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Abstract: Dabie vortices (DBVs) are a type of heavy-rainfall-producing mesoscale vortices that appear
with a high frequency around the Dabie Mountain over the Yangtze River Basin. For a long time,
scholars have found that DBVs tend to form when a low-level jet (LLJ) appears in their neighboring
regions. However, the underlying mechanisms of this phenomenon still remain vague. This study
furthers the understanding of this type of event by conducting detailed analyses on a long-lived
eastward-moving DBV that caused a severe flood in the 2020 summer. It is found that the LLJ in
this event was belonged to a nocturnal LLJ type, with its maximum/minimum appeared around
2100/0600 UTC. The diurnal cycle of LLJ affected precipitation and intensity of the DBV notably:
As the LLJ intensified, vortex’s precipitation and intensity both enhanced, and vice versa. The LLJ
exerted two effects on the DBV’s formation that are opposite to each other. The more important
effect is that the LLJ caused intense lower-level convergence around its northern terminus. This
convergence directly produced cyclonic vorticity through vertical stretching, which dominates the
DBV’s formation and enhances the convection-related upward cyclonic vorticity transport that acted
as another favorable factor. The less important effect is that (i) the LLJ induced import of anticyclonic
vorticity into the vortex’s central region, which decelerated the DBV’s formation; and (ii) the LLJ-
related to strong ascending motions tilted horizontal vorticity into negative vertical vorticity, which
reduced the growth rate of cyclonic vorticity.

Keywords: mesoscale vortex; low-level jet; vorticity budget; heavy rainfall; Yangtze River Basin

1. Introduction

Heavy rainfall is one of the most severe natural disasters in China [1], and the Yangtze
River Basin (YRB) is one of the three main rain belts in China [2]. In normal years, the YRB
experiences a series of heavy rainfall episodes (HREs) during the warm season [3], which
result in huge economic losses and heavy casualties, such as the famous floods of 1951,
1998, and 2020 [4]. Mesoscale vortices (MVs) are a type of vortices with a horizontal scale
of 2–2000 km, which are one of the most common weather systems all over the world [5–7].
For the YRB, there are mainly two MV sources [8], one is around the Sichuan Basin, and
the other is around the Dabie Mountain. The MVs originated from these two sources are
found to be an important reason for the HREs over the YRB [9–11].

Statistical studies [12–15] had confirmed that there were two main types of heavy-
rainfall-producing MVs that formed over the YRB: One was generated around the Sichuan
Basin and was named the southwest vortex (SWV), and the other was generated around
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the Dabie Mountain and was referred to as the Dabie vortex (DBV). A detailed comparison
between SWVs and DBVs based on a 14-year statistic [16] showed that on average, both
types of MVs had a high occurrence frequency; whereas, the latter featured a faster moving
speed, a heavier precipitation intensity, and a larger probability of inducing lightning.
This means that the DBV may cause more severe disasters than those of SWVs. Due to
this, great efforts have been made to further the understanding of DBVs’ evolution. For
example, Dong and Zhao [17] investigated five DBVs embedded in the Meiyu front and
found that a couple of upper-level westerly jet and low-level jet (LLJ) was a favorable
condition for the development of these vortices. Sun et al. [18] and Fu et al. [19] investigated
the formation mechanisms of two heavy-rainfall-producing DBVs. They found that the
vorticity production (due to convergence) and the vorticity transport (due to convection)
were dominant factors for the vortices’ generation. Li et al. [20] conducted a convection-
permitting simulation and various diagnoses on a northeastward-moving DBV in July
2016. Their results showed that the interaction of this DBV with a middle-level cyclone
enhanced its intensity and precipitation. It should be noted that there is a common feature
for the studies mentioned above, i.e., an LLJ was remarkable during the formation period
of the DBVs [7,17–19]. This feature has also been confirmed as significant by a 14-year
statistic [16] and a semi-idealized simulation of DBV [20]. Although the LLJ exerted
important effects on generating DBVs, thus far, how the variation of an LLJ affects a DBV’s
formation still remains vague. For this reason, the primary purpose of the present study is
(i) to show the relationship between DBV’s formation and LLJ’s variation, and (ii) to reveal
the mechanisms of how LLJ affects DBV’s formation, based on a heavy-rainfall-producing
MV that caused a severe flood over the YRB in 2020.

The remaining of the paper is structured as follows: Section 2 presents the data and
method, Section 3 shows variations of the DBV and LLJ, Section 4 discusses the DBV’s
formation in detail, and finally, a conclusion and discussion are reached in Section 5.

2. Data and Method

The European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 reanaly-
sis data [21] of a temporal resolution of hourly and a spatial resolution of 0.25◦ × 0.25◦ was
used for analysis and vorticity budget in this study. Station observational 6-h accumulated
precipitation (http://www.nmic.cn/) was used to investigate the precipitation associated
with the DBV.

According to Green’s theorem, a surface integral of vorticity within an area equals the
velocity circulation along the boundary line of the area. This means that the area mean
vorticity is an effective indicator of MV, as the velocity circulation can describe an MV
effectively [20,22]. Therefore, this study employed the area-averaged vorticity budget
(which can determine key factors for the vorticity variation) to investigate the formation
mechanisms of the DBV. Its expression [22] is as follow:

∂ζ
∂t = k·

(
∂Vh
∂p ×∇hω

)
− (ζ + f )∇h·Vh − Vh·∇hζ −ω ∂ζ

∂p − βv + D(ζ)

TIL STR HAV VAV BT RES
(1)

where ζ is the relative vorticity, k is the unit vector in the zenith direction, Vh and ω
are the horizontal wind vector (subscript “h” indicates the horizontal component), and
vertical velocity in p (pressure) coordinate, respectively; f is the Coriolis parameter and
β = ∂ f

∂y . Terms TIL and STR represent vorticity production/extinction, due to tilting and
stretching, respectively; terms HAV and VAV stand for horizontal and vertical transport
of vorticity, respectively; term BT shows the “β effect” (i.e., advection of the planetary
vorticity), and term RES indicates the residual effect due mainly to friction and sub-grid
processes. Define term TOT = HAV + VAV + TIL + BT + STR, which represent the total
effect of all right-hand-side terms except for RES. All the derivatives in Equation (1) are
calculated using the central difference method on the ERA5 grid.

http://www.nmic.cn/
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3. Overview of the Event

In the 2020 summer, the YRB experienced numerous severe HREs that rendered
catastrophic floods [23]. For some regions in the lower reaches (e.g., Hubei, Jiangxi),
accumulated precipitation exceeded the same period of 1998, which made 2020, the severest
flood year in the past 60 years [4]. From 28 June to 2 July, a long-lived DBV formed east of
the Sichuan Basin (Figure 1), moved eastward, and caused a series of heavy precipitation
along its track (Figure 2), which resulted in a serious flood in the YRB. This vortex was
selected for detailed analyses in this study.
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Figure 1. The 850-hPa stream field, vorticity (shading, units: 10−5 s−1), and wind with speed above 12 m s−1 (a full bar
represents 4 m s−1), where the grey shading outlines the terrain above 1500 m, and the black rectangles mark the central
region of the mesoscale vortex. SCB = Sichuan Basin.
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Chongqing, GZ = Guizhou Province, HB = Hubei Province, HN = Hunan Province, JX = Jiangxi Province, AH = Anhui 
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Figure 2. Observed 6-h accumulated precipitation (shading, units: mm). SB = Sichuan Basin, SX = Shanxi Province,
CQ = Chongqing, GZ = Guizhou Province, HB = Hubei Province, HN = Hunan Province, JX = Jiangxi Province,
AH = Anhui Province, JS = Jiangsu Province.

3.1. Variation of the Dabie Vortex

Before 0000 UTC 28 June 2020, Hubei Province and the eastern section of Sichuan Basin
were controlled by notable upper-level divergence (Figure 3a,b) that was located south of
an upper-level jet (35–40 ºN) and northeast of the South Asian high. Upper-level divergence
favored ascending motions at lower levels. In the middle troposphere, this region was
governed by strong warm advection ahead of a shortwave (Figure 3e,f). According to
quasi-geostrophic omega equation [24], warm advection contributed to ascending motions
in this area. In the lower troposphere, an SWV maintained quasi-stationary behavior
within the Sichuan Basin (Figure 1a,b), east of which a lower-level shear line enhanced with
time (reflected by the growing cyclonic vorticity). During this stage, HREs appeared in
Hubei Province (Figure 2a,b), with their centers of 6-h accumulated precipitation exceeding
100 mm.
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stationary behavior (Figure 1c–e) as the middle-level steering flow was weak around the 

vortex (Figure 3g,h). In this period, heavy precipitation mainly appeared in the eastern 

Figure 3. Panels (a–d) show the 200-hPa divergence (shading, units: 10−5 s−1), wind with speed
above 35 m s−1 (a full bar represents 10 m s−1), temperature (red lines, units: ◦C), and geopotential
height (black lines, units: gpm). Panels (e–h) illustrate the 500-hPa temperature advection (−V·∇T)
(shading, units: 10−5 K s−1), wind with speed above 10 m s−1 (a full bar represents 10 m s−1),
temperature (red lines, units: ◦C), and geopotential height (black lines, units: gpm). The purple
circles mark the location of the mesoscale vortex.

At 0000 UTC 28 June 2020, the DBV formed (Figure 1c), whereas the SWV dissipated
in the meanwhile. Within 6 h after the DBV’s formation, the vortex maintained a quasi-
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stationary behavior (Figure 1c–e) as the middle-level steering flow was weak around the
vortex (Figure 3g,h). In this period, heavy precipitation mainly appeared in the eastern sec-
tion of the DBV (Figure 2d), but its intensity was weaker than that before DBV’s formation.
From 0600 UTC 28 to 0000 UTC 29 June 2020, under relatively strong middle-level westerly
steering flow (not shown), the vortex moved eastward, enlarged in the area (reflected
by the outmost closed streamline), enhanced in intensity (reflected by cyclonic vorticity)
(Figure 1f–j) and precipitation (Figure 2e,f). A 6-h accumulated rainfall center of above
100 mm appeared in Jiangsu Province during this period, which caused a severe flood. It
should be noted that from 0000 UTC 28 to 0000 UTC 29 June 2020 the vortex was mainly
maintained on land.

From 0000 UTC 29 June 2020 on, the DBV began to move northeastward into the sea
(Figure 1k). Over the sea, the vortex enlarged notably in its size and kept intensifying until
1200 UTC 30 June 2020 (Figure 1m), and then it weakened gradually (Figure 1n), which
rendered its final dissipation at 0900 UTC 02 July 2020 (Figure 1o). Overall, the DBV lasted
for ~102 h and moved ~10◦ in latitude and 28◦ in longitude (Figure 1). Considered that the
mean life span of DBV is ~36 h [16], the vortex in this study belonged to a long-lived type.

3.2. Variation of the Low-Level Jet

From 0600 UTC to 1500 UTC 26 June 2020, a southwesterly LLJ [25] appeared in
the region west of 117◦ E and south of 28◦ N (not shown). This LLJ enlarged in the area
gradually with time, and by around 1800 UTC 26 June 2020, its northern terminus stretched
northward across 28◦ N (in the meanwhile, an SWV formed within the Sichuan Basin).
Then, it continued intensifying until around 2100 UTC 26 June 2020, when it reached
the largest area (not shown). After this, the LLJ began to shrink in area, and reached its
minimum area at 0600 UTC 27 June 2020. From 0600 UTC to 2100 UTC 27 June 2020,
the LLJ developed again (Figure 1a,b and Figure 4a,d). The diurnal variation of the LLJ
indicates that it is a nocturnal LLJ [26]. Cross-sections of the LLJ (Figure 4a–e) show that its
maximum wind speed center was mainly located below 600 hPa. The intensity of the LLJ
also showed diurnal variational features, with the maximum intensity appeared at around
2100 UTC 27 June 2020 (Figure 4d), when its area reached the maximum.

As Figure 1a,b show, enhancement of the LLJ favored intensification of a lower-level
shear line east of the Sichuan Basin, which finally contributed to the DBV’s formation.
The vortex formed at 0000 UTC 28 June 2020, ~3 h after the LLJ reached its maximum
area and intensity (Figures 1c and 4d,e). From 0000 UTC to 0900 UTC 28 June 2020, as
the LLJ weakened, the DBV weakened both in central cyclonic vorticity (Figure 1c–f) and
precipitation (Figure 2c–e). Then, from 0900 UTC to 2100 UTC 28 June 2020, as the LLJ
intensified, the DBV enhanced in intensity and enlarged in the area again (Figure 1f–j).
From 0000 UTC 29 June 2020 on, the vortex moved eastward into the sea (Figure 1j–n). After
the DBV entered the sea, the LLJ south of it reduced notably both in range and intensity,
whereas, wind speed east of the vortex intensified rapidly, due to its merging with the
strong wind band west of an anticyclone that was located east of the DBV (not shown).
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Figure 4. Panels (a–e) show the zonally (from 109.25◦ E to 115.25◦ E) averaged wind speed (shading, units: m s−1), and
vorticity (blue lines, units: 10−5 s−1). Panels (f–j) illustrate the zonally (from 109.25◦ E to 115.25◦ E) averaged divergence
(shading, units: 10−5 s−1) and vertical velocity (black lines, units: cm s−1). Grey shading shows the terrain, and the green
dashed lines mark the central location of the mesoscale vortex. Y labels in all figures are pressure (units: hPa).
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4. Formation of the Dabie Vortex

To analyze the formation of the DBV, this study specified a (5◦ latitude × 6◦ longitude)
rectangle (black boxes in Figure 1) to focus on the central region of the vortex [20,27]. This
box is named as the key region (KR) of the DBV, which was defined according to the
temporal mean size of the vortex. A sensitivity test showed that the calculation results
based on the KR were insensitive to relatively small changes (±0.5◦) to its boundary lines
(not shown). Since the period of 1200 UTC 27-0000 UTC 28 June 2020 featured the rapidest
enhancement of LLJ south of the DBV and the largest increasing rate of cyclonic vorticity
within the KR before the vortex formation, this period was defined as the formation stage
of the DBV.

4.1. Variations of Conditions around the KR of the Dabie Vortex

For the areas south of the KR, as the LLJ enhanced from 1200 UTC to 2100 UTC
27 June 2020, a maximum wind speed center of exceeding 18 m s−1 appeared in the layer of
750–850 hPa, around 26–30◦ N (Figure 4a–d). The formation of this maximum wind speed
center was mainly due to the rapid increase of southerly wind (black lines in Figure 5a,d),
and the enhancement of westerly wind was also favorable. In the meanwhile, convergence
in this layer and region also intensified (Figure 4f–i), whereas, the vertical motions and
vorticity kept weak. From 2100 UTC 27 to 0000 UTC 28 June 2020 (when the DBV formed),
the maximum wind speed center weakened (Figure 4d,e), mainly due to the weakening of
the southerly wind (Figure 5e). In contrast, the westerly wind was enhanced in this period,
with a center of above 16 m s−1 appeared.
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green dashed lines mark the central location of the mesoscale vortex. Y labels in all figures are pressure (units: hPa).
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For the areas within the KR, from 1200 UTC to 2100 UTC 27 June 2020, the wind speed
increased rapidly (Figure 4a–d), and as the LLJ reached its maximum intensity at 2100 UTC
27 June 2020, a new maximum wind speed center of above 12 m s−1 appeared around
800 hPa (Figure 4d). The formation of this maximum wind speed center was mainly due
to the enhancement of westerly wind (blue lines in Figure 5a–d), which was not directly
related to the LLJ. During this period, a strong positive vorticity column (below 600 hPa)
maintained around 33◦ N and intensified rapidly with time, which was corresponded to
the formation process of the DBV. Associated with the enhancing strong positive vorticity
column, ascending motions, lower-layer convergence (according to Figures 4f–j and 5a–e,
the intense convergence was located around the northern terminus of the strong LLJ-
related southerly wind), and upper-layer divergence were getting stronger with time
(Figure 4f–i). North of this vorticity column, negative vorticity appeared and weakened
with time (Figure 4a–d), which also contributed to the DBV’s formation. From 2100 UTC
27 to 0000 UTC 28 June 2020 (when the DBV formed), the maximum wind speed center
disappeared (Figure 4d,e), mainly due to the weakening of the southerly wind (black
lines in Figure 5d,e). In the meanwhile, the strong positive vorticity column weakened
notably (Figure 4d,e), and its associated ascending motions, lower-layer convergence, and
upper-layer divergence all reduced notably in intensity (Figure 4i,j). In contrast, north and
south of the strong vorticity column, negative vorticity vanished, and positive vorticity
became dominant (Figure 4d–e). This means that the distribution of positive vorticity
became more uniform as the DBV formed.

4.2. Vorticity Budget on the Formation of the Dabie Vortex

Based on Equation (1), each term of the vorticity budget was first calculated and
then averaged within the DBV’s KR. Before analyses, an evaluation of the balance of the
equation was conducted. The results indicate that the ratio of the left-hand-side term
(i.e., the local time derivative) to the term TOT was between 0.72 and 0.91, with a mean
value of 0.81 (not shown). This means that after neglecting the term RES (which mainly
includes the friction-related effects, calculation errors, and sub-grid processes), the balance
of the equation is good (i.e., the budget results are reliable), and thus, the vorticity budget
results can be used for further analyses.

As Figure 6a shows, during the formation stage of the DBV, within its KR, cyclonic
vorticity at 850 hPa ([16], this is the central level of DBV) experienced rapid increase, which
can also be reflected by the notably positive TOT in Figure 6b. From the zonally averaged
cross-section (Figure 7a–e), it can be found that the distribution of TOT was inhomogeneous.
A strong positive TOT center appeared within 32–34 ºN around 850 hPa (875–825 hPa),
which was corresponded to the strong positive vorticity center there (Figure 4a–e). Com-
parison among each vorticity budget term shows that strong convergence (Figure 4f–j)
related to STR (Figure 5a–e) was the dominant factor (this is consistent with the overall
features, shown in Figure 6b). The strong convergence was mainly due to the LLJ-related
southerly wind that crossed the southern boundary of the DBV’s KR and the easterly wind
that crossed the eastern boundary (Figure 5a–e). Strong ascending motion-related VAV
(Figure 8a–e) was another favorable factor for the appearance of the positive TOT, which
mainly transported cyclonic vorticity generated below 850 hPa upward. As Figure 6b
shows, before 2100 UTC 27 June 2020, STR had a larger contribution than VAV; then, as
ascending motions within the KR grew more intense, their relative importance reversed.

Overall, during the formation stage, HAV mainly acted to reduce cyclonic vorticity
within the DBV’s KR (Figure 6b), which decelerated the DBV’s formation. As Figure 4a–e
show, around 850 hPa (875–825 hPa), south of the KR, anticyclonic vorticity was dominant,
whereas, within the KR, cyclonic vorticity was dominant. In the meanwhile, the LLJ-
related southerly wind controlled the regions around the southern boundary of the KR
(Figure 9a–e). This configuration means that the southerly wind transported anticyclonic
vorticity south of the KR into it through its southern boundary, which rendered a negative
HAV. Another notable negative HAV appeared around the eastern boundary of the KR
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(Figure 9f–j), mainly due to the export transport of cyclonic vorticity from the KR across
its eastern boundary by the westerly wind. Compared to HAV, TIL showed an overall
stronger effect on decelerating the DBV’s formation (Figure 6b). From Figure 7a–e, it can
be seen that within the vortex’s KR, TIL was distributed unevenly. In general, positive
TIL (around 850 hPa) tended to appear in areas with negative TOT, whereas, negative TIL
tended to appear in areas with positive TOT. This means that TIL tended to reduce the
amplitude of vorticity’s variation.
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velocity (units: cm s−1) at 850 hPa. Panel (b) shows the central region averaged vorticity budget terms (units: 10−9 s−2)
at 850 hPa. The grey dashed lines mark the value of “0”, and the purple dashed lines mark the time when the mesoscale
vortex formed. Y labels indicate the values of the variables on the right side.
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Figure 7. Panels (a–e) show the zonally (from 109.25◦ E to 115.25◦ E) averaged term TIL (shading, units: 10−9 s−2), and
term TOT (blue lines, units: 10−9 s−2). Grey shading shows the terrain, and the green dashed lines mark the central location
of the mesoscale vortex. Y labels in all figures are pressure (units: hPa).
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Figure 8. Panels (a–e) show the zonally (from 109.25◦ E to 115.25◦ E) averaged term VAV (shading, units: 10−9 s−2), and
vertical velocity (blue lines, units: cm s−1). Grey shading shows the terrain, and the green dashed lines mark the central
location of the mesoscale vortex. Y labels in all figures are pressure (units: hPa).
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Figure 9. Panels (a–e) show the zonally (from 109.25◦ E to 115.25◦ E) averaged term HAV (shading, units: 10−9 s−2), zonal
wind (blue lines, units: m s−1), and meridional wind (black lines, units: m s−1). Panels (f–j) illustrate the meridionally (from
29.75◦ N to 34.75◦ N) averaged term HAV (shading, units: 10−9 s−2), zonal wind (blue lines, units: m s−1), and meridional
wind (black lines, units: m s−1). Grey shading shows the terrain, and the green dashed lines mark the central location of the
mesoscale vortex. Y labels in all figures are pressure (units: hPa).
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5. Conclusions and Discussion

A series of previous studies had confirmed that a DBV tended to form when an LLJ
appeared around it. In this study, a long-lived eastward-moving DBV that caused a severe
flood over the YRB in the 2020 summer was selected to understand the relationship between
DBV’s evolution and LLJ’s variation, as well as the mechanisms of how LLJ affects DBV’s
formation. It is found that in this event, the LLJ was belonged to a nocturnal LLJ type, as
it showed a notable diurnal cycle, with its maximum appeared around 2100 UTC (local
time is 0500) and minimum occurred around 0600 UTC (local time is 1400), respectively.
The DBV did not form at the time when the LLJ reached maximum range and intensity;
instead, it was generated ~3 h after the LLJ’s maximum. Diurnal cycle of LLJ affected both
precipitation and intensity of the DBV. Overall, as the LLJ intensified, vortex’s precipitation
and intensity both enhanced, and vice versa. Moreover, over the land, the DBV showed a
closer relation to the LLJ than when the vortex was over the sea.

During the DBV’s formation stage, the LLJ played a dominant role. On the one hand,
it caused intense lower-level convergence around its northern terminus, located within
the vortex’ KR. This convergence (i) directly produced cyclonic vorticity (i.e., STR), which
dominated the vorticity increase within the KR, and (ii) it enhanced the ascending motions,
which contributed to the upward cyclonic vorticity transport. This vertical transport acted
as the second dominant factor for the DBV’s formation. On the other hand, (i) the LLJ
induced import of anticyclonic vorticity into the KR through its southern boundary, which
decelerated the DBV’s formation; and (ii) the LLJ-related to strong ascending motions
tilted horizontal vorticity into negative vertical vorticity, which reduced the growth rate
of cyclonic vorticity within the KR. Overall the positive effect of LLJ was stronger than its
negative effect, which applied a net favorable effect on the DBV’s formation.

It should be noted that the results of this study were derived from a single event.
Although this can be regarded as a representative for similar events, we do not know how
many proportions it can represent. Nor do we know whether there are other completely
different relations between LLJs and DBVs. Therefore, in the future, more LLJs and DBVs
should be investigated, which will render a more comprehensive understanding of this
type of event.
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