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Abstract: Coupled fire-atmosphere models are increasingly being used to study low-intensity fires,
such as those that are used in prescribed fire applications. Thus, the need arises to evaluate these
models for their ability to accurately represent fire spread in marginal burning conditions. In this
study, wind and fuel data collected during the Prescribed Fire Combustion and Atmospheric Dy-
namics Research Experiments (RxCADRE) fire campaign were used to generate initial and boundary
conditions for coupled fire-atmosphere simulations. We present a novel method to obtain fuels
representation at the model grid scale using a combination of imagery, machine learning, and field
sampling. Several methods to generate wind input conditions for the model from eight different
anemometer measurements are explored. We find a strong sensitivity of fire outcomes to wind
inputs. This result highlights the critical need to include variable wind fields as inputs in modeling
marginal fire conditions. This work highlights the complexities of comparing physics-based model
results against observations, which are more acute in marginal burning conditions, where stronger
sensitivities to local variability in wind and fuels drive fire outcomes.

Keywords: fire modeling; low intensity fire; prescribed fire; model-observation comparison

1. Introduction

Interest has been growing in the application of coupled fire-atmosphere modeling to
study prescribed fires burning in marginal burn conditions [1,2]. Here, marginal conditions
refer to those under which fire spread depends on the localized (in time or space) hetero-
geneities in fuels and wind fields. Under these conditions, fire intensity is low, fireline
depths are narrow, firelines are often broken and the fire’s ability to spread is variable. To
date, coupled fire-atmosphere models have predominantly been applied to study high-
intensity wildfires. However, it is important to assess coupled fire-atmopshere models’
applicability to low-intensity fires, which are more sensitive to small environmental varia-
tions [3]. Here, we use observations of fuels and atmospheric conditions collected during
the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research Experiments
(RxCADRE) campaign [4] to drive simulations of low-intensity fires in marginal conditions
and evaluate modeled fire behavior using observations.

Physics-based coupled fire-atmosphere models fall on the far end of the spectrum
of wildland fire models, ranging from purely empirical to theoretical physics-based, with
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various combinations in between [5,6]. While empirical models, such as the Rothermel fire
spread based model BEHAVE [7,8], represent empirically based functional relationships
between aspects of fire behavior, such as rate of spread (ROS) or fire intensity, and the
ambient conditions under which the fire is burning, three-dimensional fuel properties and
atmospheric conditions must be explicitly specified at the resolution of the computational
grid in order to initialize coupled fire-atmosphere models. The more complete the explicit
specification of fuels and winds, the fewer unstated assumptions are made. In reality, each
simulation is a complex trade-off involving the availability of detailed data, the process
simplifications in the model, and assumptions concerning the mean and spatiotemporal
variability of fuels and winds not sampled. The sensitivity of physics-based models to
the details of input conditions can vary significantly between higher intensity and lower
intensity fires. Characterizing this sensitivity remains an area of ongoing research.

Fire model applications have historically focused on fires that pose a significant risk to
lives or infrastructure. However, more recent applications include modeling of fire behavior
in the context of prescribed fires [1,2]. Prescribed fires target a narrow window of fire
intensities, bounded by conditions where (1) fire can be sustained and will carry through the
fuels [9], and (2) fire intensity is not sufficient to escape the confines of the managed area or
cause unwanted ecological damage [10,11]. The behavior of low intensity fires is sensitive
to different aspects of the fire environment relative to high intensity fires. Thus, a model
capable of simulating the spread of a crown fire may not be able to represent the behavior
of a low intensity surface fire burning under marginal conditions [12]. As the intensity of
the fire declines, the importance of finer-scale heterogeneity in the fuels and wind patterns
increases, adding challenges to fire modeling as fire-length scales decrease with respect
to computational grid resolution. As fire models are increasingly used to assist decision
making in prescribed fire scenarios, it is important to evaluate their performance and level
of uncertainty under marginal burning conditions, including slower wind speeds, lighter
fuel loads, and higher moisture levels than those associated with wildfires. Comparison
with observations is critical to this evaluation.

Previous comparisons of physics-based models to wildfire observations and field
experiments can be divided into two categories: (1) comparisons of trends, averaged over
many simulations and observations, and (2) comparisons of model results to observations
of individual fires. Comparisons of trends [13], with parallels to the development of
empirical models, can match macro-scale responses to environmental conditions, such as
wind speed, but cannot assess a physics-based model’s ability to accurately represent the
physical drivers of specific observed behaviors. Comparisons with individual wildfire
observations and experiments are more common model applications [14–22]. Results from
these experiments are complicated to interpret because conditions for observed wildfires
are usually not sufficiently characterized to connect specifics of spatially heterogeneous and
dynamic winds and heterogeneous fuels with specific burn characteristics of a fire at a given
moment in time. This data mismatch forces assumptions, homogenization, or estimates
to fill gaps in model inputs. These assumptions and estimates translate to uncertainty in
model results. This is also the reason why most empirical models are developed based on
statistical analysis of numerous observations.

To date, no such comparisons have been performed under marginal burning condi-
tions, in part because no well-characterized data sets were available until the Prescribed Fire
Combustion and Atmospheric Dynamics Research Experiments (RxCADRE) [4]. The 2012
RxCADRE campaign included a number of prescribed burns at different scales, ranging
from 2 ha to 454 ha. These experimental burns were intended to provide a comprehen-
sive, multi-scale dataset for evaluating coupled fire-atmosphere combustion and smoke
models, which have historically lacked experimental data to support or refute the complex
fire-atmospheric interactions that they attempt to capture [23]. Data collected in 2012
leveraged relatively homogeneous fuel beds, flat terrain, and common ignition patterns
to capture the range of variation in fire behavior resulting from subtle fuel, local weather,
and fire line interactions. To date, these data have largely been used to evaluate smoke
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model errors [24,25], quantify model uncertainties associated with smoke transport, assess
heat-release patterns [26,27], and examine near-fire micrometeorology [28]. Fire behavior
models have been challenged by heterogeneity within the light fuel loads and relatively
low turbulent wind fields present during the RxCADRE burns [28], which are characteristic
of environmental conditions for many prescribed burns.

Leveraging the fuel and wind measurements collected as part of the 2012 RxCADRE
campaign, we have explored physics-based simulations of low-intensity fire in marginal
conditions with FIRETEC [29–31], a coupled fire-atmosphere model, and compared results
to observed fire behavior [31–33]. FIRETEC is one of three models in its class. The other
physics-based coupled fire-atmosphere models capable of representing the interacting heat
transfer, fluid dynamics, and combustion that determine fire behavior are the Wildland Fire
Dynamics Simulator (WFDS) [16,34] and FIRESTAR 3D [35]. FIRETEC was used to model
a 200 m × 100 m (2 ha) plot, S5 [4], which represents the most “straight-forward” and data
rich of the RxCADRE 2012 fires. We present lessons learned regarding data requirements
for initializing and bounding simulations of marginal-burning fires.

2. Experimental Data

The comparisons carried out in this study leveraged empirical data from the S5 burn
experiment of the 2012 RxCADRE field campaign conducted at Eglin Air Force Base [4].
FIRETEC inputs included fuel configuration and atmospheric condition before ignition, as
well as upwind atmospheric conditions for the duration of the fire. The input data were
derived from published and archived sources from RxCADRE [4,28,36–39].

2.1. Fuels

The RxCADRE S5 plot (Figure 1) was planned by RxCADRE principal investigators as
a homogenous mixture of fuels from a macro perspective, at 100-m to km scales. However,
similar to other southeastern fuels [40], fuels in S5 were quite heterogeneous at scales from
1–10 m2, as seen in Figures 1 and 2. Fuel heterogeneity at meter scales can be resolved
explicitly by FIRETEC, which has a horizontal spatial resolution of 1–2 m. Thus, variation
in fuel types has the potential to significantly impact fire behavior (e.g., woody goldenrod
(Chrysoma pauciflosculosa (Michx.) Greene) typically has high live fuel moisture content and
rarely burns, while tall bunchgrass is flashy). To represent the meter-scale variability of
fuels in the S5 plot, we used a combination of high-resolution (0.15 m) images of the area
taken before the burn, in 2010 (courtesy of Eglin Air Force Base Geointegration Office), and
data collected during a site visit after the burn in November 2013.

We identified meter-scale regions of relatively heterogeneous fuel within the S5 plot
during the site visit. These regions were recorded with GPS coordinates and imagery,
which also documented their spatial relationship to other fuel types, such as perennial
shrubs. Seven major fuel types for the S5 plot were identified: short grass (characteristic
height: 0.2 m, characteristic fuel load: 0.29 kg m−2), tall grass (0.8 m, 0.55 kg m−2),
saw palmetto (Serenoa repens (Bartram) J.K. Small) (0.4 m, 0.22 kg m−2), little bluestem
(Schizachyrium rhizomatum (Swallen) Gould) (0.3 m, 0.07 kg m−2), woody goldenrod (0.2 m,
0.19 kg m−2), clay road, and bare ground or sand. While the road is technically bare ground,
road and bare ground were classified separately because the improved clay road surface
gives it a different appearance, which was used for visual reference. The different surface
types can be seen in visible spectrum imagery provided by Eglin Air Force Base as different
colors. Agreement in vegetation patterns in the 2010 imagery and in data collected in 2013
suggests that this data is representative of fuels present at the time of the burn.
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boundary shown in black. (b) Visible image zoomed (10 m × 15 m) to show detail near the center 
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tesy of Eglin Air Force Base Geointegration Office. 

We identified examples of each of the seven dominant fuel types in the image and 

used them to train a commercially available adaptive feature extraction software package, 

Genie Pro 2.4 (Copyright 2007–2012 Observera, Inc., Chantilly, VA, USA). Genie classified 

the remaining portions of the image (approximately 98%), as seen in Figure 1c,d. This 

classification was accomplished using an iterative process. We used known fuel types to 

guide an initial Genie-based classification, and then compared regions classified by Genie 

to known fuel types for validation. In locations where the classification was incorrect, we 

trained Genie again using additional known fuels, and reclassified the entire image. This 

process was repeated until close visual inspection of the classification showed no notable 

differences. Eglin Air Force Base fire managers then verified that the classification cap-

tured the major features of fuel patterns by comparing specific fuel types and transitions 

in the image-based classification and in the field. 

Figure 1. Fuel class verification. (a) High-resolution (0.15 m) raw visible spectrum imagery of the
landscape within the FIRETEC computational domain surrounding S5 (400 m by 600 m), with S5
boundary shown in black. (b) Visible image zoomed (10 m × 15 m) to show detail near the center of
S5. (c,d) GENIE fuels classifications for the domains shown in (a,b), respectively. Image courtesy of
Eglin Air Force Base Geointegration Office.
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Figure 2. Flow chart for processing of (a) raw 0.15 m imagery through (b) fuels classification mapping using the Genie
software at 0.15 m resolution, (c) associating fuel properties from destructive sampling with each pixel from the Genie-based
classification and (d) building fuel data such as fuel density at 2 m × 2 m resolution for use in FIRETEC.
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We identified examples of each of the seven dominant fuel types in the image and
used them to train a commercially available adaptive feature extraction software package,
Genie Pro 2.4 (Copyright 2007–2012 Observera, Inc., Chantilly, VA, USA). Genie classified
the remaining portions of the image (approximately 98%), as seen in Figure 1c,d. This
classification was accomplished using an iterative process. We used known fuel types to
guide an initial Genie-based classification, and then compared regions classified by Genie
to known fuel types for validation. In locations where the classification was incorrect, we
trained Genie again using additional known fuels, and reclassified the entire image. This
process was repeated until close visual inspection of the classification showed no notable
differences. Eglin Air Force Base fire managers then verified that the classification captured
the major features of fuel patterns by comparing specific fuel types and transitions in the
image-based classification and in the field.

Next, fuel properties, including fuel load, height, surface-area-per-volume, and mois-
ture, were associated with each fuel type and assigned to each 15 cm pixel of the high-
solution image. Fuel load, height and surface-area-per-unit-volume were obtained from
destructive sampling completed just prior to the burn in 2012 [4]. Fuel moisture values rep-
resentative of dry fuels were assigned to each pixel. While live fuels were also present, in
this fuel complex dead fuels carry the fire, while live fuels do not contribute significantly to
fire spread. The implications of our approach, which essentially neglects live fuel moisture,
will be investigated in subsequent research.

Finally, the 15 cm pixels were averaged to 2-m FIRETEC grid resolution, as illustrated
in Figure 2 for fuel density. While this methodology worked well for this particular burn
site, where the vegetation is low in height with a limited number of dominant species
that grow in meter-scale patches, it would present more challenges in areas where fuels
are more complex or have multiple vertical layers. At the time of this work, techniques
for converting terrestrial LIDAR data into high-resolution fuel input conditions were not
sufficiently mature to be used. Terrestrial LIDAR techniques [41] are expected to simplify
the fuel bed development process in the future.

2.2. Winds

As part of the RxCADRE experiment, 27 tower-based anemometers were distributed
around the S5 plot (Figure 3; [28]). Twenty-four anemometers surrounded the S5 plot,
spaced approximately 30 m from each other and 40 m from the northwest (upwind)
S5 boundary, 30 m from the southeast (downwind) S5 boundary, and 20 m from the
other boundaries. Three additional anemometers were arranged in a line stretching to
the northeast of the plot, based on forecasts of the prevailing wind direction during the
burn. On the day of the burn, however, the wind direction was from the north, rather
than northwest.

The anemometers recorded instantaneous wind speed, S, and direction, α, in intervals
of 3 s. Wind direction α is defined as the direction from which the wind blows in degrees
clockwise from north. Ten of the 27 anemometers were considered upwind of the plot
based on the nominally north ambient wind on the day of the burn. These anemometers
are marked with blue or red circles in Figure 3 and their wind measurements are shown in
Figures 4 and 5. Of these ten upwind anemometers, two (A47 and A77, shown as red circles
in Figure 3) were in disagreement with the other sensors in terms of their wind direction
(black lines in Figure 4b). For the purpose of this study, we assumed that these statistical
outliers have sensor misalignment errors and excluded them. While wind measurements
at the remaining eight upwind anemometers (colored lines in Figure 4) exhibited some
variability as well, it is impossible to distinguish between wind field heterogeneity and
measurement error. For the purpose of this study, we have assumed that differences
between the sensors at any given point in time reflect spatial and temporal variability in
the wind field.
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Figure 3. Layout of the S5 plot (hashed area) relative to the ambient wind. The plot was instrumented
with 27 anemometers shown as yellow, blue or red numbered circles. Blue and red circles indicate
anemometers considered upwind relative to the ambient wind on the day of the burn. Green flags
mark anemometers included in the 5-sensor average, while purple flags mark anemometers included
in 4-sensor average. Orange circles mark the center and ends of the ignition line.
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Figure 4. Wind speed (a) and direction (b) measured in 3 s intervals for the 10 upwind anemometers.
A47 and A77 (black, bold lines) were excluded from the analysis because their measurements of wind
direction differ substantially from the remaining sensors. These anemometers are marked with red
circles in Figure 3.
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Figure 5. Windroses show the wind speed and direction measured at the 10 anemometers considered upwind of the burn
plot. Circular levels indicate percentage of time a wind direction was observed, and colors indicate associated wind speeds.
Anemometers A47 and A77 at the bottom were excluded from this study due to large differences in wind direction relative
to the other sensors.

For each sensor n and each point in time after ignition, we calculated orthogonal wind
velocity components, un and vn, using Equation (1):

un = −Snsin(αn)
vn = −Sn cos(αn)

(1)

un is the west to east component and vn is the south to north component. We obtained
the time-averaged wind magnitude Sn and direction αn for each anemometer from time
averages of u and v components, un and vn, based on Equation (2):

Sn =
√

un2 + vn2

αn = atan
(

un
vn

) (2)

The time-averaged magnitude obtained through this calculation is the magnitude of
the mean velocity vector over 320 s. This differs from averaging the instantaneous wind
speeds measured by the anemometers because the average of the anemometer wind speeds
does not account for wind direction. Consider four anemometer measurements: 1 m s−1

from the north, 1 m s−1 from the east, 1 m s−1 from the south and 1 m s−1 from the west.
The simple average of these wind speeds would be 1 m s−1, but the magnitude of the
time-averaged mean velocity vector would be 0 m s−1.

Due to our definition of the mean speed and mean angle, the time average of the
component of the instantaneous wind in the direction of the mean wind is u‖αn = Sn and
time average of the component of the wind perpendicular to the mean wind direction
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is u⊥αn = 0. Perturbations from the temporal mean are computed as follows: u′‖αn =
−u′n sin(αn)− v′n cos(αn) and u′⊥αn = −u′n cos(αn) + v′n sin(αn).

The perturbations were used to compute standard deviations of wind parallel to
the mean wind direction, σ (u ‖ α ), and of wind perpendicular to mean wind direction,
σ (u⊥α ). We computed the mean kinetic energy of the horizontal flow per unit mass
(MKE) and turbulence kinetic energy (TKE) as:

MKE =
u2 + v2

2
, TKE =

σun
2 + σvn

2

2
(3)

where σ is the standard deviation. The total average kinetic energy is the sum of the TKE
and MKE. While turbulent fluctuations in the vertical direction were also present, they were
not recorded by the anemometers and vertical velocities were disregarded in our analysis.
Anemometers were positioned tens of meter from the fire, and close enough to the ground
to limit the length scales associated with vertical fluctuations at the anemometer locations.
It is likely that the vertical fluctuations felt at the anemometers were not correlated to those
at the fire. Statistics computed using Equation (1) through (3) above for the eight upwind
anemometers are shown in Table 1.

Table 1. Statistics computed using wind data from the eight anemometers used in the study.

Sensor S(ms−1)
± σS

α ± σα
σ (u ||α)

(ms−1)
σ (u⊥α)
(ms−1)

u (ms−1)
± σu

v (ms−1) ± σv
MKE

(m2/s2)
TKE

(m2/s2)

A81 2.17 ± 0.81 3.91 ± 18.10 0.76 0.80 −0.15 ± 0.79 −2.17 ± 0.77 2.35 0.60
A26 2.35 ± 0.91 −3.95 ± 21.72 0.92 0.86 0.16 ± 0.85 −2.35 ± 0.92 2.77 0.79
A80 2.28 ± 0.84 −15.55 ± 20.05 0.86 0.73 0.61 ± 0.76 −2.19 ± 0.83 2.58 0.64
A31 2.49 ± 0.87 −5.79 ± 14.06 0.90 0.48 0.25 ± 0.52 −2.48 ± 0.87 3.11 0.52
A60 2.47 ± 0.85 −1.26 ± 10.52 0.86 0.38 0.05 ± 0.39 −2.47 ± 0.86 3.05 0.44
A73 2.29 ± 0.78 −29.66 ± 16.16 0.78 0.62 1.13 ± 0.56 −1.99 ± 0.83 2.62 0.50
A41 2.43 ± 0.81 −56.24 ± 18.23 0.85 0.62 2.02 ± 0.64 −1.35 ± 0.84 2.95 0.56
A42 2.44 ± 0.78 −54.66 ± 17.49 0.79 0.69 1.99 ± 0.60 −1.41 ± 0.86 2.97 0.55

The highest mean wind speed was recorded at A31, at 2.49 m s−1, and the lowest
mean wind speed was recorded at A81 at 2.17 m s−1 (~15% variation between sensors). The
minimum and maximum values of mean kinetic energy were found at the same sensors.
TKE, which quantifies turbulent deviations from the mean wind, peaked at A26, and
was lowest at A60. A31 and A60 were located directly upwind of the burn plot, while
A81 and A26 were farthest away from the burn plot. Thus, at the time of data collection,
areas of relatively strong mean winds were co-located with low TKE, and vice versa. We
hypothesize that the lower TKE values at locations closer to the fire were due to the fact
that the sustained indraft from the fire damped the fluctuations in the background wind
field. This analysis did not provide sufficient data to evaluate this hypothesis, but it will be
addressed in future research.

2.2.1. Temporal Wind Variability

The standard deviation of wind speeds (Table 1, C2) ranged from 0.78 m s−1 to
0.91 m s−1 with a mean of 0.83 m s−1, indicating temporal wind variation at individual
sensors. The standard deviation of wind speeds at individual anemometers was larger than
the standard deviation of the wind speeds averaged over the eight upwind anemometers.
This suggests the importance of rapid temporal wind fluctuations locally, compared to
larger-scale flow structures (>~100 m) that would induce persistent wind speed differences
amongst anemometers. Since the S5 plot and areas upwind of it were fairly homogenous
on scales of ~100 m, it is to be expected that fewer larger-scale flow structures were present.

The standard deviations for the wind components parallel and perpendicular to the
mean wind speed are indicative of the local along-wind and cross-wind gustiness. Values of
standard deviation of wind parallel to the mean ranged from 0.76 ms−1 to 0.92 ms−1, or 32%



Atmosphere 2021, 12, 139 9 of 19

to 39% of wind speed in this direction (Table 1, C4), consistent with the magnitude of the
swings seen in Figure 4a. The standard deviation of the wind components perpendicular
to the mean wind direction ranged from 0.38 ms−1 to 0.86 ms−1, or 15% to 37% of the mean
wind (Table 1, C5). These lateral wind fluctuations were responsible for the differences
in local instantaneous wind directions among sensors. As a result, FIRETEC simulations
showed strong sensitivity to the timing of ignition or position in space of the sensor used
to obtain wind direction (see Section 4).

2.2.2. Spatial Wind Variability

The range of mean wind directions across the eight sensors, 60.15 degrees, and the
associated variation in u and v wind components illustrate substantial spatial variability in
wind directions relative to a site-wide mean wind. The impact of fluctuations perpendicular
to the mean wind decreased as large-scale site-wide mean wind increased. If, for example,
the site-wide mean wind had been higher, the same magnitude of fluctuation in the winds
would not have resulted in such a wide angular range for the individual anemometer
since the angular deviation from the site-mean is proportional to sin−1 (cross stream
perturbation/mean wind speed).

The mean and standard deviation for the u and v velocity components (Table 1) reflect
the fact that anemometers on the western portion of the upwind anemometer array (A81,
A26, A80, A31, and A60) recorded mean flow that is predominantly from the north to north-
east (mean u components have much smaller magnitudes than the v components). Wind
directions measured at sensors farther to the east (A41, and A42) had a more significant
westerly component during this time period (more negative wind angles; green, turquoise
lines in Figure 4b). This behavior—summarized in windrose plots in Figure 5—is indicative
of a larger-scale (>~100 m) structure in the flow that passed through the anemometer array
at the time of the burn, giving a macroscale directional trend. This directional trend was
different from smaller-scale wind fluctuations at individual anemometers.

3. Modeling Methods
3.1. FIRETEC Domain Setup

We performed a set of ten FIRETEC simulations, including five simulations driven
by data from single anemometers located most directly upwind of the ignition line, A80,
A31, A60, A73, A41, and five simulations with winds based on data from multiple sensors.
Nine of the ten simulations used heterogeneous fuels as described in Section 2.1. The tenth
simulation used a spatially uniform representation of average fuels.

To avoid interactions between the boundaries of the computational domain and fire-
induced winds, we used a computational domain significantly larger than the S5 burn plot.
Our computational domain was 600 m by 400 m, and we placed the S5 burn plot (black
line in Figure 4) 150 m from the domain boundary in x direction (direction of the short
dimension of the S5 plot) and 200 m from the domain boundary in y direction (direction
of the long dimension of the S5 plot). See Figure 1a,c for a comparison of the domain size
with the S5 burn plot. This put the ring of anemometers around the burn plot at least
130 m from the boundaries. The horizontal grid spacing was 2 m. The computational
domain had a vertical extent of 615 m and the atmospheric stability in the simulations
was neutral. We use a stretched vertical coordinate, with an average vertical spacing of
15 m, translating to an actual resolution of 1.5 m near the ground and ~40 m near the
top of the domain. FIRETEC’s compressible atmospheric solver utilizes the method of
averages [42,43] to efficiently simulate flows on multiple time scales by splitting high-
frequency phenomena from the governing equations by applying two nested time-stepping
schemes. The small time-stepping loop, with a time step of 0.002 s, solves for fast-moving
waves, which are averaged and fed into the large time step, at 0.02 s, which solves the
Navier-Stokes equations. These time steps were chosen to minimize computational expense
while resolving required time scales for stability associated with Courant-Friedrichs-Lewy
(CFL) criteria for compressible solvers, convective heat transfer and aerodynamic drag.
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Each simulation was run for 500 s. Ignition started after 180 s, and fires burned for 320 s
of simulation time. The time of 320 s was chosen based on the approximate time that it
took the S5 fire to reach the tower in the middle of the plot, as it was a visual marker that
could be used for comparison. This 320-s time was also convenient as a balance, allowing
fires to burn for long enough time to capture the influences of multiple fluctuations in the
wind field but short enough that only one of the simulations burned past the edge of the
burn block.

3.2. Wind Initial and Boundary Conditions

To simulate a fire exposed to the same conditions as the RxCADRE S5 burn, we used
measured anemometer data to prescribe the initial winds throughout the computational do-
main and evolving upstream winds over the course of the burn. We compared several basic
techniques for prescribing these initial and boundary conditions, including: (a) using mea-
surements from individual upstream anemometers, (b) simple averaging of the 8 upstream
anemometer measurements (blue circles and labels in Figure 1), (c) averaging only a subset
of 4 and 5 upstream anemometers (purple and green flags in Figure 1 respectively), and
(d) blending data from the 8 upstream anemometers using a nearest neighbor weighting
algorithm. All of these methodologies require spatial extrapolation of the anemometer data
to prescribe the dynamic winds at the boundaries of the computational domain and at all
points within the domain at the start of the simulation, including winds aloft. Challenges
of this process include:

• Adequately representing the spatial and temporal variability of the winds, including
the dynamic wind events that influence fire behavior within the S5 plot.

• Using the 3.3 m high anemometer data to estimate winds aloft.

For simulations based on single anemometers and with 4-, 5- and 8-anemometer
average winds, the boundary and initial conditions were based on a single vertical profile
(described below). While these methods resulted in horizontally uniform wind field inputs
into FIRETEC, the nearest neighbor weighting technique (8NN) generated horizontally
heterogeneous values using a distance-weighted average between velocity components
measured at the eight sensors. The distance-weighted average was calculated as follows:

U8nnw(x, y) =
∑n=1,8 un∗

√
(x−xsensor,n)

2+(y−ysensor,n)
2

∑n=1,8

√
(x−xsensor,n)

2+(y−ysensor,n)
2

V8nnw(x, y) =
∑n=1,8 vn∗

√
(x−xsensor,n)

2+(y−ysensor,n)
2

∑n=1,8

√
(x−xsensor,n)

2+(y−ysensor,n)
2

(4)

where x and y are the location of FIRETEC grid cells and xsensor,n and ysensor,n specify
the location of sensor n. The values xsensor,n and ysensor,n were used to specify an initial
condition, which was immediately made mass consistent by solving the conservation of
mass and momentum equations. At the boundaries, winds were relaxed towards these
values but conservation of mass and momentum equations assured consistency. In order
to allow comparison between time-averaged, ambient winds for the 8NN simulations
and the other simulations in Table 2, mean winds for the 8NN simulation were computed
by averaging the velocity components at 15 evenly spaced points along the ignition line
(computed with the nearest neighbor algorithm shown above) for the 320 s after ignition.

To specify the velocities over the remaining vertical extent of the domain, we verti-
cally blended the rapidly varying surface winds with steady winds aloft, obtained using
Equation (5):

ualo f t(z) =
uavg
0.4
[
ln z

0.1
]

valo f t(z) =
vavg
0.4
[
ln z

0.1
] (5)

uavg and vavg are 10 min average u and v wind components (from 3 min prior to
ignition until 7 min after ignition) computed by averaging all eight upwind sensors over
this time period. The two profiles were blended using an exponential decay weighting such
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that near the ground the velocities matched measured values and aloft the values matched
the mean value. The reason for doing this is that the dominant length scales of atmospheric
motion are expected to be finer near the ground than higher above the surface. Thus, high
frequency perturbations become less significant compared to the mean wind with height.
It would be unrealistic to impose the same fluctuations uniformly over the entire vertical
extent of the domain or to simply extrapolate these fluctuating winds vertically with a
log profile. Additionally, details of the perturbations higher above the ground are not
known, and this approach provides a smooth transition between the measured dynamic
and heterogeneous velocity field near the ground and winds aloft.

Table 2. Input parameters for the 10 FIRETEC simulations of the S5 burn.

Simulation Surface Wind Fuels S α
S ⊥

Ig. Line
S ‖

Ig. Line

A80 A80 Heterogeneous 2.28 −15.55 2.20 0.61
A31 A31 Heterogeneous 2.49 −5.79 2.48 0.25
A60 A60 Heterogeneous 2.47 −1.26 2.47 0.05
A73 A73 Heterogeneous 2.29 −29.66 1.99 1.13
A41 A41 Heterogeneous 2.43 −56.24 1.35 2.02

4S_avg 4-sensor average Heterogeneous 2.34 −12.61 2.28 0.51
5S_avg 5-sensor average Heterogeneous 2.33 −4.56 2.32 0.19
8S_avg 8-sensor average Heterogeneous 2.19 −20.34 2.05 0.76
8NN-H Nearest neighbor Heterogeneous 2.20 −22.68 2.03 0.85
8NN-U Nearest neighbor Uniform (averaged) 2.20 −22.68 2.03 0.85

Overall, the mean wind speeds of the composite simulations were slower than those
of the single anemometers (Table 2) because the composite wind calculation sumed instan-
taneous observations with different (and sometimes counteracting) mean directions. The
measured mean wind directions for the five upwind anemometers (Table 2) ranged over
nearly 55 degrees (−1.26 degrees to −56.24 degrees clockwise from north) during the 320 s
of simulation after ignition, with a significant westerly component. The winds in the com-
posite simulations had a much smaller range of nearly 14 degrees (−12.61 to−26.5 degrees),
which was relatively northerly compared to the range of the individual anemometers.

3.3. Ignition

In the RxCADRE experiment, the ignition line was established by two individuals
moving with drip torches in opposite directions from the center of the ignition to the two
ends of the line. Documented locations of these points are marked by three orange circles
in Figure 3. The speed at which the igniters traveled was reported to be 1.34 m s−1 in field
experiment documents. The result of this procedure, which we emulated when setting up
the ignition in FIRETEC simulations, is an ignition line that grows from its center towards
the ends.

4. Modeling Results and Discussion
Fire Spread

We computed the downwind spread rate of the 10 simulated fires based on the
farthest downwind distance traveled in the direction of the simulation-specific mean wind.
The spread distance was calculated as the distance between each grid cell along the fire
perimeter at 320 s and the ignition line along the mean wind direction. Because the mean
wind direction is different for each simulation, the distance traveled was computed in a
different direction for each simulation. This rate of spread in the direction of the simulation-
specific mean wind (ROSSSWind) in m s−1 is the maximum downwind spread distance,
divided by 320 s. For comparison, we have also computed spread rates using the average
wind direction from all eight upwind sensors, ROS8avg. We estimated area burned and
the fire perimeter based on consumption of fine fuel. For the purpose of this study, a fuel
consumption of 25% was used to change the designation of a particular computational



Atmosphere 2021, 12, 139 12 of 19

cell from unburned to burned. Area burned was calculated at 320 s after ignition for all
simulations (Table 3).

Table 3. Overview of simulation results, including fire spread metrics rate of spread and area burned
for the 10 simulations.

Simulation ROSSSWind (m s−1) ROS8avg
(m s−1)

Area Burned 320 s
after Ignition (m2)

A80 0.279 0.278 2676
A31 0.359 0.347 4108
A60 0.504 0.476 5424
A73 0.324 0.320 3592
A41 0.118 0.096 1212

4S_avg 0.380 0.377 4260
5S_avg 0.392 0.378 4404
8S_avg 0.322 0.322 3452
8NN-H 0.413 0.413 3444
8NN-U 0.531 0.531 5540

Of all simulations, A60 and 8NN-U resulted in the largest area burned. These two
simulations represent the uniform fuel case (8NN-U), which used nearest neighbor winds,
and the simulation with the winds most consistently perpendicular to the ignition line
(A60). These simulations also produced the highest ROS. Overall, we found a linear
relationship between ROS and area burned, as is to be expected for wind driven fires, since
the wind driven heading rate of spread is significantly larger than the flanking spread
rates. Differences between the two ROS metrics were small, and the relationship with area
burned held for both.

Figure 6 shows fuel load at 320 s after ignition for the five simulations forced with
single sensor wind data. Areas of low fuel load (blue) indicate fuel consumed by the
fires, and correspond to fire perimeters. Only the area of the S5 burn plot is shown,
rather than the entire computational domain. Note that these images have been rotated
compared to the plot layout shown in Figure 3. For reference, north is marked with a
black arrow and mean wind direction and magnitude are marked with a purple vector.
An approximate outline of the actual S5 fire perimeter from infrared imagery is added in
black. Infrared imagery shows heated areas, which are related to the fire perimeter, but
are not precisely the same and thus this outline is provided only as a reference. Figure 6
illustrates significant qualitative variation between the five burn perimeters, or areas of
significant fuel consumption. Since everything else was identical between the simulations,
this variation in fuel consumption or fire extent can be tied directly to variation in the
wind speed and direction recorded at the different anemometers. The largest deviation in
the extent of fire spread from the approximate S5 perimeter was observed for A41. This
anemometer recorded a wind direction with a significant along-ignition-line component.
The resulting area burned was much smaller than in other simulations where the observed
winds had a higher magnitude perpendicular to the ignition line. For orientation, the A41
sensor was located towards the bottom left side of the burn plot as oriented in Figure 6.
A73 was to the left of the lower left corner and A60, A31 and A80 were located along the
bottom of the burn plot from left to right.

The burn perimeters for the 4S_avg, 5S_avg, 8S_avg, 8NN-H simulations at 320 s after
ignition are shown in Figure 7. Differences in fuel consumption, showing the extent of fire
spread, continued to persist when using different composite winds, though they were less
pronounced than for individual anemometers. Ranges of wind speeds and wind directions
were smaller for composite winds.



Atmosphere 2021, 12, 139 13 of 19

Atmosphere 2021, 12, x FOR PEER REVIEW 13 of 20 
 

 

(A60). These simulations also produced the highest ROS. Overall, we found a linear rela-

tionship between ROS and area burned, as is to be expected for wind driven fires, since 

the wind driven heading rate of spread is significantly larger than the flanking spread 

rates. Differences between the two ROS metrics were small, and the relationship with area 

burned held for both. 

Figure 6 shows fuel load at 320 s after ignition for the five simulations forced with 

single sensor wind data. Areas of low fuel load (blue) indicate fuel consumed by the fires, 

and correspond to fire perimeters. Only the area of the S5 burn plot is shown, rather than 

the entire computational domain. Note that these images have been rotated compared to 

the plot layout shown in Figure 3. For reference, north is marked with a black arrow and 

mean wind direction and magnitude are marked with a purple vector. An approximate 

outline of the actual S5 fire perimeter from infrared imagery is added in black. Infrared 

imagery shows heated areas, which are related to the fire perimeter, but are not precisely 

the same and thus this outline is provided only as a reference. Figure 6 illustrates signifi-

cant qualitative variation between the five burn perimeters, or areas of significant fuel 

consumption. Since everything else was identical between the simulations, this variation 

in fuel consumption or fire extent can be tied directly to variation in the wind speed and 

direction recorded at the different anemometers. The largest deviation in the extent of fire 

spread from the approximate S5 perimeter was observed for A41. This anemometer rec-

orded a wind direction with a significant along-ignition-line component. The resulting 

area burned was much smaller than in other simulations where the observed winds had 

a higher magnitude perpendicular to the ignition line. For orientation, the A41 sensor was 

located towards the bottom left side of the burn plot as oriented in Figure 6. A73 was to 

the left of the lower left corner and A60, A31 and A80 were located along the bottom of 

the burn plot from left to right. 

 

Figure 6. FIRETEC simulations of fuel consumption within the S5 burn plot 320 s after ignition. A black arrow in lower 

left of each panel denotes direction of magnetic north. All simulations are initialized with wind data from individual 

anemometers (from left to right) A41, A73, A60, A31, and A60. The purple arrows denote mean direction and associated 

magnitude of the wind for each simulation. The black outline is the approximate fire perimeter in the Prescribed Fire 

Combustion and Atmospheric Dynamics Research Experiments (RxCADRE) experiment, based on infrared imagery. In 

the case of the A60 simulation, the fire burned past the extent of the burn block and continues burning. Fuel consumption 

is shown on the S5 burn plot domain, not the entire. 

The burn perimeters for the 4S_avg, 5S_avg, 8S_avg, 8NN-H simulations at 320 s after 

ignition are shown in Figure 7. Differences in fuel consumption, showing the extent of fire 

spread, continued to persist when using different composite winds, though they were less 

pronounced than for individual anemometers. Ranges of wind speeds and wind direc-

tions were smaller for composite winds. 

Figure 6. FIRETEC simulations of fuel consumption within the S5 burn plot 320 s after ignition. A black arrow in lower
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magnitude of the wind for each simulation. The black outline is the approximate fire perimeter in the Prescribed Fire
Combustion and Atmospheric Dynamics Research Experiments (RxCADRE) experiment, based on infrared imagery. In the
case of the A60 simulation, the fire burned past the extent of the burn block and continues burning. Fuel consumption is
shown on the S5 burn plot domain, not the entire.
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Figure 7. FIRETEC simulations, initialized with averaged wind data, of fuel consumption within the S5 burn plot 320 s
after ignition. Four-sensor average winds are generated by averaging data from anemometers A31, A60, A73, and A80.
Five-sensor average winds are generated using anemometers A26, A31, A60, A80, and A81. Eight-sensor average and
eight-sensor nearest neighbor winds are generated using anemometers A26, A31, A41, A42, A60, A73, A80, and A81. Fuel
consumption is shown on the S5 burn plot domain, not the entire computational grid.

The ROS values for the five single-anemometer simulations in the direction of the
mean wind for each specific simulation ranged from 0.118 m s−1 to 0.504 m s−1. Spread
rates for each simulation are plotted as circles in Figure 8a. Each circle is colored by the
average wind speed used to drive the simulation. Open circles represent ROS in the
direction of simulation-specific wind, while filled circles represent ROS in the direction of
sensor-average wind. In order to calculate this value, we projected the simulation-specific
wind on the eight-sensor average direction of −20.34 degrees. Significant differences
between these two ROS estimates were found for the three single-anemometer simulations
associated with A31, A41 and A60, which recorded the largest differences between their
individual mean wind directions and the direction of the eight-sensor average. A31 and
A60 had the strongest mean wind components perpendicular to the ignition line (the
intended downwind direction when the experiment was designed). A41 had the weakest
wind speed component perpendicular to the ignition line, and strongest wind component
parallel to the ignition line (the intended crosswind direction). Even though the simulation
average wind speed was higher than the eight-sensor average, it had the slowest spread
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rate and smallest area burned as the projection of the ignition line length in the direction of
the wind was smallest. The wind composite simulations were more closely aligned with
the eight-sensor average wind (5S-avg was most divergent with a <16 degree difference
in mean wind direction) and their projected rates of spread were close to rates of spread
in the direction of simulation-specific wind. Figure 8 also shows less overall variability in
ROS among the composite simulations than among the single anemometer simulations.
This is related to the fact that there is less variation in mean wind speed, 2.19 m s−1 to
2.34 m s−1 (~7%), as well as the narrower range of mean wind directions that only spans
about 16 degrees. This narrower range means that the projection of the ignition line
perpendicular to wind speed is much more consistent than among the single anemometer
simulations.
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Figure 8. Spread rates for single anemometer (a) and composite wind (b) simulations plotted as a function of simulation
specific (open circles) and eight-sensor average (filled circles) wind speed.

Single-anemometer simulations were arranged in Figure 8 to correspond to the lo-
cations of the sensors from west to east. For the three sensors directly upwind of the
simulation domain (A80, A31, A60), ROS increased from west to east. ROS then decreased
sharply moving farther east to sensors A73 and A41. Because the range in ROS was affected
by both wind speed and orientation of the ignition line with respect to the wind direction,
ROS was not correlated with wind speed for either the single-anemometer simulations
or the composite simulations. Past observations and numerical explorations [44–47] have
noted that the length of the fire line impacts spread rate (increased ROS for longer fire lines)
when the line is perpendicular to the mean wind. Thus, for a shorter projection of the line
perpendicular to the wind, we would expect the spread rate to be less influenced by the
mean wind, which was indeed observed for A41.

The simulation with homogeneous fuels, 8NN-U, used the same wind conditions as
8NN-H. Thus, differences between the two simulations can be attributed to the arrangement
of fuels. We see a significantly larger rate of spread (29% increase) and area burned (60%
increase) for 8NN-U than for 8NN-H. This suggests that for variable fuels, locations where
fuels, or lack thereof, dampen fire spread have a larger impact than those where fuels
accelerate fire spread. This nonlinear influence of fuels on fire spread is confirmed by other
studies [48].

In general, fire metrics for the composite wind simulations had narrower ranges than
did fire metrics computed from single anemometer simulations. This is expected given the
greater similarity in wind speeds and directions. Fires in the composite wind simulations
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exhibited more similarities with the observed fire (Figure 9) in terms of spread patterns.
This improved agreement suggests that developing wind fields from combinations of
measurements will likely provide some benefits over the use of a single anemometer. The
effects of localized variations that are observed at individual anemometers are moderated
by combining them with variations from other locations. The variation in wind direction
illustrates that caution should be used in associating any single measurement with the
spread of the fire.
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Figure 9. S5 burn from RxCADRE (a) and FIRETEC nearest neighbor simulation (b), both at 320 s
after ignition. The red lines in the RxCADRE image show the extent of the FIRETEC computational
grid. The black marker in the center of each image marks the location of an instrument tower. The
large blue area in the FIRETEC image indicates the modeled burn area. A comparison between these
images highlights obvious differences in fire progression.

Figure 9 shows differences in fire shape between the S5 burn and eight-sensor nearest
neighbor algorithm simulation at 320 s. The most striking difference can be seen along
the left flank of the fire. While in the observed S5 fire the area burned extended along an
almost straight flank, we observed a jagged line, with significantly less consumption, in
the simulation. A41 was the closest anemometer to this region. Interestingly, although the
simulation using A41 data showed a significantly different overall spread pattern, it did
feature increased fire behavior in this region. This suggests that the details of the winds
measured by A41 might have had a localized effect on fire spread.

5. Conclusions

Here we have described simulations of a field experiment involving a fire burn-
ing under marginal conditions using the physics-based coupled fire/atmosphere model
FIRETEC. While a comparison with other coupled fire-atmosphere models would be a
valuable contribution, it is beyond the scope of the current study. Approaches for devel-
oping heterogeneous fuels inputs and dynamic wind conditions to initialize and bound
FIRETEC simulations to reflect the fire environment of the RxCADRE S5 burn were de-
scribed. Some of the ambiguities involved in translating field data to simulation inputs,
as well as sensitivities of simulation results to uncertainty in the field data used, were
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illustrated. Although this particular burn was considered one of the most consistent of
the small RxCADRE burns conducted in 2012 in terms of winds, fire activity, and fuels,
the fire environment still exhibited variable winds and heterogeneous fuel at the scales of
meters to tens of meters. Through the efforts to simulate this experimental fire, we have
gained a significant appreciation for some of the challenges of sufficiently characterizing
the dynamic and heterogeneous burn environment when directly comparing simulated
quantities with observations.

The RxCADRE S5 burn was instrumented with 28 anemometers which collected
measurements of wind speed and direction. Ten of these anemometers were upwind of the
fire and were likely not influenced by the presence of the fire. Wind direction measurements
from two of the ten upwind anemometers were considered outliers and excluded from this
study. Measurements from the other eight upwind anemometers were more consistent.
While it is plausible that these anemometers had calibration errors as well, it was not
possible to distinguish between natural variability and errors for these sensors. Spatial
trends between the eight upwind sensors suggest that at least some of their variability was
associated with heterogeneity within the wind field.

In setting boundary conditions for a physics-based model, it is important to not use
winds that are influenced by the entrainment of the fire itself, since this would essentially
result in fire-perturbed wind perturbing a fire (double-counting the coupling between the
fire and atmosphere). We have examined several methods for using upstream anemometers
to set upwind boundary conditions for models like FIRETEC, including the use of single
anemometers and a composite of the winds measured at multiple locations. We observed
a large range of simulated fire behaviors resulting from using wind speeds measured at
five different locations, all within 120 m of the fire line, and within ~150 m of each other.
While two of the simulations showed similarities to observed fire spread patterns, the clear
challenge is to know which anemometer to use a priori. Based on the large range of fire
outcomes, we conclude that when the spatial and temporal variability of the wind speed
and direction is significant compared to the mean wind speed, using a single anemometer
to specify the upwind wind conditions is simply unreliable. The local (space and time)
fluctuations at one specific site are often not consistent with those of the macroscale wind
field or other upwind locations, even in a large open grassland with negligible topographic
relief sampled in RxCADRE. As a result, fire simulations based on single anemometers
reflect wholly local wind conditions.

The simulations with wind data derived from a combination of upwind anemometers
showed more consistency in terms of fire spread rates and patterns. However, the details
of fire spread depended on which anemometers were included in the composite and how
they are integrated. We explored the use of both simple averaging and a nearest neighbor
algorithm, which produced different results. Since fire activity depends on the interaction
between fire and atmosphere at local scales, damping out the heterogeneities through
averaging is likely to produce differences between simulated and observed fire behavior.

A key takeaway from this effort to compare physics-based model results to obser-
vations in marginal conditions is that characterizing variation in the winds and fuels at
multiple scales is critical for model evaluation. These types of models force the user to
explicitly define the plane of upwind winds throughout the simulation and the spatial
arrangement of fuels, so the need to address this variability is self-evident. In simpler
models, accounting for these details might not be necessary, or even possible. However,
simpler models make assumptions about the wind and fuel conditions (such as homogene-
ity) that could limit their ability to accurately represent marginal fire. It is important to (1)
understand what the fundamental assumptions of the model are, and what the sensitivity
of the modeled behavior is to violations of those assumptions (if assuming constant winds,
how much error might this cause compared to real variable winds), and (2) understand the
potential uncertainty in the inputs and what the sensitivity of the modeled behavior is to
this uncertainty.
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The lessons learned from this paper have important implications for future wildland
fire observation campaigns of both low and high intensity fires; even intense fires often
exhibit marginal flanking or backing behavior for portions of the fire. If observations are
to be used for model development or model evaluation [49] it is important to understand
whether the environmental conditions have been adequately characterized to directly
stipulate model input conditions. One way to achieve this understanding is to perform
simulations with this type of model before the experiment using hypothetical measurement
to constrain model inputs and identify any assumptions that must be made to complete the
initialization of the model. By exploring the sensitivity of model results to the assumptions
required to complete the inputs, it is possible to understand what additional measurements
are important for appropriate comparison against models.

While this manuscript is primarily focused on describing the process and lessons
learned from FIRETEC simulations of one of the simplest of the RxCADRE fires, synergistic
work explores a more thorough characterization of the sensitivity of marginal fire spread
modeled using FIRETEC to variability in wind and fuels [3,48].
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