by surface meteorological factors; it can
be generally expressed as

T1(Ts, es) =


α1 · Ts + ε1

α1 · Ts + α2 · ln(es) + ε1
α1 · Ts + α2 · (es)α3 + ε1

(8)

while the T2(doy), T3(doy) and T4(hod) signify the annual, semiannual and diurnal varia-
tion components of Tm, respectively.

T2(doy) = α4 cos(2π · doy/365.25) + α5 sin(2π · doy/365.25) + ε2 (9)

T3(doy) = α6 cos(4π · doy/365.25) + α7 sin(4π · doy/365.25) + ε3 (10)

T4(hod) = α8 cos(2π · hod/24) + α9 sin(2π · hod/24) + ε4 (11)

where α1, α2, α3, α4, α5, α6, α7, α8, α9, ε1, ε2, ε3, ε4 are all unknown coefficients to be deter-
mined.

We listed some representative Tm models (see Table 1) and compared the main dif-
ferences between them; they were then used for the comparisons with the new models
developed in this study. The inputs shown in Table 1 are abbreviations of latitude (ϕ), lon-
gitude (λ), height above reference ellipsoid (Hell), height above sea level (Hgeo), modified
Julian day (mjd), day of year (doy), hour of day (hod), surface temperature (Ts) and surface
water vapor pressure (es), respectively.

Table 1. Main differences between several representative Tm models. GPT2w: Global Pressure and Temperature 2 wet; GTm:
one-meteorological-factor model; PTm: multi-meteorological-factor model; TVGG: time-varying grid global model; NN-I:
first-generation neural network-based Tm model.

Models Input Applicable Regions Expression Data Sources

GPT2w ϕ, λ, mjd Global Tm = T2 + T3 ERA-Interim
GTm_R ϕ, λ, Hell , doy, hod Global Tm = T2 + T3 + T4 ERA-Interim
GTm-I ϕ, λ, doy, Ts Global Tm = T1(Ts) + T2 + T3 Radiosonde/ERA-Interim
PTm-I ϕ, λ, doy, Ts, es Global Tm = T1(Ts, es) + T2 + T3 Radiosonde/ERA-Interim
TVGG ϕ, λ, doy, hod, Ts Global Tm = T1(Ts) + T2 + T3 + T4 Radiosonde/ERA-Interim
Bevis Ts Global/Regional Tm = T1(Ts) Radiosonde
NN-I ϕ, λ, Hell , Hgeo, mjd, Ts Global Tm = f (ϕ, TGPT2w

m , Ts) radiosonde
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Of the models listed above, the GPT2w model and GTm_R model belong to the
category of NMF models and others are SMF models. The GPT2w model is an excellent
empirical model that provides not only Tm, but also Ts, es, Ps, the temperature lapse rate
with height and the water vapor decrease factor along the zenith direction, etc., with
a horizontal resolution of 1◦ × 1◦ and 5◦ × 5◦. It simulates the annual and semiannual
variation characteristics of Tm [21], but does not consider the impact of height differences
between the target location and grid points used for interpolation. Li et al. [25] believed
that the GPT2w model should be modified by introducing the Tm lapse rate (δ) when
interpolating the Tm values of the target locations with Tm estimates of grid points and thus
developed the GTm_R model with a horizontal resolution of 1◦ × 1◦, which is described as

Tt
m = Tg

m + δ · (Ht − Hg) (12)

where Tt
m, Ht and Tr

m, Hg are the Tm value and height at the target location and grid point,
respectively, and δ is the Tm lapse rate. They employed trigonometric functions to model
the annual and semiannual variations of δ for each single grid, as in Equations (9) and (10).

The Bevis formula Tm = a · Ts + b has been widely used in recent decades; some
researchers have found the seasonal variation characteristics of the residuals in the Bevis for-
mula, and the expression of the Tm model should consist of two parts—i.e., Tm = Tm0 + ∆Tm.
Tm0 is the part modeled by the surface meteorological elements. Taking the GTm-I model
and PTm-I model as examples, [26], their Tm0 values are Tm0 = 0.8116Ts + 43.69 and
Tm0 = 0.5344Ts + 31.81e0.1131

s + 81.9, respectively. The ∆Tm, however, denoting the correc-
tion of Tm0, is usually characterized by annual, semiannual and even diurnal variations.
The TVGG model is similar to the GTm-I model, and the biggest difference between them
is that the coefficients of Tm0 in the TVGG model are fitted according to each grid, while
those of GTm-I model are fitted globally.

The NN-I model is a combined model whose coefficients are all determined via a
training process of a neural network. Users can calculate the Tm value by directly inputting
the Tm derived from the GPT2w model (TGPT2w

m ), latitude (ϕ) and Ts of the station, in-
stead of repeating the training process. However, the NN-I model is designed for global
users and does not take other surface meteorological elements into account, its general-
ization performance has not been discussed yet and its accuracy in a specific area can be
further improved.

3. Development of New Models

Modern artificial neural networks (ANNs) are particularly good at performing multi-
factorial analyses and usually serve as nonlinear statistical data modeling tools; of these,
the multi-layer feedforward neural networks (MFNNs) have been widely used to solve
nonlinear optimization problems with multiple inputs [17,37–39]. Tm is associated with
many factors and the accuracy and efficiency of a traditional linear regression model of
Tm–Ts, es is not always satisfactory, so a three-layer feedforward neural network (TFNN)
was employed to develop regional Tm models applicable to China and adjacent areas in
this work, and the ensemble learning method was used to strengthen the generalization
performance of new models.

3.1. Principle of TFNN

The TFNN is a feedforward neural network with a very simple architecture; i.e., only
one input layer, one hidden layer and one output layer are included, and each layer contains
a series of simple computing nodes (also known as neurons), which serve as nonlinear
summing devices. The general procedure for regressing with TFNN is shown in Figure 1.

The W (1) (W(1)
ij , i = 1, 2, ..., n; j = 1, 2, ..., m), W (2) (W(2)

ki , i = 1, 2, ..., n; k = 1, 2, ..., p)

and b(1) (b(1)i , i = 1, 2, ..., n), b(2) (b(2)k , k = 1, 2, ..., p) in the figure are the weight and bias
values used to connect the adjacent layers of TFNN, and the “1”s denote unit values
of the input layer and hidden layer rather than specific neurons. For a given dataset
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D = (X1, Z1), (X2, Z2), · · · , (XN , ZN), X i ∈ Rm is an m-dimensional feature vector and
Zi ∈ Rp is a p-dimensional target vector; the transmission from X i to Zi via TFNN can be
simply described as

Zi = f
(

b(2) + W (2) · g
(

b(1) + W (1) · X i

))
(13)

where g(·) and f (·) are activation functions in the hidden layer and output layer, respectively.

...

...

1
x

2
x

m
x

1 1

n
y

1
y

2
y

input layer hidden layer output layer

(1) (1)( )
n N

g

  Y W X b (2) (2)( )

p N
f


  Z W Y b

2
z

p
z

...

(1)

W
n m

m N
X

1
z( )g 

( )g 

( )g 

( )f 

( )f 

( )f 

... ...

( 2)

p n
W

(1)

1n
b

( 2)

1p
b



Figure 1. General procedure for regressing with the three-layer feedforward neural network (TFNN).

However, the optimal weight and bias values in Figure 1 and Equation (13) usually
need to go through a series of training sessions before being finally determined. A popular
learning algorithm, back-propagation (BP), is usually used to train the TFNN [39,40]. In
the training process with BP, the error energy of the neurons in the input layer and hidden
layer transmitted to the output layer can be summed as a cost function:

E(λ) =
1
2

p

∑
k=1

(d
′
k − dk(λ))

2 (14)

where λ is the iterations, and d
′
k and dk are the desired output and current output, re-

spectively. An accuracy threshold ε is set before training so that when E(λ) is less than ε,
the training mission will terminate; otherwise, the error will be back-propagated and the
weight and bias values adjusted according to the gradient descent:

W(1)
ij (λ + 1) = W(1)

ij (λ)− η
∂E(λ)

∂W(1)
ij (λ)

b(1)i (λ + 1) = b(1)i (λ)− η
∂E(λ)

∂b(1)i (λ)

W(2)
ki (λ + 1) = W(2)

ki (λ)− η
∂E(λ)

∂W(2)
ki (λ)

b(2)k (λ + 1) = b(2)k (λ)− η
∂E(λ)

∂b(2)k (λ)

(15)

where η is the learning rate, which is usually set to be a constant at the beginning of the
training mission; the calculation will turn to forward-propagation after the weight and bias
values are adjusted. A large number of iterations should be carried out until the training
mission terminates.

3.2. A Brief Introduction to Ensemble Learning

The ensemble learning method is a good approach to strengthen the generalization
performance of neural network models [37,41]. A TFNN can be thought to be an indi-
vidual learner, and the purpose of ensemble learning is to achieve better generalization
performance than a single learner by combining multiple individual learners. The general
procedure of ensemble learning can be seen in Figure 2.
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For a given training set, the specific approach of ensemble learning is to sample the
training set first to generate a series of different subsets, and then base learners (such as the
TFNN 1, 2, ..., n in Figure 2) are trained from each subset. Large differences between differ-
ent base learners are expected due to the different training subsets, but the performance of
each learner should not be too poor in order to achieve a good combination. Thus, base
learners with overlapping sampling subsets are usually considered for practical use; for
example, bootstrap aggregating (Bagging) is usually employed to generate a training set
for each base learner [41].

TFNN 1

TFNN 2

TFNN q

Training set 1

...
Training set 2

Training set q

...

train

train

train

Data 

samples ...

Combine

Strategy

Prediction

results
Pretreatment

Figure 2. General procedure of ensemble learning.

In this study, the TFNNs were trained many times, which was equivalent to construct-
ing multiple individual learners (hi(x)). These learners could be combined via

H(x) =
q

∑
i=1

αihi(x) (16)

where hi(x) denotes an individual learner, H(x) is the linear combination of hi(x) and αi is
the weight factor of each base learner.

3.3. Dataset for Modeling

TFNN is a data-driven tool; an appropriate training dataset can effectively ensure the
good generalization performance of a TFNN regressing model. As mentioned in Section 2.2,
the radiosonde data from IGRA are the closest model to the actual situation, and so the
data collected by radiosonde stations distributed in China and adjacent areas were chosen
for this study. Strict quality control processes were carried out and only the data that met
the following conditions [22] were considered to calculate Tm with Equation (6).

• The last valid record in the profile was not less than 10 km in height;
• The number of valid radiosonde observation levels was not less than 20;
• The height difference between any two consecutive levels was no more than 2 km;
• The pressure difference between any two consecutive levels was not greater than

200 hPa.

We selected a total of 294 radiosonde stations in the range of 0◦–65◦ N and 60◦ E–145◦ E,
among which 175 stations were used for modeling (training) and the others were used for
testing and analysis. The distributions of radiosonde stations for modeling and testing are
shown in Figure 3.

The factors associated with Tm including latitude (ϕ), longitude (λ), height above sea
level (Hgeo) of the station, day of year (doy), surface temperature (Ts) and surface water
vapor pressure (es) were used as input variables of new models, and the output variable
was the weighted mean temperature (Tm). The training dataset was normalized before
use to prevent the gradient explosion that may occur during TFNN training sessions; the
normalized transformations were carried out as follows:

xn =
2(xr −min(x))

max(x)−min(x)
− 1 (17)
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All the training data were mapped to [−1, 1], where xr and xn are the primitive value
and normalized value respectively, max(x) stands for the maximal value and min(x) de-
notes the minimal value of each variable. A total of 474,673 samples (about 35,000 samples
for each year from 2001 to 2013) were prepared for modeling (training).
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Figure 3. Distribution of the radiosonde stations for modeling (a) and testing (b).

3.4. Modeling with TFNN

In the development of new models with TFNN, it is as important to determine the
neural network architecture, including the number of input variables and hidden layer
neurons, as to select a suitable dataset. However, the optimal network structure of a TFNN
regressing model is usually determined after a series of sensitivity tests. In this study, we
designed three modeling schemes (see Table 2); the number of neurons in hidden layer of
each scheme ranged from 3 to 50.

Table 2. Three modeling schemes with different neural network structures.

Schemes Input Layer Hidden Layer
(Number of Neurons, Nhid) Output Layer

#1 ϕ, λ, Hgeo, doy 3–50 neurons Tm
#2 ϕ, λ, Hgeo, doy, Ts 3–50 neurons Tm
#3 ϕ, λ, Hgeo, doy, Ts, es 3–50 neurons Tm

The training session of each modeling scheme was carried out with the help of the neu-
ral network toolbox of MATLAB R2019a; a rapid network training function named ′trainlm′

was employed to update weight and bias values, based on the Levenberg–Marquardt (LM)
back-propagation (BP) algorithm. A hyperbolic tangent function

g(x) =
2

1 + e−2x − 1 (18)

and a linear function
f (x) = x (19)

were adopted as the activation function in the hidden layer and output layer, respectively.
Although the TFNN is a black-box like model, once the global optimal solution is

determined after training, general users can directly calculate Tm with the final weight and
bias values instead of repeating the training session. For a single sample, the Tm value
could be calculated via

z = f

(
b(2) +

n

∑
j=1

W(2)
j · g

(
b(1)j +

m

∑
i=1

W(1)
ji · xi

))
(20)
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Tm0 =
(Tmax

m − Tmin
m ) · z + 1
2

+ Tmin
m (21)

where xi is the i-th input variable, m is the number of input variables and n is the number
of neurons in the hidden layer; the weights W (1), W (2) and bias values b(1), b(2) are all
determined after training. Tmax

m and Tmin
m are the maximal and minimal value of Tm in the

training dataset, respectively.

4. The Generalization Performance of New Models

The generalization performance is very important for a neural network model when
it is used for prediction. On the one hand, the optimal structure of a TFNN is usually
determined after a series of sensitivity tests, since the number of neurons in the hidden
layer (Nhid) would affect the generalization performance of the TFNN regressing model;
on the other hand, the interannual or interdecadal variation tendency of Tm may result
in deviation when calculating Tm with new models as the datasets for modeling in this
study ran from 2001 to 2013. Therefore, the generalization performances of new models are
discussed in this section. The mean bias error (MBE) and root-mean-square error (RMSE)
were used to evaluate model accuracy.

MBE =
1
N

N

∑
i=1

(Tpre
m,i − Tobs

m,i ) (22)

RMSE =

√√√√ 1
N

N

∑
i=1

(Tpre
m,i − Tobs

m,i )
2 (23)

where Tobs
m,i and Tpre

m,i are the Tm values measured by radiosounding and Tm values calculated
with Tm models, respectively.

4.1. The Generalization Performance of TFNNs

As the initial weight and bias values of the TFNN are usually randomly generated
at the beginning of training, the weight and bias values of a TFNN model adjusted after
training are often inconsistent, even if they are trained with the same training samples.
Thus, each TFNN structure was trained repeatedly; the training samples were re-sampled
and the initial weight and bias values were re-assigned at the beginning of each training
mission. A total of 300,000 samples were randomly selected, and they were divided
into three parts: 70% for training, 15% for cross-validation and 15% for testing in each
training mission.

A series of training missions (10 times for each TFNN structure) were carried out, and
their generalization performances were discussed. The accuracy of each training mission
was evaluated with a total of 113,866 atmospheric profiles measured from 2014 to 2015 at
119 radionsonde stations (see Figure 3); the MBEs and RMSEs of each modeling scheme are
shown in Figures 4 and 5.

From Figures 4 and 5, one can see that the fluctuation of MBEs and RMSEs increased
with the increasing number of neurons in the hidden layer. In terms of MBEs, the MBEs
of different TFNN structures were almost always less than 0 K; the reason for this may be
that the dataset for modeling ran from 2001 to 2013 but the interannual variation of Tm
was not taken into account. Outliers could be found for all of the three modeling schemes
when Nhid was larger than 16; in particular, scheme #1 and scheme #2 had outliers larger
than 0 K when the Nhid was larger than 40. Larger negative biases are also common in
all modeling schemes when there are more neurons. In the aspect of RMSEs, the largest
RMSE of each modeling scheme even reached 7.0 K, 6.5 K and 4.0 K, respectively, while the
minimum RMSE always remained at a low level regardless of the neural network structure.
Another phenomenon regarding RMSE was that when Nhid was smaller than 10, the RMSE
decreased as the Nhid increased, especially for scheme #1 and scheme #3.
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Such large differences in model accuracy between different TFNNs made it risky
to choose a specific training result as the final parameter of a Tm model; the overall
negative biases of most TFNNs in the estimation of Tm also negatively impacted the utility
of the model. Therefore, some measures should be taken into account to improve the
generalization performance of TFNN models and eliminate the bias in Tm estimation
caused by the interannual variation of Tm.
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Figure 4. Mean bias error (MBE) of each training mission validated with radiosonde data from 2014
to 2015.
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Figure 5. RMSE of each training mission validated with radiosonde data from 2014 to 2015.

4.2. Strengthening the Generalization Performance of TFNN Models with Ensemble Learning

The training samples of each training mission (which overlapped with each other)
and the initial weights were different, and thus the performance of each TFNN was
different. If only one individual TFNN were used as the final model, that might lead to
poor generalization performance due to poor selection; combining multiple TFNNs is
expected to effectively reduce this risk. As the training missions were independent of
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each other, we adopted the simple averaging method to combine the individual TFNNs,
as follows:

Tm =
1

Nens

Nens

∑
k=1

Tk
m0 (24)

where Tk
m0 is the Tm value calculated by the k-th TFNN. However, some experiments

were required to determine the optimal ensemble size (Nens) to ensure the generaliza-
tion performance of models after combination. From the perspective of bias-variance
decomposition, ensemble learning (bagging, for example) mainly focuses on reducing
variance, so attention was mainly paid to the RMSEs of models with different ensemble
sizes. Figures 6 and 7 show the RMSEs of models with different ensemble size (Nens) when
Nhid = 5, 10, 15, 20, 25, 30, 35, 40, 45.

1 
 

  
 
 
 

Figure 6. RMSEs of different modeling schemes after combination under different ensemble sizes
(Nhid = 5, 10, 15, 20, 25, 30). Blue dots are the RMSEs of individual randomly placed TFNNs; red dots
are the RMSEs of results after combining Nens randomly selected TFNNs.
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Figure 7. RMSEs of different modeling schemes after combination under different ensemble sizes
(Nhid = 35, 40, 45).

As can be seen from Figures 6 and 7, the generalization performances of different
TFNNs were quite different from each other, especially when there were more neurons
in the hidden layer, which is consistent with the results verified in Section 4.1. However,
general improvements in RMSE were found for each modeling scheme when we com-
bined multiple individual TFNNs; the accuracy of the results after combination showed
remarkable improvement compared with individual TFNNs in most cases.

From the perspective of each modeling scheme, there was no obvious abnormal RMSE
for scheme #1 when the Nhid was 10 or 15, and the RMSE values were generally between
4.2 K and 4.4 K, but great fluctuations could be found when Nhid was larger than 20, with
the maximal RMSE even reaching 4.9 K to 6.5 K when the Nhid was between 20 and 45.
When Nhid was 5, the fluctuation of RMSE was also obvious, ranging from 4.3 K to 4.8 K.
However, the uncertainties in Tm calculation disappeared after combination, even when
the Nhid was larger than 20. Regarding scheme #2, a similar situation to scheme #1 can be
observed, in that the RMSEs were between 3.20 K and 3.25 K when the Nhid was 10 or 15,
but larger RMSEs were shown when the Nhid was larger than 20; particularly large RMSE
values could be found when Nhid was 35 or 45, with maximal values of 5.5 K and 6.8 K,
respectively. When the Nhid was 5, the fluctuation of RMSEs was not drastic, but their
values were larger than those in case of Nhid=10. The improvement of the generalization
performance of scheme #2 using ensemble learning was also significant, especially when
Nhid was larger than 20. However, scheme #3 performed differently to scheme #1 and
scheme #2. Only when Nhid was very large (for example, Nhid = 45) did the abnormal
RMSEs increase significantly. In other times, the differences of RMSEs between individual
TFNNs was not obvious, fluctuating by approximate 0.1 K. By combining different TFNNs,
the influence of TFNN with poor generalization performance on Tm calculation was also
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effectively eliminated. We can also see from Figures 6 and 7 that the ensemble size did not
need to be set to be overly large: a Nens of about 10 could achieve the effect of improving
the generalization performance of the TFNN models.

In general, the generalization performances of individual TFNNs fluctuated, and with
the increase of Nhid, the generalization performance changed drastically. The uncertainty
of the generalization performance could be significantly reduced by combining different
TFNNs, but a balance should be struck between improving model accuracy and reducing
uncertainty risk. We compared the combination results of different modeling schemes
when the number of neurons in the hidden layer was 5 to 45; the results are shown in
Figure 8.
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Figure 8. RMSEs of different modeling schemes after combination (Nens = 10).

One can see from Figure 8 that the RMSE of each modeling scheme after combination
decreased with the increasing Nhid, but the improvement in model accuracy was not
significant when the Nhid was large; e.g., it only improved by approximately 0.05 K for
scheme #1, 0.1 K for scheme #2 and 0.15 K for scheme #3 when Nhid ranged from 5 to 45. This
improvement was insignificant, but a risk of overfitting may occur due to the increasing
complexity of the neural network structure. From the analysis of Figures 6 and 7, little
difference can be seen in terms of the generalization performance if different individual
TFNNs when Nhid was 10 or 15, and the accuracy of results after combination was only
slightly poorer than when there were more neurons in the hidden layer.

4.3. The Impact of Interannual Variations of Tm

The interannual variation trend of Tm has been demonstrated in many previous
studies [4,23,36,42]. It has been shown in the literature [42] that Tm has an increasing trend
over the long term on a global scale and increases by about 0.24 K per decade in the north
temperate zone, while the radiosonde stations used for modeling in this study are mainly
distributed at latitudes between 10◦ N and 60◦ N. It is necessary to discuss the biases of
new models caused by long-term trends of Tm, since the data for modeling in this study
were all from 2001 to 2013. The yearly biases of the three modeling schemes from 1996 to
2015 are shown in Figure 9.

From Figure 9, an approximately linear trend in bias can be found for all the modeling
schemes: their decline rates are −0.043 K/year, −0.041 K/year and −0.048 K/year, respec-
tively. There is an obvious decreasing trend in Tm biases calculated with neural network
models, which presents a challenge for the generalization performance of new models.

However, the neural networks are actually much better at interpolation than extrapo-
lation; thus, the doy was considered to be one of the input variables to simulate the periodic
variation characteristics of Tm within the year, but parameters of interannual variation
of Tm were not included in new models. The negative bias of Tm estimation caused by
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long-term trends of Tm cannot be ignored, so an external correction to new models was
considered in this study:

Tm =
1

Nens

Nens

∑
k=1

Tk
m0 − (a + b · year) (25)

where Tk
m0 is the Tm value calculated by an individual TFNN, Nens is the ensemble size and

a and b are the correction parameters for interannual bias, which can be seen in Figure 9.

 

3 

 
 

 

 

 Figure 9. The yearly MBEs of different modeling schemes from 1996 to 2015. Blue dots are yearly
biases of each modeling scheme and red lines are their linear fit (Nens = 10; Nhid = 10).

4.4. Discussion

The ANN technique shows a powerful capability to capture the spatiotemporal varia-
tion characteristics of Tm in this study. In this section, thousands of experiments showed
that the robustness of TFNN models was good enough, but uncertain risks in model
accuracy were shown when the model was validated with data that were not involved
in modeling, which is expressed as the generalization performance of TFNN fluctuating
drastically when its structure changes. In previous studies, some researchers tried to
demonstrate the feasibility of the neural network technique in Tm modeling, but they only
used the results of a certain training mission as the final model parameter; the general-
ization performance of these models were not sufficiently considered, and the models
probably incur great uncertainty risks when they are put to actual use. The ensemble
learning method was proposed in this study to make up for this defect, and the test results
showed that the generalization performance of new models was effectively enhanced.
Moreover, the significant negative bias in the Tm estimation with new models caused by



Atmosphere 2021, 12, 169 16 of 27

the interannual variation of Tm cannot be ignored, and thus an external correction was
made to the results of TFNN models after combination.

We set the ensemble size of TFNN models as 10 and the number of hidden layer neurons
as 10 or 15 and made a simple external correction to the results after combination. The three
models developed in this study are named the NMFTm model (corresponding to modeling
scheme #1; no meteorological factor is required), SMFTm model (corresponding to modeling
scheme #2; a single meteorological factor is needed) and MMFTm model (corresponding to
modeling scheme #3; multiple meteorological factors are needed), respectively, and were
able to meet the requirements of Tm calculation under different application conditions.

5. Model Accuracies Compared with Other Published Models

In order to examine the accuracies of new models, comparisons between new models
and several representative published models are presented in this section. These models
are the GTm_R model, Bevis model, TVGG model, NN-I model and GTm-I/PTm-I model.
There are some differences in the calculation of Tm with these models:

• No meteorological factor is required for the GTm_R model and NMFTm model;
• Only Ts is required for the Bevis model, GTm-I model, TVGG model and SMFTm model;
• Both Ts and es are necessary for the PTm-I model and MMFTm model.

Measured profiles of 119 radiosonde stations were utilized, and the mean bias error
(MBE) and root-mean-square error (RMSE) were used to evaluate the model accuracy. The
Nhid values of the new models corresponding to the results presented in this section were
all 10.

5.1. Accuracies for All Testing Samples from 2016 to 2018

We first tested the performance of different models with a total of 191,812 radiosonde
profiles measured from 2016 to 2018, as with the data used in Section 4; these data were also
independently and identically distributed to the dataset for modeling. The MBE and RMSE
for different models are shown in Table 3; the MBE and RMSE of each station (named
as S_MBE and S_RMSE) are also calculated and their respective mean values (named as
MS_MBE and MS_RMSE) are shown in Table 3.

Table 3. Statistics of Tm estimates for different models tested by radiosonde data from 2016 to 2018.

Statistics GTm_R Bevis TVGG NN-I GTm-I PTm-I NMFTm SMFTm MMFTm

MBE (K) −1.30 −0.39 −1.85 −0.65 −1.60 −1.36 −0.01 0.05 0.11
MS_MBE (K) −1.26 −0.39 −1.98 −0.62 −1.84 −1.51 0.08 0.12 0.16

RMSE (K) 4.33 4.33 3.75 3.46 4.09 3.71 4.15 3.14 2.96
MS_RMSE (K) 4.09 4.19 3.64 3.31 3.98 3.58 3.96 3.03 2.87

From Table 3, one can see that the GTm_R model, TVGG model and GTm-I/PTm-I
model showed much larger biases (both in MBE and MS_MBE) than the Bevis model,
NN-I model and new models. The reason for this is that the GTm_R model, TVGG
model and GTm-I/PTm-I model were all developed using reanalysis data (ERA-Interim),
while the others were developed using data collected by radiosounding. As mentioned
in Section 2.2, data collected via radiosounding are closest to the actual situation and
undoubtedly the most appropriate dataset for developing a regional Tm model that is
close to reality. The Bevis model is a classic Tm model, and its bias is the smallest of
all the published models. The biases of the SMFTm model and MMFTm model with
enhanced generalization capability were much better than the NN-I model in terms of
MBE and MS_MBE. The NMFTm model showed the largest bias of the new models, but
great improvement can be seen compared with the GTm_R model. It is worth mentioning
that the published models listed in this study were all developed with historical datasets,
but the interannual or interdecadal variation tendency of Tm was not taken into account;
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this may be another important reason for the large negative biases of these models when
verified with the data from 2016 to 2018.

In terms of RMSE, larger RMSEs can be seen for the GTm_R model and Bevis model.
GTm-I model performed a little better because it is a grid model and combines the model-
ing ideas of the GTm_R model and the Bevis model; that is, the Bevis formula is first used
for modeling and then the annual and semi-annual variation characteristics of residuals
caused by the Bevis formula are simulated. The performance of the PTm-I model improved
by 9% in RMSE (0.4 K) compared to the GTm-I model as the surface water vapor pressure
was taken into account in the development of the PTm-I model; it can be seen that the
introduction of water vapor pressure into Tm modeling is very beneficial to the improve-
ment of model accuracy. The TVGG model follows a similar modeling approach to the
GTm-I model, but it is further optimized; that is, the coefficients of the Bevis formula at
each grid are calculated rather than regressing on a global scale, and the resulting residuals
are finally simulated with a trigonometric function. An improvement of approximately 9%
(0.3 K) in RMSE could be found for the TVGG model compared to the GTm-I model; thus,
we only consider TVGG model in the following analysis since their modeling principles
are basically the same.

The NN-I model uses the the coefficients of the GPT2w model to describe the periodic
variations of Tm and uses neural network as modeling tool, and it showed the best accuracy
on a global scale of all the published models listed in this study; it can also be seen from
Table 3 that its RMSE (MS_RMSE) within the study area was far smaller than the other
published models. However, the NN-I model also has drawbacks; i.e., it relies on the Tm
values derived from the GPT2w model and it is developed for global users, but only one set
of weight and bias values after a certain training mission is provided, and its accuracy in a
specific region has not been verified yet. The complexity of the model can be reduced and
the generalization performance can be strengthened by optimizing the modeling process.
The new models were all developed based upon the dataset within the study area, and
their generalization performances were strengthened via the ensemble learning method.
It can be seen from Table 3 that the RMSE of the SMFTm model was 9.3% better than the
NN-I model, and when we further incorporated the water vapor pressure into modeling,
the MMFTm model outperformed the NN-I model by 14.5% in terms of RMSE, and the
improvement in accuracy of the MMFTm model compared with SMFTm model was also
quite obvious (0.18 K for RMSE and 0.16 K for MS_RMSE). Although the accuracy of the
NMFTm model was not greatly improved compared with the GTm_R model (they both
correspond to the category of NMF models), it has the advantage of being simple and
universal for the users within the study area.

5.2. Accuracies Tested by Single Testing Stations

We further compared the performance of different models at each single testing station.
The distribution and statistics of S_MBE and S_RMSE for different models can be seen in
Figures 10–13.
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Figure 10. Distribution of S_MBE for different models tested by radiosonde data from 2016 to 2018
(a–h).
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Figure 11. Histograms of S_MBE for different models tested by radiosonde data from 2016 to 2018 (a–h).

Figures 10 and 11 show that the TVGG model and PTm-I model exhibited significantly
larger systemic negative biases than other competing models; both of them had a large
proportion of S_MBEs over −1.0 K, and these testing stations with larger biases were
mainly distributed in the western and northwestern regions of China. The GTm_R model
also showed a systemic negative bias, but its S_MBEs mainly ranged between −2.5 K and
0.5 K, and the bias was mainly contributed by stations in the northern region of China.
Although the S_MBEs of the Bevis model were evenly distributed from −4.0 K to 4.0 K,
the absolute S_MBEs over 2.0 K accounted for more than half of the total and the biases
of stations distributed in the study area were distinctly different; that is, stations located
at latitude below 30◦N had negative biases while the majority of stations located further
north had large positive biases, which indicates that the Bevis model is not applicable to
China and adjacent areas. The S_MBEs of neural network-based models (including NN-I
model and new models) were almost concentrated in the range from −2.0 K to 1.0 K and
were therefore better than those of other competing models, but slight systemic negative
biases could be found for the NN-I model. Both the SMFTm model and MMFTm model
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outperformed the NN-I model: their S_MBEs in most testing stations were between −1.0 K
and 1.0 K, and the Q1 (25th percentile), Q2 (50th percentile) and Q3 (75th percentile) values
were closer to 0 K than other models. Large negative biases could be found for the NMFTm
model in the northern part of the study area, but overall, it performed better than the
GTm_R model, Bevis model, TVGG model and PTm-I model in terms of S_MBE.

With regard to S_RMSE, one can see from Figures 12 and 13 that both the GTm_R
model and NMFTm model showed a very large S_RMSE in the northern part of the study
area. Although the GTm_R model is a grid model with a spatial resolution of 1◦ × 1◦, its
advantage in accuracy over neural network-based NMFTm model is not obvious; it did
not even match the NMFTm model in many places, such as at latitudes between 30◦ N
and 40◦ N. It is worth noting that both the GTm_R model and NMFTm model correspond
to the category of NMF models, and their S_RMSEs in most testing stations were in the
range between 4.0 K and 6.0 K; the error of converting GNSS–ZWD to PWV caused by
these models cannot be ignored in practice. The Bevis model, although a very classic SMF
model, does not take into account the impact of geographic location on model accuracy,
and thus its accuracy in the northern part of the study area was not significantly improved
compared with NMF models. The TVGG model and PTm-I model are both grid SMF
models, and the impact of geographic location differences were considered, meaning that
they outperformed tge Bevis model in most areas; however, a significantly large RMSE
could still be found in the northwestern region of China. There are two main reasons for
this: (a) the data source for modeling was reanalysis data derived from the assimilation
system, (b) the impact of height differences between the target location and grid points was
not taken into account. The flaws of the GTm_R model, Bevis model, TVGG model and
PTm-I model were clearly overcome by the neural network-based SMF models including
the NN-I model, SMFTm model and MMFTm model. From Figure 12, one can see that the
S_RMSEs of stations at the latitudes from 40◦ N to 60◦ N and stations in the southeastern
part of China from SMFTm model and MMFTm model were smaller than those from the
NN-I model. From Figure 13, much smaller Q1 values and Q3 values could be seen for the
SMFTm model and MMFTm model compared with other competing models.
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Figure 12. Distribution of S_RMSE for different models tested by radiosonde data from 2016 to 2018
(a–h).
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Figure 13. Histograms of S_RMSE for different models tested by radiosonde data from 2016 to 2018 9
(a–h).

5.3. Accuracies at Different Latitudes

The solar radiation intensity at different latitudes was inconsistent, which was the
most important reason for the regional differences of Tm, and many studies have shown
the strong correlation between Tm and geographic location (mainly latitude). We sorted the
testing dataset into eight groups, each with a latitude span of 5◦. The MBE and RMSE of
each group are shown in Figure 14.
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Figure 14. Results of MBE and RMSE for different models at different latitude ranges.

Figure 14 shows that the GTm_R model, TVGG model and PTm-I model had re-
markable negative biases at almost all the latitude ranges, while the Bevis model showed
great negative bias at stations located south of 35◦ N, but a marked positive bias could be
seen at stations further north, which corresponds to the results shown in Figure 10. The
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neural network-based models, however, showed much smaller biases at all the latitude
ranges; a large negative bias of the NN-I model could be seen mainly at the latitude range
of [20◦ N, 40◦ N], and the NMFTm model showed a larger negative bias at the latitude
from 35◦ N to 45◦ N. The SMFTm model and MMFTm model performed best in terms of
the MBE.

In terms of RMSE, RMSE values were smaller at low latitudes, but a larger RMSE
could be found at higher latitudes for all the competing models. The Bevis model showed
the largest RMSE at low latitudes, and its performance was even poorer than the GTm_R
model and NMFTm model; it even failed to show an advantage in accuracy over the NMF
model as latitude increased. Other SMF models except for the PTm-I model showed much
smaller RMSEs, but the performance of PTm-I model was still inferior to the TVGG model,
NN-I model and SMFTm model in almost all the latitude ranges, even though it took
the surface water vapor pressure into account. The performances of the TVGG model at
different latitude ranges were different: its RMSE first increased and then decreased with
increasing latitude. Improvements in RMSE could be found for the SMFTm model at all
the latitude ranges compared with the NN-I model. The RMSE of the MMFTm model was
always the smallest if all the competing models, and a significant improvement could also
be seen compared with the SMFTm model.

5.4. Accuracies at Different Heights

The height (height above sea level) of the station is considered as an input variable
in the development of new models. We compared the MBE and RMSE at different height
ranges for different competing models. The testing dataset was sorted into five groups
according to height: i.e., below 500 m, 500–1000, 1000–1500, 1500–2000 and above 2000 m.
The results are shown in Figure 15.
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Figure 15. Results of MBE and RMSE for different models at different height ranges.

From Figure 15, very large biases could be found at the heights over 500 m for TVGG
model and PTm-I model, since they do not take the height as input variable. GTm_R
model reduces the bias of Tm estimation caused by the height differences between target
location and grid points, but remarkable bias can still be found at the heights over 1000 m.
Bevis model performs well at the heights below 2000 m in terms of MBE, while significant
positive biases could be found at the heights over 2000 m. NN-I model actually takes into
account the impact of height differences by setting a constant lapse rate of −5.1 K/km [17],
the results show that its bias at each height range is also very small. The new models,
however, all take the height above sea level as one of the input variables, and their biases
are very small at all the height ranges.



Atmosphere 2021, 12, 169 22 of 27

In the aspect of RMSE, the largest RMSE of GTm_R model can be found at the heights
from 500 m to 1000 m, the performance of NMFTm model is similar to that of GTm_R
model, but slight improvement can be found at the heights over 1000 m. As TVGG model
and PTm-I model do not incorporate the height into the model, their RMSEs are closer
to those of neural network-based models when the height is less than 500 m, but with
the height increases, their performance are even poorer than those of NMF models. Bevis
model performs the poorest at almost all the height ranges, since Bevis model doesn’t
contain any information about the geographic location or terrain. Significant improvement
is shown for SMFTm model and MMFTm model at the heights below 500 m and heights
over 2000 m compared with NN-I model, but their advantages are not obvious at the height
from 500 m to 2000 m. MMFTm model has marked advantages over SMFTm model at low
altitudes, but this accuracy advantage disappears at the heights over 2000 m.

5.5. Accuracies in Different Months

The seasonal accuracies of different models were also examined in this study. We
calculated the monthly MBE and RMSE for different models with radiosonde data from
2016 to 2018, the results are shown in Figure 16.

From Figure 16, much larger biases can be found during spring and summer months
than those in winter for almost all the competing models. It can be seen that the biases of
NMFTm model are much smaller than those of GTm_R model in summer and autumn
months (from May to November), but they behave similarly in other months. Unlike
the other models, Bevis model shows small positive biases in the first half of the year,
and significant negative biases in other months. TVGG model always shows the largest
negative biases throughout the year, PTm-I model is slightly improved, but it can still be
seen that the negative biases are obvious throughout the year except for winter months.
The neural network-based SMF models behave similarly and much smaller negative biases
can be found for them throughout the year compared with most of other competing models.
The improvements of SMFTm model and MMFTm model are significant compared with
NN-I model in winter months.
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Figure 16. Results of MBE and RMSE for different models in each month.

On the RMSE side, one can see the opposite pattern of seasonal variation characteristic
from the MBEs case for most of the competing models i.e., RMSEs are much smaller in
summer months than those in other months. The reason is that the variation characteristic
of Tm during the summer is easier to be simulated than that in winter months [26,29]. The
RMSEs of both GTm_R model and NMFTm model are much larger than those of SMF mod-
els almost throughout the year, but the RMSEs of NMFTM model are significantly smaller
compared with GTm_R model in summer months. In the aspect of SMF models, Bevis



Atmosphere 2021, 12, 169 23 of 27

model performs the poorest since it doesn’t consider the seasonal variation charateristics of
Tm, TVGG model and PTm-I model perform similarly because the doy and even hod were
taken into account as the input variables, but they both show larger RMSEs than those
of neural network-based SMF models. The PTm-I model even failes to perform as well
as the TVGG model in some cases, even though the water vapor pressure was taken into
account as one of the input variables. NN-I model outperforms TVGG model and PTm-I
model throughout the year, particularly during summer months. SMFTm model shows
much higher accuracy than NN-I model especially in winter months, the improvement of
MMFTm model over SMFTm model is also significant throughout the year. We believe
that the water vapor pressure should still be considered as an important input variable in
Tm modeling.

5.6. Discussion

From the comparative analysis above, we find that the new models developed in this
study showed better performance than other published models under the same application
conditions. The NMFTm model presented some improvements over the GTm_R model in
almost all aspects, but its greatest advantage lies in its simplicity and utility. The SMFTm
model only took Ts as one of the model inputs, but its accuracy in terms of the RMSE
improved by 27.5%, 16.3% and 9.3% over the Bevis model, TVGG model and NN-I model,
respectively; its advantages could be found not only in the RMSE of single stations, but
also at different latitudes and heights, as well as in different months. Both the MMFTm
model and PTm-I model considered the surface water vapor pressure as one of the input
variables, but the accuracy of MMFTm model was 20.2% better than that of the PTm-I
model. Moreover, the MMFTm model showed the best performance of all the competing
models from different perspectives.

The variations of Tm are complex and closely related to weather conditions, but its
spatiotemporal variation characteristics follow distinct rules that have been described in
previous studies. On the global scale, the variation of Tm shows obvious characteristics of
latitude distribution and is related to topography and land-sea distribution. In terms of
specific regions, Tm in most regions exhibits an evident periodicity of properties, includ-
ing annual, semiannual and diurnal variation characteristics, which are the basis of Tm
modeling. In the analysis presented in this section, significant differences in accuracy are
shown for different models, and we think that the reasons for this result can be summarized
as follows:

(1). The data sources for modeling: The GTm_R model, TVGG model and GTm-I/PTm-I
model were all developed using reanalysis data, and uncertainties exist in extracting
meteorological elements and calculating Tm from reanalysis data, resulting in large
biases for these models, which can be seen in many respects from the comparisons
above. The Bevis model, NN-I model and new models, however, were all developed
using the data collected by sounding balloons; their biases are smaller and the models
are closer to the actual situation.

(2). The surface meteorological elements: The GTm_R model and NMFTm model are
NMF models, and their accuracies are not as good as those of other models because
the surface meteorological elements are not involved in the model. The performance
of the TVGG model was poorer than that of the PTm-I model since the PTm-I model
further considers the surface water vapor pressure as one of the inputs. This is also
the case for the performance of NN-I model and SMFTm model, which was not as
good as that of the MMFTm model. We believe that the water vapor pressure should
be an indispensable factor in the development of Tm models with better accuracy.

(3). The geographic location information: The variation characteristics of Tm at different
latitudes and land–sea distributions are different, and so are the relations between
Tm and surface meteorological elements. Generally, we can deal with this problem in
two ways: (a) constructing grid models—the GTm_R model, TVGG model and PTm-I
model correspond to this case—and (b) taking the geographic location information
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as the inputs of the model—all of the neural network-based models fall into this
case. The performance of the Bevis model is inferior to those of other SMF models
precisely because it does not consider the differences of variation characteristics of Tm
in different geographic locations. However, it is difficult to determine which method
is better from the comparative results, because the model accuracy is affected by
multiple factors.

(4). The impact of height differences: The GTm_R model and NMFTm model both take
into account the impact of height differences between the target location and grid
points, and their accuracies are nearly equal. The Bevis model, TVGG model and
PTm-I model, however, do not consider the height correction, and their accuracies
are greatly affected by the height of the testing stations. The NN-I model actually
considers the influence of height differences, but only sets the height lapse rate to a
constant; thus, its accuracy is not as good as that of the SMFTm and MMFTm model
at most height ranges. The heights of stations are introduced into the new models as
one of the input variables, meaning that they perform better than other competing
models under the same application conditions at all of the height ranges.

(5). Seasonal factors: In addition to the Bevis model, other competing models introduced
seasonal factors as one of the inputs (doy). From the comparisons above, the Bevis
model can be seen to perform the poorest in each month; its accuracy is even inferior
to the NMF models throughout the year. In fact, the seasonal variation characteristics
of Tm are the basis of Tm modeling, and therefore seasonal factors should be regarded
as a necessary input variable of a Tm model.

(6). The long-term trend of Tm: Many previous studies have shown that the Tm has an
increasing trend over the long term on a global scale, which is an important factor
that must be taken into account in modeling. The NMF Tm models can simulate the
long-term trend of Tm and add an approximate linear correction. As for the SMFTm
models, an external correction could be made according to the verification results
because a variety of meteorological elements are involved in the model.

(7). The optimization of modeling process for neural network-based models: Neural
network-based models show some differences in performance. We considered the
problem of model generalization in the development of new models and adopted the
ensemble learning method to enhance their generalization ability. From the above
comparisons in various aspects, the accuracies of the SMFTm model and MMFTm
model were significantly improved compared with the first generation of the neural
network-based Tm model.

The performances of the new models developed in this study were better than those
of other models listed in this paper under the same application conditions. There are
many reasons for their advantages; i.e., they benefit not only from the powerful nonlinear
mapping ability of neural network technique but also from the quality control of data
sources, optimal neural network structure, reasonable input variables and the further
optimization of the model through ensemble learning, etc. New models can meet the
needs of users under different application conditions within the study area. However, it
can be seen from the comparisons in this section that there are significant regional and
seasonal differences in the accuracy of the current Tm models, whether grid models or
neural network models, and the weather system is complex and diverse, including various
temporal and spatial scale changes [43,44], so more associated meteorological elements
should be incorporated into Tm modeling to improve the model accuracy and eliminate
these differences; however, further verification is needed.

6. Conclusions and Outlook

In this study, a non-meteorological-factor model (NMFTm), a single-meteorological-
factor model (SMFTm) and a multi-meteorological-factor model (MMFTm) based on neural
network technique were developed. The new models can be used to estimate the weighted
mean temperature in China and adjacent areas under different application conditions.
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The new models were robust enough and their generalization performances were further
strengthened by adopting the ensemble learning method; test results showed that the
methods could efficiently reduce the uncertainty risks in model accuracy, thus enhancing
their generalization performance. The accuracies of the new models were examined with
data from 119 radiosonde stations distributed in the study area, and comprehensive com-
parisons (including total accuracies, spatial distribution and statistics of accuracies at single
testing stations, accuracies at different latitudes and heights, seasonal accuracies, etc.) with
six other representative published models were also carried out. Test results indicated that
the new models showed better performance in terms of accuracy than other competing
models under the same application conditions from multiple perspectives. The NMFTm
model is superior to the latest non-meteorological model and has the advantages of simplic-
ity and utility. Both the SMFTm model and MMFTm model showed better accuracy than
all the published Tm models listed in this paper; the SMFTm model and MMFTm model
were shown to be approximately 9.3% and 14.5% superior to the NN-I model, with the best
accuracy so far in terms of root-mean-square error. More importantly, all the new models
showed stronger generalization performance than the previous neural network-based
Tm models.

This study concluded that the performances of NMFTm, SMFTm and MMFTm models
developed by the neural network technique optimized by the ensemble learning method
are better than those of other competing models under the same application conditions, and
these models show a powerful capability to capture the regional spatiotemporal variation
characteristics of Tm and simulate the relations between Tm and various surface meteoro-
logical elements. Therefore, the approach proposed in this study should be extended to
more relevant research fields of GNSS meteorology. In further analyses, the measured at-
mospheric profile data for global distribution from multiple observation systems including
radiosonde, GNSS radio occultation and radiometry, etc., can be used to develop global
Tm models under different application conditions. With such a large number of available
atmospheric profile data sources, the Tm values at different heights in the troposphere can
be calculated, and Tm models applicable to the whole near-Earth space on a global scale
will be considered for development in follow-up studies. Such models would facilitate
real-time conversion from GNSS–ZWD to PWV and be of great significance to the study of
the spatiotemporal variation characteristics of water vapor globally.
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Abbreviations
The following abbreviations are used in this manuscript:

ANN Artificial neural network
ECMWF European Centre for Medium-Range Weather Forecasts
GNSS Global Navigation Satellite System
IGRA Integrated Global Radiosonde Archive
MBE Mean bias error
NCEP National Centers for Environmental Prediction
NMF Non-meteorological factor
NWP Numerical weather prediction
PWV Precipitable water vapor
RMSE Root-mean-square error
SMF Surface meteorological factor
TFNN Three-layer feedforward neural network
UTC Universal Time Coordinated
ZHD Zenith hydrostatic delay
ZTD Zenith tropospheric (total) delay
ZWD Zenith wet delay
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