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Abstract: A constrained stochastic weather generator (CSWG) for producing daily mean air tem-
perature and precipitation based on annual mean air temperature and precipitation from tree-ring
records is developed and tested in this paper. The principle for stochastically generating daily
mean air temperature assumes that temperatures in any year can be approximated by a sinusoidal
wave function plus a perturbation from the baseline. The CSWG for stochastically producing daily
precipitation is based on three additional assumptions: (1) In each month, the total precipitation can
be estimated from annual precipitation if there exists a relationship between the annual and monthly
precipitations. If that relationship exists, then (2) for each month, the number of dry days and the
maximum daily precipitation can be estimated from the total precipitation in that month. Finally,
(3) in each month, there exists a probability distribution of daily precipitation amount for each wet
day. These assumptions allow the development of a weather generator that constrains statistically
relevant daily temperature and precipitation predictions based on a specified annual value, and thus
this study presents a unique method that can be used to explore historic (e.g., archeological questions)
or future (e.g., climate change) daily weather conditions based upon specified annual values.

Keywords: stochastic weather generator; annual mean air temperature; annual precipitation; daily
mean air temperature; daily precipitation

1. Introduction

The impact of climate change on agricultural productivity is as important to un-
derstanding prehistoric subsistence as it is to today’s economic landscape. Researchers
studying potential yield of modern crops use a variety of climate variables, such as temper-
ature, precipitation, solar radiation, etc. [1–5]. Data for these variables are often recorded
as daily measurements. This level of precision is important because conditions vary and
uncertainty can grow across time and thus result in disparate effects. Commonly used (and
typically the only available) climate data for archaeologists to study prehistoric cultures
are often at a temporal scale longer than the annual scale. The most precise data come from
tree ring data, which are used to estimate annual precipitation and temperature [6]. Some
successful efforts have been spent on reconstructing seasonal temperature and precipitation
using isotopes and pollens [7]. Thus, what is lacking in comparison to modern data is
an understanding of how temperature or precipitation varies within a growing season.
Without finer-scale temporal resolution, it is difficult to develop and test hypotheses about
comparatively precise, within-year shifts in temperature and precipitation that were likely
important in early farming societies. A finer temporal resolution can be achieved by mod-
eling daily temperature and precipitation using a stochastic weather generator (SWG). A
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SWG can be used to stochastically generate infinite sets of daily weather patterns that
can be employed to assess probability of crop failure between years using the ensemble
modeling approach.

The purpose of a weather generator is to model daily weather at a site or a number
of locations simultaneously based on the statistical characteristics of observed climate at
those locations. There is another type of weather generator that estimates daily weather
at the locations where local climatic observations are not available based on observed
climate collected at other similar locations, which is also known as the space-time weather
generator [8–13]. For this kind of weather generator, knowledge of the spatial autocorrela-
tion of each climatic variable and spatial correlations among different climatic variables
allows predictions of climatic scenarios at the locations where climatic observations are
unavailable. Such spatial data are not as commonly available for past climate; thus, we
focus on modeling weather from annual records from tree-ring data. Before we describe
our SWG, we briefly review other common models.

Because weather information including daily maximum and minimum temperature,
solar radiation, and precipitation represents key input data for agricultural crop models,
weather generators originated as tools to evaluate the impacts of climate change on crop
growth and yield [1–5,14,15]. Precipitation is usually stochastically generated first, because
it is argued that it affects the statistics of many other climatic variables to be stochasti-
cally generated [16]. The traditional method for generating daily precipitation is to use a
Markov chain to simulate the occurrence of wet or dry days and then to utilize a gamma
distribution function to approximate the precipitation amount on a wet day [17–20]. It
was found that a first-order Markov chain is simple and effective in representing precipita-
tion occurrence [21–26]. The weather generator (WGEN) developed by Richardson and
Wright [26] has been widely used to stochastically produce daily precipitation, maximum
and minimum temperatures, and solar radiation. In the WGEN, precipitation is considered
as the primary variable. The wet or dry days are simulated using a first-order Markov chain,
and an exponential distribution function is used to approximate the distribution of daily
precipitation amounts. Maximum temperature, minimum temperature, and solar radia-
tion are considered as continuous multivariate stochastic processes with daily means and
standard deviations conditioned on the wet or dry state of the day. Instead of a first-order
Markov chain, a second-order Markov chain [27], and a third-order Markov chain [28]
were also utilized for simulating the occurrence of wet or dry days. The low-frequency
signal was also included in the stochastically generated daily weather through perturbing
monthly parameters using a low-frequency stochastic model [29].

Another commonly used stochastic weather generator, known as the Long Ashton
Research Station Weather Generator (LARS-WG), is capable of simulating daily weather at
a single site [30–32], which includes daily precipitation, maximum and minimum tempera-
tures, and solar radiation. To improve the simulation of the occurrence of rainy days by a
first-order Markov chain, LARS-WG took account of the semi-empirical distributions of the
lengths of wet and dry days, daily precipitation, and daily solar radiation. In the LARGS-
WG, daily maximum and minimum temperatures are modeled as stochastic processes with
daily means and standard deviations conditioned on the wet and the dry days [30–32].

A comparison of two weather generators independently developed by groups within
the Agricultural Research Service of the U.S. Department of Agriculture, i.e., USCLI-
MATE [33,34] and CLIGEN [35,36], was conducted in [37]. Both weather generators use a
first-order Markov chain to estimate the occurrence of wet or dry days. The precipitation
amount on a wet day is described by a skewed normal distribution in CLIGEN [1] and by a
mixed exponential distribution [38] for daily precipitation on wet days with amounts above
0.25 mm in USCLIMATE. Daily maximum and minimum temperatures are generated in
CLIGEN using a normal distribution of daily maximum and minimum temperatures with
a weighting factor based on the dry/wet day probability. A multivariate autoregressive
process is used in USCLIMATE to describe the processes of daily maximum and minimum
temperatures and solar radiation.
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One conclusion that can be reached by the preceding review of several widely used
weather generators is that they all share one common feature: none of them utilize an-
nual mean air temperature nor annual precipitation as input variables for generating
daily weather data, which means that none of them can produce daily temperature and
precipitation of a particular year with a given annual mean temperature and annual pre-
cipitation, which indicates that those models are ‘not constrained’ in the sense that those
models are incapable of generating annual predictions that yield a specific annual mean
air temperature or precipitation data set. This suggests that these previously published
weather generators could not meet the demand of stochastically generating daily mean
air temperature and precipitation that also achieve a specified annual mean temperature
or precipitation. However, this demand is particularly important for paleoclimatology,
paleo-hydrology, paleo-agriculture, and archaeology where annual mean air temperatures
and annual precipitations are commonly reconstructed from proxy indicators. Therefore,
the objective of this study is to develop a new stochastic weather generator to produce
daily weather that constrains statistically relevant daily temperature and precipitation
predictions based on a specified annual value. Achieving this research goal is equivalent to
addressing the following question: if annual mean temperature and annual precipitation
at a site are specified for a given year based on proxy indicators, what could the daily
weather conditions be in that year? That is what are the likely daily weather scenarios that
occurred within years? To answer this question, we have developed a CSWG that we refer
to as the Daily Weather Generator Constrained by Specified Annual Mean Temperature
and Precipitation.

The remainder of this paper is organized into four sections. Section 2 introduces
study area and Section 3 describes the meteorological data used in this study. The methods
developed in this study for stochastically generating daily mean air temperature (DMAT)
and daily precipitation (DP) are introduced in Section 4. Implementation and application of
the CSWG to producing DMAT and DP are presented in Section 5 followed by conclusions
in Section 6.

2. Study Area

The study uses data from the Mesa Verde region in the American Southwest for several
reasons. The region has an extensive tree-ring database, thus a record of climate at an annual
scale [6]. Additionally, for purpose of our research, Mesa Verde is an arid region, where
the variability in precipitation and temperature across the year can significantly affect crop
yield. Finally, an important aspect of the culture history of the area is the depopulation of
parts of the Mesa Verde region by Ancestral Puebloans by approximately AD 1300 [39–42].
Based on the reconstructed annual mean temperature and annual precipitation from tree-
ring data [6], a severe drought in the late AD 1200s is thought to have had a major impact on
agricultural productivity and thus on the number of people that could have been supported
in the region [42]. However, these reconstructed annual mean temperature and annual
precipitation do not provide sufficient temporal resolution to address the impacts of climate
change on the region. For example, for a given year with a rainfall deficit compared to
other years, it is not possible to determine if precipitation was concentrated during the
growing season, although the annual total precipitation has a negative anomaly. As another
example, a relatively wet year with a positive precipitation anomaly may not guarantee an
above average harvest year, if above normal precipitation happened outside the growing
season. Additionally, freezing temperatures during the growing season could cause crop
failure. By simply examining annual mean temperature, these cold spells would not be
detected. An increase in the temporal resolution of temperature and precipitation to daily
values is necessary for understanding the impacts of climate change on paleo-agriculture
and crop failure within particular years.
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3. Meteorological Data

Two contemporary weather station data sources were utilized to model daily weather:
the Global Summary of Day (GSOD) and the Global Historical Climatology Network
(GHCN). The GSOD dataset contains daily mean, maximum, and minimum temperatures
and daily precipitation, while only daily maximum and minimum temperatures and
precipitation are available in the GHCN dataset. In the Mesa Verde region, the most
representative weather station is in Cortez, Colorado. For the GSOD prior to 2007, the
weather station was at Cortez Muni (37.3◦ N, 108.633◦ W), and after 2007 the weather
station was relocated to the Cortez Municipal Airport (37.307◦ N, 108.626◦ W). The GSOD
data at Cortez is from 1973 to present. The GHCN Cortez station (37.344◦ N, 108.595◦ W)
has a longer data record starting from 1911, but prior to 1930, there are many missing
data records; thus, the GHCN data from 1911 to 1929 are not used in this study. To
utilize the GHCN temperature measurements from 1930 to 1973, we converted the daily
maximum and minimum temperatures to the daily mean temperature based on the strong
linear relationship between (Tmax + Tmin)/2 and Tmean, where Tmax, Tmin, Tmean are daily
maximum, minimum, and mean temperatures at the GSOD Cortez station, respectively.
The linear regression equation is y = 1.036x + 0.08012, the root mean square error (RMSE)
is 1.58 ◦C, and the correlation coefficient (r2) is 0.974.

4. Methods

The CSWG developed in this study contains two functions: (1) stochastically generat-
ing daily mean air temperature based on annual mean air temperature, and (2) stochastically
generating daily precipitation based on annual precipitation. The associated methods for
these two functions are described in Sections 4.1 and 4.2, respectively.

4.1. Stochastically Generating Daily Mean Air Temperature Based on Annual Mean Air
Temperature

The principle involved in the CSWG for stochastically producing daily mean air tem-
perature (DMAT) is based on the assumption that DMAT in any year can be approximated
by a sinusoidal wave function plus a perturbation (or residual element) from the baseline
(i.e., the sinusoidal wave) as

Ti = a + bsin[2π(DOYi + c)/365] + ∆Ti (1)

where Ti is DMAT of day of year DOYi, i is day index (i = 1, . . . , 365), a, b, and c are
parameters and ∆Ti is the perturbation term from the estimated baseline temperature
which will be randomly generated based on the probability distribution of ∆T.

Among the three parameters in Equation (1), a is the annual mean air temperature,
b is the amplitude of the sinusoidal wave, and c is the phase (with a unit of day). For
the CSWG proposed in this study, the annual mean air temperature (a) actually is known
as an input variable, which means that two other unknown parameters (i.e., b and c) in
Equation (1) need to be estimated based on the annual mean air temperature (a) if there
exist relationships between a and b, and a and c. Assuming the relationships between a and
b, and a and c can be established through regression analysis, parameters b and c then can
be determined as

b = b′ + ∆b, c = c′ + >∆c (2)

where b′ and c′ are estimated values using the constructed relationships between a and
b, and a and c, and ∆b and ∆c are stochastically generated residual terms based on the
probability distributions of ∆b and ∆c. There are four major steps involved in stochastically
producing DMAT by the CSWG, as illustrated in Figure 1.



Atmosphere 2021, 12, 135 5 of 22

Figure 1. Flowchart of the CSWG for stochastically generating DMATs.

The first step is to apply the sinusoidal wave function of DOY as shown in Equation
(1) to fit the time series plot of each year′s DMATs of n years of temperature data (n
is the number of years of observed temperature data for constructing the CSWC for
stochastically producing DMATs) and obtain n sets of three parameters (i.e., a, b, c). The
second step is to establish the relationships between a and b, and a and c using the regression
analysis method, and then construct the probability distributions of residual terms ∆T, ∆b,
and ∆c. To ensure that the stochastically generated DMATs have a comparable lag-one
autocorrelation magnitude as the observed DMATs (i.e., the current day temperature should
correlate to the previous day temperature to some degree), the probability distribution of
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the DMAT difference between two consecutive days (i.e., δ = Ti − Ti−1) is also constructed
in this step.

The third step is a loop starting from the first day of the year (i = 1) to the last day
of the year (i = 365 or 366) for stochastically producing each day DMAT through adding
a randomly generated ∆T based on the constructed probability distribution of ∆T to the
randomly generated baseline DMATs of the year. Prior to moving to the next day, the
absolute value of the DMAT difference between the stochastically generated current day
and previous day temperatures (i.e., |Ti − Ti−1|S) is computed and compared with a
randomly generated |δ| based on the probability distribution of δ: if |Ti − Ti−1|S> |δ|,
reject the current stochastically generated Ti and stochastically re-generate a new Ti, and
a new δ. If |Ti − Ti−1|S ≤ |δ|, accept the re-generated Ti as the current day DMATi and
move to the next day for producing DMAT, otherwise re-generate a Ti and a δ, till the
condition of |Ti − Ti−1|S ≤ |δ| is satisfied. After all daily temperatures are produced, a
final adjustment of all DMATs is necessary to set their average and the given annual mean
temperature (i.e., a) equal using the equation

T∗i = Ti + [a− (
365

∑
i=1

Ti)/365] (3)

where T∗i is the final stochastically generated daily mean air temperature of day i.

4.2. Stochastically Generating Daily Precipitation Based on Annual Precipitation

The function of stochastically generating daily precipitation (DP) based on annual
precipitation in the CSWG was developed based on the following assumptions: (1) For each
month, the total precipitation can be estimated from annual precipitation if there exists
a relationship between the annual precipitation and monthly precipitation. (2) For each
month, number of dry days and the maximum daily precipitation can be estimated from
the total precipitation in that month. (3) A probability distribution of daily precipitation
amount for each wet day can be constructed.

There are four major steps in the CSWG for stochastically generating daily precipita-
tion, as illustrated in Figure 2. The first step is to use n years of observed daily precipitation
data to compute annual precipitation (AP) and 12 monthly precipitations (MP) in each
year, and number of dry days (NDD) and maximum daily precipitation (MDP) in each
month, and construct the probability distribution of daily precipitation amount (DPA) of
each month. The second step is to establish relationship between annual precipitation and
one of 12 monthly precipitation of that year through the regression analysis and construct
the probability distribution of the residual term ∆MP (i.e., difference between the observed
and estimated monthly precipitation). In each month, relationships of (MP vs. NDD) and
(MP vs. MDP) are also established through the regression analysis and the probability
distributions of the residual terms ∆NDD and ∆MDP are subsequently constructed. With
a series of the established relationships and probability distributions, the third step is to
stochastically generate 12 monthly precipitations from an input annual precipitation. The
stochastically generated monthly precipitations are adjusted to satisfy the two conditions:
(1) no monthly precipitation is negative; and (2) summation of 12 monthly precipitations is
equal to the input annual precipitation.

The fourth step is a loop of stochastically generating daily precipitation in each month
starting from January to December. If the stochastically generated monthly precipitation is
zero, every day precipitation amount is set to be zero in the month. Otherwise, number of
dry days (NDD) and maximum daily precipitation (MDP) are randomly generated based on
the relationships of (MP vs. NDD) and (MP vs. MDP) and the probability distributions of
∆NDD and ∆MDP. The randomly generated NDD and MDP are also adjusted to satisfy the
following conditions: 0≤ NDD ≤ ND− 1 and 0< MDP ≤ MP, ND is the number of days
in the month. If the number of wet days (i.e., ND-NDD) is equal to 1, randomly generate an
integer number between 1 and ND and use that integer as the wet day index, and assign MP
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to the precipitation amount of that day. Otherwise, randomly generate ND-NDD integers
between 1 and ND and use them as the wet day indices, randomly assign MDP to one of the
wet days, and stochastically generate ND-NDD-1 daily precipitation amounts (DPA) based
on the probability distribution of DPA, and assign them to ND-NDD-1 wet days. After all
wet days are assigned a precipitation amount, the adjustment of daily precipitation (DP)
in the month is carried out to ensure that the summation of stochastically generated daily
precipitations is equal to the stochastically generated monthly precipitation.

Figure 2. Flowchart of the daily precipitation generation in the CSWG.

5. Application of the CSWG to Stochastically Generating DMAT and DP
5.1. Stochastically Generating DMAT Using the CSWC

As introduced in Section 3, the daily mean air temperature (DMAT) data collected at
Cortez from 1930 to 2016 with less than 10% missing data in each year were used to build
the CSWC for stochastically generating DMAT. For the years with less than 10% missing
data, the linear interpolation method was applied to fill the data gaps between known data
points. Between 1930 and 2016, there are 74 years with less than 10% missing data in each
year. After all data gaps were filled, Equation (1) was applied to best fit each of the 74 time
series plots of daily air temperatures and obtain three parameters (i.e., a, b, and c) for each
year as listed in Table 1.
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Table 1. Three parameters of the sinusoidal wave function for best fitting daily mean air temperatures in 74 years between
1930 and 2016.

Year a (◦C) b (◦C) c (day) Year a (◦C) b (◦C) c (day) Year a (◦C) b (◦C) c (day)

1930 * 8.68 13.26 259.7 1960 * 9.83 14.15 253.9 1991 * 8.26 12.66 253.3
1931 * 8.97 13.40 255.4 1961 * 9.70 13.40 259.2 1992 11.62 13.22 262.2
1932 * 8.58 13.46 259.6 1962 * 10.25 12.25 251.4 1993 12.19 12.62 262.3
1934 * 10.70 11.31 260.9 1963 * 10.26 13.35 253.7 1995 12.36 11.35 252.0
1936 * 9.76 12.67 258.3 1964 * 9.04 13.37 251.7 1997 8.89 12.48 257.0
1937 * 9.01 13.92 250.7 1965 * 9.49 11.31 249.0 1998 9.32 12.30 252.8
1938 * 9.56 11.81 254.9 1966 * 10.16 13.25 253.9 1999 9.32 11.21 256.1
1939 * 9.61 13.03 253.4 1967 * 9.87 12.33 255.3 2000 10.35 12.66 260.9
1940 * 10.07 12.72 256.9 1968 * 9.10 12.53 255.9 2001 9.87 12.70 258.5
1941 * 9.35 10.76 254.8 1969 * 10.24 12.67 255.0 2002 9.56 13.45 262.5
1942 * 9.71 12.24 249.6 1970 * 9.70 12.08 253.9 2003 10.23 12.64 256.5
1943 * 11.36 12.33 258.3 1971 * 9.41 12.81 258.2 2004 9.23 12.01 261.3
1944 * 9.73 12.39 250.5 1972 * 10.37 12.52 259.4 2005 9.63 11.44 256.7
1945 * 9.55 12.21 253.1 1975 11.34 13.90 253.1 2006 9.63 12.46 263.5
1947 * 9.97 12.70 256.7 1976 12.00 11.75 254.6 2007 9.81 13.20 258.1
1948 * 9.66 12.83 253.7 1978 11.15 12.94 258.8 2008 8.83 13.16 254.3
1949 * 9.56 13.20 253.4 1980 11.56 11.91 255.4 2009 9.22 12.60 261.7
1952 * 9.86 13.32 253.3 1981 12.05 12.45 257.0 2010 9.13 12.79 255.3
1953 * 10.25 12.37 252.5 1983 10.49 12.20 251.7 2011 9.27 13.32 258.0
1954 * 11.27 11.94 256.6 1985 11.03 12.83 257.6 2012 10.42 13.11 259.6
1955 * 9.40 12.92 249.8 1986 12.22 11.47 263.2 2013 9.10 14.26 260.8
1956 * 9.92 12.43 256.6 1987 10.89 12.22 261.2 2014 10.10 12.06 256.6
1957 * 9.83 10.91 255.1 1988 * 8.94 13.33 251.7 2015 10.01 11.74 257.7
1958 * 10.68 12.25 252.4 1989 * 9.22 12.96 259.3 2016 9.83 12.46 256.2
1959 * 10.73 12.53 256.8 1990 * 9.18 13.01 257.1

* Daily mean air temperatures were estimated from observed daily maximum and minimum temperatures collected by the GHCN.

Based on the extracted three parameters of the sinusoidal wave function of DMAT
with respect to DOY as listed in Table 1, the linear regression method was employed to fit
the scatter plots of a vs. b and a vs. c, separately, and yielded

b = −0.2168a + 14.75 (4)

c = 0.6526a + 249.7

The statistics of the linear regressions are listed in Table 2.

Table 2. Statistics of the linear regression of a vs. b, and a vs. c.

a vs. b a vs. c

Root Mean Square Error (RMSE) 0.69 ◦C 3.4 day
Correlation Coefficient (r) 0.25 0.13

Maximum (OBS.-EST.) 1.16 ◦C 7.5 day
Minimum (OBS.-EST.) −1.96 ◦C −6.9 day

Although the root mean square errors (RMSEs) are small, i.e., 0.69 ◦C and 3.4 day for
the estimated b and c values, respectively, the correlation coefficients are very low (i.e., 0.25
and 0.13), which indicates that the uncertainty in the linear regression equations should be
considered as we estimate b and c from a. The uncertainties in the estimated b and c can be
represented by the probability distribution of discrepancies between the observed b and c
vs. estimated b and c values, i.e., the residual elements. The probability distribution of the
residual term ∆b is defined as the number of years with ∆b within a certain range (i.e., bin)
as given below

Pr(∆bi) = number o f years with ∆bi − 0.05 ≤ ∆b < ∆bi + 0.05 (5)
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where ∆bi is the possible difference between the observed b and estimated b values within
a bin of 0.1 ◦C. As shown in Table 2, the ∆b ranged from −1.96 ◦C to 1.61 ◦C. Similarly, the
probability distribution of ∆c is defined as

Pr(∆ci) = number o f years with ∆ci − 0.5 ≤ ∆c < ∆ci + 0.5 (6)

where ∆ci is the possible difference between the observed c and estimated c values within
a bin of one day. The difference between the observed c and estimated c ranged from
−6.9 day to 7.9 day (see Table 2). The probability distributions of ∆b and ∆c are shown in
Figure 3.

Figure 3. Probability distributions of ∆b and ∆c.

Based on the probability distributions of ∆b and ∆c, two one-dimensional arrays were
produced, each with a length of 74 (because of 74 samples from the DMAT datasets), and
the elements of one array are ∆b and the elements of the other array are ∆c. The number of
a particular ∆b or ∆c appearing in the array depends on the occurrence frequency of that
∆b or ∆c, e.g., if the frequency is 6 for ∆b = 0.1, then 0.1 would appear 6 times in the array.
Using these two arrays and the linear regression equations (i.e., Equation (4)), a baseline of
DMAT can be generated from an input of annual mean air temperature i.e., (a). For example,
if a is 9.5 ◦C, according to Equation (4), b = 12.7 ◦C and c = 255.9 day. Next, two integers
between 1 and 74 were randomly generated, one for ∆b and one for ∆c. For example,
using the randomly generated numbers 30 and 63 as the array indices to determine the
elements in the ∆b and ∆c arrays, which are−0.20 ◦C and 4.0 days respectively. Next, a float
number was randomly generated in the range of [−0.25, −0.15] for ∆b, and a float number
was randomly generated in the range of [3.5, 4.5] for ∆c. For example, ∆b = −0.19 ◦C,
∆c = 4.1 day, and thus b = 12.7 − 0.19 = 12.51 ◦C and c = 255.9 + 4.1 = 260.0 day. Finally,
the randomly generated b and c, along with the input annual mean air temperature (a)
were substituted into the sinusoidal wave function as shown in Equation (1) to produce
the baseline of DMAT.

To stochastically generate DMAT, in addition to the baseline of DMAT, a randomly
generated temperature perturbation from the baseline for each day is also needed. Using
74 years of DMAT data and the associated baselines, observed DMATs for each year were
subtracted from each year baseline temperatures, resulting in 26,997 temperature difference
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data points (i.e., ∆T). These 26,997 data points were used to construct the probability
distribution of ∆T as

Pr(∆Ti) = number o f days with ∆Ti − 0.05 ≤ ∆T < ∆Ti + 0.05 (7)

where ∆T is in the range of [−19.9 ◦C, 12.4 ◦C] with an interval of 0.1 ◦C. The constructed
probability distribution of ∆T is plotted in Figure 4. Based on the computed probability
distribution of ∆T, a one-dimensional array with 26,997 elements was generated. The
number of a particular ∆Ti appearing in the array depends on the occurrence frequency
of that ∆Ti. Using this ∆T one-dimensional array, temperature perturbation for each day
was produced through randomly generating an integer number between 1 and 26,997, and
using the randomly generated integer number as the ∆T one-dimensional array index to
determine ∆T.

Figure 4. Probability distribution of ∆T.

As discussed in Section 4.1, to ensure that the stochastically generated DMATs have a
comparable lag-one autocorrelation magnitude as the observed DMATs, the GSOD data
were used to compute daily mean air temperature difference δ (= Ti − Ti−1) between two
consecutive days (the GHCN temperature data were not used in computing δ because the
GHCN daily mean temperatures were estimated from the observed daily maximum and
minimum temperatures). The 11,468 computed δs were used to calculate the probability
distribution of δ as

Pr(δi) = number o f days with δi − 0.05 ≤ δ < δi + 0.05 (8)

where δ is in the range of [−14.5 ◦C 13.9 ◦C] with an interval of 0.1 ◦C. The probability
distribution of δ is plotted in Figure 5. Based on the calculated probability distribution of δ,
a one-dimensional array with 11,468 elements was created. The number of a particular δi
appearing in the array depends on the occurrence frequency of that δi.
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Figure 5. Probability distribution of δ.

Figure 6 shows an example of stochastically generate DMATs using the CSWG. The
computed lag-one autocorrelation coefficients of the observed and stochastically generated
DMATs shown in Figure 6 are all 0.98.

Figure 6. Observed (black) and stochastically generated (blue) daily mean air temperatures of year
2015 at the Cortez station. The red curve is the stochastically generated baseline of daily mean air
temperatures of year 2015 at the Cortez station.

5.2. Stochastically Generating DP Using the CSWC
5.2.1. Estimate Monthly Precipitation from Annual Precipitation

As described in Section 4.2, the first step for stochastically generating daily precipita-
tion (DP) is to estimate monthly precipitations based on annual precipitation, and thus a
linear regression method was applied to establish a relationship between each monthly
precipitation with the annual precipitation as

MPi = fi AP, [?]i = 1, . . . , 12 (9)

where MPi is the observed total precipitation in month i, AP is the observed annual
total precipitation, and fi is the ratio of the total precipitation in month i to the annual
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precipitation. The precipitation data used for establishing the relationship as shown in
Equation (8) were from 1930 to 2016 daily precipitation measurements collected by the
GHCN at Cortez, Colorado. Among those 86 years, there are 21 years missing more
than 10% precipitation data, and thus only 65 years of GHCN’s precipitation data were
used for the regression analysis. The scatter plots and linear regression results of annual
precipitation vs. monthly precipitation of 12 months are shown in Figure 7, and the statistics
of the linear regressions are listed in Table 3. The low correlation coefficients shown in
Table 3 indicate that a simple linear regression cannot capture the monthly precipitation
variations with adequate accuracy, thus the difference between the observed and estimated
monthly precipitations (∆MP) should be considered for producing monthly precipitation
from annual precipitation through computing the probability distribution of ∆MP as

Pr
[
∆MPj

]
= number o f years with (∆MPj − 0.5 ≤ ∆MP < ∆MPj + 0.5) (10)

where the range of ∆MPi (i = 1, . . . , 12) is listed in Table 3. The probability distribution
of each month’s ∆MP is plotted in Figure 8. Using the probability distribution, a one-
dimensional ∆MP array was produced for each month with a length of 65 (because of
65 samples). The number of a particular ∆MP value appearing in the one-dimensional
array depends on the occurrence frequency of that ∆MP value.

Figure 7. Scatter plots and the best-fit of monthly precipitation vs. annual precipitation.

With the regression equations and the one-dimensional ∆MP array for each month,
monthly precipitation can be estimated from observed annual precipitation based on
the equation

MPi = fi AP + ∆MPi, i = 1, . . . , 12 (11)

where ∆MPi is generated through randomly selecting an array index between 1 and 65 and
using the array index to determine the median ∆MPi value, and then randomly generating
a float number between (∆MPi − 0.5, ∆MPi + 0.5). If the randomly generated MPi value
was negative, MPi was set to be zero. After each randomly generated monthly precipitation
was estimated, checked, and set to zero when appropriate, it was necessary to determine if
the sum of estimated monthly precipitations matched the observed annual precipitation. If
they did not match, the difference between them was equally divided by 12 and subtracted
(or added) from each monthly precipitation MP as appropriate. The difference between the
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sum of estimated monthly precipitations vs. observed annual precipitation was recalculated
until the difference was less than 0.01 mm.

Table 3. Statistics of the linear regression of annual precipitation vs. monthly precipitation.

Month f RMSE (mm) r Range of ∆MP

January 0.07978 19.29 0.38 [−28.0 mm, 54.0 mm]
February 0.07599 16.45 0.26 [−25.0 mm, 56.0 mm]

March 0.08464 21.13 0.43 [−28.0 mm, 75.0 mm]
April 0.07334 16.71 0.50 [−25.0 mm, 46.0 mm]
May 0.07107 18.18 0.47 [−24.0 mm, 69.0 mm]
June 0.03626 11.09 0.41 [−13.0 mm, 37.0 mm]
July 0.09319 18.78 0.35 [−38.0 mm, 43.0 mm]

August 0.119 24.76 0.15 [−53.0 mm, 62.0 mm]
September 0.106 23.23 0.31 [−71.0 mm, 52.0 mm]

October 0.1073 28.22 0.38 [−36.0 mm,131.0 mm]
November 0.06912 15.02 0.39 [−34.0 mm, 42.0 mm]
December 0.08435 17.87 0.34 [−42.0 mm, 43.0 mm]

Figure 8. Probability distribution of ∆MP.

5.2.2. Estimate Number of Dry Days in Each Month

A ‘dry day’ is defined as the one with precipitation less than a trace of rain, which
is 0.254 mm in this study. To estimate number of dry days in each month, the GHCN
precipitation data were used to count the number of dry days in each month in each year.
Scatter plots of monthly precipitation vs. observed number of dry days (NDD) in each
month were presented in Figure 9, showing an inverse relationship between monthly
precipitation and number of dry days for each month. Therefore, the following linear
equation was used to fit each scatter plot

NDDi = gi MPi + NDi, i = 1, . . . , 12 (12)

where NDDi is the number of dry days in month i, gi is the slope of the regression line, and
NDi is the number of days in month i. By forcing the best-fit line to pass through the point
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(0, NDi), it can be assured that if the monthly precipitation is zero, the number of dry days
is equal to the number of days in that month.

Figure 9. Scatter plots and the best-fit line of monthly precipitation (MP) vs. the number of dry days
(NDD) in each month.

The statistics of the regression analyses of the monthly precipitation vs. the number of
dry days are listed in Table 4. To consider the uncertainty in the estimated NDD from MP
based on Equation (11), a probability distribution of the difference between the observed
and estimated numbers of dry days (∆NDD) was developed as

Pr
[
∆NDDj

]
= number o f years in month i (∆NDDj − 0.5 ≤ ∆NDDi < ∆NDDj + 0.5) (13)

where the range of ∆NDD is listed in Table 4. The probability distribution of each
month’s ∆NDD is plotted in Figure 10. Using the probability distribution, a one-dimensional
array of ∆NDD for each month with a length of 65 was produced. With the regression
equations and the one-dimensional ∆NDD array for each month, the number of dry days
in each month was estimated from monthly precipitation based on the equation

NDDi = gi MPi + NDi + ∆NDDi (14)

where ∆NDDi was created through randomly generating an integer between 1 and 65,
and using the integer as the array index to determine the median ∆NDDi value, and then
randomly generating a number between (∆NDDi − 0.5, ∆NDDi + 0.5) to represent ∆NDDi
in Equation (14). Since the number of dry days in each month should be between 0 and
NDi, if NDDi was less than zero, set NDDi = 0, and if NDDi was greater than NDi, set
NDDi = NDi.



Atmosphere 2021, 12, 135 15 of 22

Table 4. Statistics of the linear regression of MP vs. NDD.

Month g RMSE (day) r Range of ∆NDD

January −0.2087 2.4 0.77 [−7 day, 5 day]
February −0.1947 3.0 0.34 [−7 day, 11 day]

March −0.1811 3.2 0.48 [−6 day, 10 day]
April −0.187 13.3 0.37 [−7 day, 7 day]
May −0.1911 2.6 0.65 [−7 day, 7 day]
June −0.1812 2.1 0.47 [−7 day, 5 day]
July −0.189 3.2 0.29 [−7 day, 11 day]

August −0.1776 3.7 0.31 [−7 day, 8 day]
September −0.1542 2.9 0.46 [−8 day, 9 day]

October −0.1293 2.8 0.62 [−8 day, 6 day]
November −0.1763 2.3 0.53 [−7 day, 5 day]
December −0.1951 3.1 0.13 [−7 day, 7 day]

Figure 10. Probability distribution of each month’s ∆NDD.

5.2.3. Estimate Maximum Daily Precipitation in Each Month

To estimate the maximum daily precipitation, the observed maximum daily precipita-
tion in each month in each year was regressed against observed total monthly precipitation,
as shown in Figure 11. The positive linear relationship between monthly precipitation and
the maximum daily precipitation of each month suggests a line passing the origin (0, 0) to
fit each scatter plot as given in the equation

MDPi = hi MPi, i = 1, . . . , 12 (15)

where MDPi is the maximum daily precipitation and hi is the ratio of the maximum daily
precipitation to the monthly precipitation of month i. The statistics of the regression
analyses between MP and MDP are listed in Table 5.
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Figure 11. Scatter plots and the best-fit lines of monthly precipitation (MP) vs. the maximum daily
precipitation of each month.

Table 5. Statistics of the linear regression of MP vs. MDP.

Month h RMSE (mm) r Range of ∆MDP

January 0.3134 4.12 0.76 [−10 mm, 14 mm]
February 0.3426 4.13 0.73 [−9 mm, 20 mm]

March 0.2698 4.30 0.75 [−12 mm, 13 mm]
April 0.3619 3.98 0.80 [−12 mm, 10 mm]
May 0.3566 4.19 0.77 [−13 mm, 15 mm]
June 0.495 2.91 0.90 [−8 mm, 9 mm]
July 0.3719 4.79 0.81 [−9 mm, 15 mm]

August 0.3895 5.99 0.80 [−13 mm, 18 mm]
September 0.3915 6.56 0.75 [−20 mm, 18 mm]

October 0.3715 7.33 0.74 [−37 mm, 27 mm]
November 0.4196 5.20 0.71 [−19 mm, 20 mm]
December 0.3375 3.76 0.83 [−9 mm, 18 mm]

To consider the uncertainty in the estimated maximum daily precipitation from the
observed monthly precipitation based on the linear regression equations, a probability
distribution of the difference (∆MDP) between the observed and estimated maximum daily
precipitation in each month was determined through computing the occurrence frequency
of the difference ∆MDP as

Pr
[
∆MDPj

]
= number o f years in month i (∆MDPj − 0.5 ≤ ∆MDP < ∆MDPj + 0.5) (16)

where the range of ∆MDP in each month is listed in Table 5. The probability distribu-
tion of each month’s ∆MDP is plotted in Figure 12. Using the probability distribution, a
one-dimensional array of ∆MDP for each month with a length of 65 was generated. With
the regression equations and the one-dimensional array of ∆MDP for each month, maxi-
mum daily precipitation in each month was estimated from total monthly precipitation
based on the equation.

MDPi = hi MPi + ∆MDPi, i = 1, . . . , 12 (17)
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where ∆MDPi was determined through randomly generating an integer between 1 and
65, and using the integer as the array index to determine the median ∆MDPi value along
with randomly selecting a float number between (∆MDPi − 0.5, ∆MDPi + 0.5). Since the
maximum daily precipitation MDPi in each month should be between 0 and the total
monthly precipitation MPi, if MDPi was less than zero, MDPi was set to zero; and if MDPi
was greater than MPi, MDPi was set to MPi.

Figure 12. Probability distribution of each month’s ∆MDP.

5.2.4. Construct the Probability Distribution of Daily Precipitation Amount in Each Month

Given the number of dry days and the maximum daily precipitation, stochastically
generating daily precipitation in each month is simply a matter of selecting a precipitation
amount for each wet day in that month. If the number of wet days was one, the precipitation
amount in that wet day was set to be equal to the monthly precipitation of that month
(MP). If the number of wet days was more than one, the precipitation amount of one
wet day was set to be the maximum daily precipitation of the month (MDP), and the
possible precipitation amounts for all other wet days fell in the range of the trace amount
of precipitation (i.e., 0.01 inch or 0.254 mm) to the maximum daily precipitation MDP. To
stochastically generate daily precipitation amount for each wet day, the number of wet
days with the precipitation amount falling in one of 11 categories was determined, as listed
in Table 6. These 11 categories include 10 daily precipitation amount (DPA) ranges and one
category of trace rain. The probability distribution of the 11 categories of daily precipitation
in each month is shown in Figure 13. Using the probability distribution, a one-dimensional
array of daily precipitation categories with a length of 1000 was developed for each month,
with the number of each daily precipitation category appearing in the array set equal to
the occurrence frequency (%) multiplied by 10.
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Table 6. Eleven categories of daily precipitation amount (DPA).

Category DPA Range Category DPA Range

1 DPA = 0.254 mm (trace) 7 0.55 MDP ≤ DPA < 0.65 MDP
2 0.254 mm < DPA < 0.15 MDP 8 0.65 MDP ≤ DPA < 0.75 MDP
3 0.15 MDP ≤ DPA < 0.25 MDP 9 0.75 MDP ≤ DPA < 0.85 MDP
4 0.25 MDP ≤ DPA < 0.35 MDP 10 0.85 MDP ≤ DPA < 0.95 MDP
5 0.35 MDP ≤ DPA < 0.45 MDP 11 0.95 MDP ≤ DPA ≤MDP
6 0.45 MDP ≤ DPA < 0.55 MDP

Figure 13. Probability distribution of the 11 categories of daily precipitation amount in each month.

5.2.5. Stochastically Generate Daily Precipitation

Daily precipitation in each month was generated based on the following rules:

1. If monthly precipitation MP is zero, every day has zero precipitation in the month.
2. If there is only one wet day, the precipitation amount of the wet day is equal to MP.
3. If there is more than one wet day, a randomly selected wet day’s precipitation is

set to be the maximum daily precipitation MDP. The precipitation amounts of other
randomly selected wet days are assigned based on the probability distribution of
daily precipitation category, through randomly generating an integer between 1 and
1000, and using the randomly generated integer as the array index to determine the
daily precipitation amount category. If it is category 1, the daily precipitation is set
to the trace rainfall (0.254 mm); otherwise, based on the daily precipitation amount
range of the category defined in Table 6, a randomly generated float number within
the daily precipitation amount range of the category is used.

4. For each month, after all wet days are assigned a precipitation amount, total pre-
cipitation in the month is compared to the estimated MP from annual precipitation.
If the difference between them is greater than a threshold (0.01 mm), precipitation
amounts of all wet days are adjusted through subtracting or adding the difference
divided by the number of wet days. Since each adjusted daily precipitation amount
should be between trace precipitation (0.254 mm) and the maximum daily precip-
itation (MDP), sometimes more than two iterations are needed for adjusting daily
precipitation amounts.
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Two sets of stochastically generated daily precipitations as examples for illustrating
results, along with the observed daily precipitations in year 2016 at Cortez are shown in
Figure 14.

Figure 14. Observed and stochastically generated daily precipitations in year 2016.

6. Conclusions

This study developed a CSWG for producing daily mean air temperatures and daily
precipitations in a year with known or specified annual mean air temperature and annual
precipitation. Since there appear to be no other published weather generators that utilize
annual mean air temperature or annual precipitation as constraints to daily weather pre-
dictions, we believe we are presenting a unique method that researchers can use to explore
historic (e.g., archeological questions) or future (e.g., climate change) daily weather condi-
tions based upon specified annual values. Thus, in areas such as the American Southwest
where tree-ring chronologies are widely available, a similar weather generator could be
developed for specific locations and then used to model daily mean air temperature and
daily precipitation for a specific year. These data could then be employed in a variety of
paleo-environmental models.

How to validate our CSWG results is a challenging question. Since none of the
published SWGs used the annual mean air temperature and precipitation as constraints to
daily weather predictions, it is hard to directly compare our results with results produced
by other SWGs. On the other hand, it is not proper to directly compare the stochastically
generated daily temperatures and precipitations with the observed daily data on the daily
basis, and thus some commonly used errors—such as root mean square error or relative
error—cannot be utilized in the evaluation of our results. Our CSWG results share the same
annual mean temperature and annual precipitation (i.e., the first order moments) as the
observations, and the higher order moments may not be the same. Therefore, comparisons
of the higher order moments between the observed and stochastically generated daily
mean temperature and precipitation data might be necessary. In addition to high order
moments, some other statistical characteristics of stochastically generated daily weathers
need to be evaluated, which deserve a future systematic study.
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After the criteria for evaluating our CSWG results are established, further improve-
ments in the CSWG can be carried out, such as including the correlation between daily
temperature and precipitation in the daily temperature generator, and considering the
dependencies of the current day′s wet/dry conditions on the previous day′s wet/dry
conditions in the daily precipitation generator. Additionally, a future study is necessary
to assess the effectiveness and applicability of the CSWG developed in this study in other
climatic regions, e.g., tropical, mesothermal, microthermal, and polar.
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Abbreviations

AP annual precipitation
CSWG constrainted stochastic weather generator
DMAT daily mean air temperature
DOY day of year
DP daily precipitation
DPA daily precipitation amount
GHCN global historical climate network
GSOD global summary of day
MDPi maximum daily precipitation in month i
MPi monthly precipitation in month i
NDi number of day in month i
NDDi numbere of dry days in month i
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