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Abstract: In this paper, the effect of the lockdown measures on nitrogen dioxide (NO2) in Europe is
analysed by a statistical model approach based on a generalised additive model (GAM). The GAM
is designed to find relationships between various meteorological parameters and temporal metrics
(day of week, season, etc.) on the one hand and the level of pollutants on the other. The model is
first trained on measurement data from almost 2000 monitoring stations during 2015–2019 and then
applied to the same stations in 2020, providing predictions of expected concentrations in the absence
of a lockdown. The difference between the modelled levels and the actual measurements from 2020
is used to calculate the impact of the lockdown measures adjusted for confounding effects, such as
meteorology and temporal trends. The study is focused on April 2020, the month with the strongest
reductions in NO2, as well as on the gradual recovery until the end of July. Significant differences
between the countries are identified, with the largest NO2 reductions in Spain, France, Italy, Great
Britain and Portugal and the smallest in eastern countries (Poland and Hungary). The model is found
to perform best for urban and suburban sites. A comparison between the found relative changes
in urban surface NO2 data during the lockdown and the corresponding changes in tropospheric
vertical NO2 column density as observed by the TROPOMI instrument on Sentinel-5P revealed good
agreement despite substantial differences in the observing method.

Keywords: nitrogen dioxide; Covid-19; GAM; statistical modelling; generalised additive model;
European Environmental Agency; lockdown

1. Introduction

The global Covid-19 pandemic in 2020 has led to major changes in society, the economy,
and transportation worldwide. In Europe, the first cases of Covid-19 were detected by
the end of January. In February, the number of incidents increased substantially in a few
countries—Italy, France and Spain—and Italy was the first country in Europe to introduce
restrictions on the population. Italy imposed a quarantine on more than 50,000 people in
the northern part of the country on 22 February.

During March, most European countries introduced a full national lockdown, and
most of these actions were taken mid-month. By 18 March, more than 250 million people
were in lockdown in Europe, and by the beginning of April, 3.9 billion people or around
half the global population were subject to complete or partial lockdown [1]. The global
road transport activity was almost 50% below the 2019 average by the end of March, and
commercial flight activity nearly 75% below 2019 by mid-April 2020 [2]. The lockdown
restrictions were gradually lifted in the following weeks and months, varying substantially
between the countries in Europe.

The reduced road transport and aviation led to reduced emissions of air pollutants
and thereby lower levels of atmospheric pollutants, as documented by several European
studies [3–11]. The quantification of this effect is, however, not trivial. First, weather
patterns have a decisive influence on air pollutants’ concentration through atmospheric
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mixing and wash-out of aerosols by precipitation. Dacre et al. [5] showed that meteorology
changes from pre- to post-lockdown periods in the UK counteracted the effect of reduced
NOx emissions. Second, the onset of the lockdown was in spring, which typically is a
transition period associated with marked changes in the prevailing pollutant levels. Peak
levels of primary pollutants, such as NO2, are typically observed in winter during episodes
of low temperatures and inefficient atmospheric mixing. In contrast, secondary pollutants,
such as O3 and organic aerosols, peak in summer. Finally, an assessment of the lockdown
effect on the pollutant levels should also consider the year-by-year downward trend in
pollutants due to policy-driven emission abatement actions in Europe.

Several hundred journal articles have already been published on the link between
the Covid-19 lockdown and reduced air pollution in Europe and other regions. The
publications can be divided into three categories:

• Pure observational-based studies in which the lockdown periods are compared with
non-lockdown periods [3,10,12], either using measurements from previous years or
by looking at pre- and post-lockdown periods in 2020.

• Studies based on chemical transport models (CTMs) and observations in combina-
tion [4,7,8,13–17] either by running separate baseline and lockdown emission scenarios
or by estimating the lockdown effect from a comparison between measurements and
business-as-usual scenarios.

• Statistical based studies [5,6,9,18] using multiple regression, generalised additive
model (GAM), or machine learning (ML) models to estimate the links between mea-
sured concentration levels and meteorological as well as time (day of week, etc.) data.
Some studies also use a combination of statistical methods and CTMs [4,7].

There are pros and cons to each of these approaches. Pure observational-based studies
are easy to conduct and avoid all model assumptions but are hampered by difficulties
in subtracting the meteorological impact. CTM based studies are the standard way of
assessing air pollution levels, but for the lockdown period, the CTMs were faced with
difficulties with the emission scenarios since the emission changes during lockdown will
vary with city, country and time. Some CTM studies use activity data during the lockdown
as a proxy for the emissions [8]. In contrast, others use country- and sector-resolved
emission reduction factors [4], and some studies have even turned off emissions from
specific sectors entirely [16].

An advantage of statistical models (compared to CTMs) is that they do not require any
emissions assumptions. Furthermore, as opposed to CTMs, statistical models can be trained
on data for each measurement station separately to give optimal prediction accuracy for
every station. This is particularly important for, e.g., traffic sites since concentration levels
at such locations can deviate quite substantially from the surrounding grid concentrations.
The main disadvantage of statistical models vs. a CTM is that the former is not built as
a physical causal model but only uses statistically found associations between a set of
explanatory meteorological and time variables and the resulting concentrations. Thus, one
should be careful with extrapolating results from such a model to other sites and periods
far into the past or future.

In this paper, we show that a specific type of statistical regression model, namely a
generalised additive model (GAM), is particularly well suited for isolating the effect of
the reduced emissions from other confounding processes. Various studies using machine-
learning (ML) methods have been used to assess the lockdown effect on air pollutants,
and the gradient boosting technique has been particularly popular [4,7,9]. The GAM
approach [19,20] can also be considered an ML method. Still, the main advantage of a
GAM model lies in its interpretability. It provides direct functional relationships between
each input explanatory variable and the response variable (the atmospheric concentration).
In contrast, other ML methods are less interpretable and tend to produce more “black-box”
non-transparent relationships and results. The GAM modelling approach is also often
found to have good predictive abilities [20,21].
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Furthermore, since the GAM model is statistical in nature, we can provide 95% un-
certainty intervals for the model predictions, which enable us to compare and check the
resulting accuracy of the model with the actual observations. The GAM model can also
estimate and consider long-term trends in the concentration levels over several years in
the predictions for a left-out or future year without any assumptions about the change in
emissions with time. The present study is a substantial extension of the preliminary results
presented in [11].

Despite the fundamental differences between the various methodologies discussed
above, the estimated effects of lockdown on NO2 levels in Europe seem to be reasonably
consistent across the studies. The studies are, however, not directly comparable since the
studied periods differ somewhat.

In their observational-based work, Baldasano [3], Sicard et al. [10], and Tobias et al. [12]
all estimated reductions in the NO2 concentration levels of the order of 50–65% for urban
and traffic sites in Spain, France and Italy in March 2020. They also found that consideration
of the varying weather patterns had a decisive influence on the estimated levels. These
estimations agree very well with the CTM based findings of [4] for urban areas in the same
countries. For countries that adopted softer lockdown measures, such as Germany, the
Netherlands, Poland and Sweden, Barré et al. [4] estimated smaller reductions in NO2
levels. Keller et al. [7], using the NASA global atmospheric composition model GEOS-CF
(GEOS Composition Forecasts) with a bias-correction methodology found a 46% reduction
in NO2 over Spain (14 March to 23 April) and widespread reductions in the order of 22% in
March and 33% in April over Europe. Using the WRF-CHIMERE model for Western Europe
with different emission scenarios, Menut et al. [8] estimated NO2 concentration reductions
in the order of 15–30% for Germany and the Netherlands and 35–45% on average in other
countries for March 2020. Grivas et al. [13], looking at the Greater Athens area using the
TAPM model estimated average NO2 concentration reductions in 30–35%, and up to 50%
reduction in some Athens basin areas.

Based on a machine learning model fed by meteorological data and time features for
background and traffic stations in Spain, Petetin et al. [9] estimated a mean reduction in
NO2 concentration levels of 40% already early in the year when less stringent restrictions
were introduced, increasing up to 55% reduction during later and more strict phases of
the lockdown. Ordonez et al. [18], applying a GAM model for the period 15 March to
30 April found the best correlation for Benelux sites. For the meteorologically adjusted
changes, they found 47–50% reductions in the NO2 concentration levels for urban locations
in France, Italy and Spain. Grange et al. [6] used an ML model called Random Forest Model
on NO2 and O3 data for 102 metropolitan areas and 34 countries in Europe. They estimated
NO2 reductions that agree very well with the studies mentioned above, with on average
34 and 32% lower concentration levels than expected at traffic/roadside sites and urban
background sites, respectively. They also found that the oxidant level (Ox = NO2 + O3)
was more or less unchanged during the lockdown, implying a similar increase in O3
accompanied the reduced NO2.

2. Method

A GAM model [19,20] is a non-linear regression model linking expected values µi of a
given response variable Yi to several explanatory variables xij through the following set of
relations:

g(µi) = β0 +
p

∑
j=1

β j
(

xij
)
; µi = E(Yi) (1)

where β0 is a constant (the intercept), and where β j(·), for j = 1, . . . , p, represents smooth
functions of the covariates xij, with p the number of such covariates.

Our GAM model was developed over several years [22,23] and was initially designed
to assess air pollutant trends in Europe based on long-term monitoring data of O3, NO2
and PM. That work aimed to apply and adapt for European conditions a statistical method
that has been used by the US-EPA (Environmental Protection Agency) on a routine basis
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for surface ozone trend assessments, adjusting for the inter-annual impact of changing
meteorology [24].

The response variable Yi in (Equation (1)) represents a measured air pollutant con-
centration at day number i at a given site, while xij represents the values of individual
explanatory variables for j = 1, . . . , p at the same location and at the same day i, typically
meteorological data, such as temperature, humidity, etc., as well as time variables (day of
the week, etc.). In (Equation (1)) g(·) is a function linking the statistical expected value of
the response variable Yi, i.e., µi, to the explanatory variables xij.

In a GAM model, the response variable Yi is assumed to have a specific probability
distribution, known as the response distribution, with mean µi and variance Vi. Further, a
GAM model is an extension of a multiple linear regression (MLR) model where each β j is a
smooth function of xij and not a constant to be multiplied with xij as in an MLR model,
and where the mean value µi is more generally related to the covariates through the given
link function g(µi). For NO2, we apply a log link function g(µ) = log µ and a Gamma
distribution as a response distribution. This is because NO2 has a relatively large range of
concentration variation of several orders of magnitude, where the variance of Yi, i.e., Vi,
is typically proportional to µ2

i . Thus, for such a variable, it is common practice in GAM
modelling to choose a logarithmic link function and a distribution which is skewed to the
right, such as a Gamma distribution, as a response distribution for Yi [20]. This was also
applied in the previous trend studies [22,23]. In these studies, we looked at surface data of
O3, NO2, PM10 and PM2.5.

Although developed initially for long-term trend studies, the GAM model proved
to be very well suited for studies of the effect of the lockdown measures on air pollutant
concentrations during the Covid-19 pandemic. The conceptual idea of the GAM is to
establish statistical relationships between the input explanatory variables and the measured
air pollutant by training the model on specific periods and then applying the established
model to predict the air concentrations in another period. Provided that the model performs
reasonably well compared to measurement data, the difference between the predicted NO2
levels for 2020 (the expected or business as usual (BAU)) and the measured levels gives the
reduction in NO2 due to the activity restrictions during the pandemic. In the following, we
document that the model could be used in this way.

2.1. Statistical Uncertainty of the GAM Predictions

The uncertainty in the GAM model predictions, depicted as the grey shaded areas of
the prediction plots in Section 3, is defined as 95% prediction intervals of the unconditional
response distribution of modelled concentrations of NO2 for each day. These distributions
cannot be given analytically, so a Monte Carlo approach was used to define each interval. At
day number i, N samples of log-expected values log µ̂ij, j = 1, . . . , N, were first drawn from
a normal distribution with mean µ̂i and standard deviation σ̂i. These values corresponded
to the estimate of the expected value and standard error, respectively, of the linear predictor
(Equation (1)) for day number i. Next, shape (a) and scale (s) parameters of a Gamma
conditional response distribution given the expected value µ̂ij was defined in the usual
way [19] as â = φ̂−1 and ŝ = ŝij = µ̂ij/â, where, φ̂ is the estimated scale or dispersion
parameter. Then, N samples of predicted concentrations ŷij were obtained by random
draws from Gamma distributions, i.e., ŷij ∼ Gamma

(
â, ŝij

)
, representing samples from

the unconditional (compound) response distribution of modelled concentrations given the
data. Finally, a 95% prediction interval was obtained for each day as the interval between
the 0.025 and 0.975 sample quantiles of these concentrations. After some testing with
various values of N, 100 samples were found to give satisfactory results in defining the
95% prediction intervals, with a good balance between the accuracy of final intervals and
the computational efforts.
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2.2. Input Data

The study was based on official air quality measurement data reported to the Eu-
ropean Environment Agency (EEA) through the e-Reporting system. These data are
publicly available through a web interface (https://discomap.eea.europa.eu/map/fme/
AirQualityExport.htm). EU member states, EEA countries, and other associated European
countries report measurement data for a wide range of air pollutants to EEA’s e-Reporting
database on an automated, near real-time basis. The most recent data belong to the E2a
data set, also named UTD data (Up to Date), and have been through less stringent quality
control procedures. In October/November of each year, the previous year’s data are re-
submitted. These data constitute the E1a data set, meaning validated data that have been
through more rigorous quality control.

In this study, we investigated the period March–July for the years 2015 through 2020.
Measurement data were extracted from the e-Reporting database at the end of October
2020, meaning that we used E1a data for 2015–2018 and many of the sites in 2019 (while
E2a for the rest) and E2a data for 2020. March through July 2020 included the introduction
of lockdown measures in most of Europe, with substantial implications for the road traffic,
particularly in March through April, followed by a period of gradual recovery towards
more average conditions. From experience with previous testing and application of the
GAM model, the five preceding years (2015–2019) provide a sufficient reference for the
GAM to be trained on. A more extended period would reduce the number of available sites
and increase the importance of interannual trends in pollutant concentrations, whereas the
benefit concerning improved model performance is expected to be minor.

All NO2 data are reported to EEA as hourly averages. The GAM is based on daily
input values for meteorology and air quality data, and all NO2 data were transformed to
daily mean values on the input to the model.

The monitoring sites reporting to the EEA are classified according to station type
(background, industry, or traffic) and area type (rural, suburban, or urban). In principle,
this constitutes nine combinations overall, although some combinations will rarely occur
(such as background traffic). Based on these classes, we allocated the stations to the
following three categories:

• Traffic (all area types);
• Urban background and suburban background;
• Rural background.

We used operational and ERA-interim data [25] for the meteorological input to the
model provided by the European Center for Medium-Range Weather Forecast (ECMWF).
ERA-interim (ECMWF Re-Analysis) data has a spatial resolution of approximately 0.75◦.
The operational data, which were used after August 2018 when there was no ERA-interim
data available, has a spatial resolution of roughly 0.14◦. ERA-interim has 60 vertical levels,
and the operational dataset has 137. All data were interpolated from the original data,
given as spherical harmonic coefficients to gridded fields of 0.3◦ resolution.

The input meteorological data are listed in Table 1. Air temperature at 2 m, specific
humidity, and the two horizontal wind vectors were extracted from the analysis at 00:00,
06:00, 12:00 and 18:00 UT, respectively, for the lowest vertical model level. Air pressure at
mean sea level was available as a surface field. The top net solar radiation and the planetary
boundary height were extracted at 15:00 UT as forecasted data. The top net solar radiation
was the incoming solar radiation minus the outgoing solar radiation (by reflection and
scattering from the atmosphere and the surface) at the top of the atmosphere.

https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm
https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm
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Table 1. List of input data used for the generalised additive model (GAM) calculations.

Explanatory Variable of the GAM Model

x1 Daily temperature at 18 UT

x2 Daily mean 10 m wind speed

x3 Daily mean 10 m wind direction

x4 Daily mean PBL height

x5 Daily relative humidity at 18 UT 1

x6 Weekday number

x7 Day number in the season

x8
Continuous-time in fraction of years (0.0 = 1
Jan at start of period). This is the trend term.

1 Relative humidity was not given in the ECMWF (European Center for Medium-Range Weather Forecast)
data but was calculated based on the absolute humidity, temperature and pressure. UT = Universal Time.
PBL = Planetary Boundary Layer.

Based on the gridded fields of meteorological data, we prepared annual time series
containing daily values of temperature, relative humidity, solar radiation, planetary bound-
ary layer height (PBL) and wind speed and wind direction at 10 m height for each station
separately by picking the data values in the grid square containing the station. Temperature,
relative humidity and wind were aggregated into daily mean values based on the four data
values each day. The mean wind direction was obtained using a vector mean. The other
parameters were already given as daily data, as mentioned.

In addition to the meteorological data, three time-variables were included as input
to the GAM: day of week number (1, . . . , 7), the day number in season, and overall time
since 1 March 2015 given as year fraction. Whereas the two first variables are cyclic, the
latter is a continuous term that considers long-term trends in the concentration levels.

To account for missing data, a data capture criterion of 75% each year was applied,
meaning that for a station to be included in the analyses, it should have at least 75% valid
daily data for the actual period (March–July) for every year from 2015 through 2020.

As explained above, the model setup implies that the response variable, i.e., the daily
mean NO2 concentration, was estimated by a linear combination of the meteorological
and time variables for that grid square and that day. In other words, air mass history and
long-range transport effects were not considered. While this is a significant simplification,
experience shows [23] that this simple approach can predict daily mean NO2 levels fairly
accurately at many monitoring stations, as discussed in more detail below.

2.3. Model Performance of the GAM

To assess the model performance, the GAM was used to predict the daily NO2 levels
at all sites in each of the years 2015–2019. In these calculations, the GAM was optimised
based on data from the remaining years (but not 2020), whereas the actual year was not
included. These predicted daily values were then compared to the measured data, as
explained below.

Various statistical measures were calculated to assess the model performance based
on the predicted vs. the measured daily NO2 concentrations at each site individually for
the March–July period. Since the GAM was optimised to the observations, the model was
unbiased by construction, and the mean bias was indeed found to be close to zero. In this
study, we used the linear correlation coefficient (r) and the normalised mean gross error
(NMGE) as the model performance measures. The NMGE was chosen since it is a measure
of the mean relative deviation of the model from the observed values and is independent
of the absolute level of NO2, which is essential considering the large variations in NO2
concentrations over Europe.

The GAM was applied to almost 2000 stations, and in the post-processing of the results,
we found that the model failed for a number of the sites. Inspection of the measurement
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data indicated that major breaks in the time series (e.g., due to station placement changes)
either within one year or between the other years was the cause for many of these failures.
Thus, a screening of the stations was required, and we decided to set a criterion of a
minimum correlation threshold of r ≥ 0.65 for the linear correlation between the daily
GAM predictions and the measured data based on all data from 2015–2019 for a station
to be included in the analysis. An additional criterion on the NMGE was not considered
necessary since the r-criterion also filtered out the sites with the highest NMGE values.

The total number of sites in each category and their average r and NMGE values
(before and after the screening of the stations), as well as the percentage fraction of sites
fulfilling the r-criterion, is given in Table 2. The best agreement between the GAM predic-
tions and measurements was found at traffic sites followed by the urban and suburban
background sites that showed a somewhat poorer agreement. For rural background sites,
the model performance was considerably poorer, which was expected since these sites are,
to a larger extent, controlled by long-range transport events and not by the local emissions
and meteorology at the site.

Table 2. Statistical performance metrics for the GAM vs. daily mean concentrations of NO2 for March–July 2015–2019 for
the three categories of stations. n = number of stations, r = linear correlation coefficient, NMGE = normalised mean gross
error. The fraction of sites passing the screening (r > 0.65) is also given.

Before Filtering
Accepted Sites (%)

After Filtering

N r NMGE (%) N r NMGE (%)

Traffic sites 501 0.73 20 85 424 0.77 18

Urban and suburban
background sites 965 0.72 24 81 778 0.77 22

Rural background sites 347 0.60 30 52 181 0.75 24

All sites 1813 0.70 24 76 1383 0.77 21

Table 2 shows that 85% and 81% of the traffic and urban/suburban stations, respec-
tively, fulfilled the r-criterion, whereas only around half the background rural stations
passed this criterion. The mean correlation coefficient for all traffic and urban/suburban
sites was 0.72–0.73 and the NMGE 20–24% before filtering. After filtering, the mean r value
was 0.77 and the NMGE 18–22% for these sites. The r and NMGE values were considerably
poorer for rural background sites before filtering. The total number of sites after filtering
was 1383.

Figure 1 shows the cumulative distribution of the correlation coefficients for the three
categories of stations. It indicated that the model performance was fairly even for traffic
and urban/sites with a tail of poor-performing sites at the left end of the diagram followed
by fairly uniform r values ranging from 0.65–0.90. For the rural background sites, the
cumulative distribution was different, indicating that the lack of model performance for
these sites reflected that the GAM was less fit to predict NO2 levels at these locations.
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Figure 1. Distribution of r values for the generalised additive model (GAM) performance vs. observed daily mean
concentrations at different station types for March–July 2015–2019. Stations with a value of r < 0.65 (threshold marked with
a horizontal black line) were not used further in the analyses.

The geographical distribution of r and NMGE for all the NO2 sites before the screening
is shown in Figure 2. This indicated that the agreement between the GAM and the measure-
ments was best (high r, low NMGE) in the northwest part of the continent, i.e., Benelux,
northwest Germany, northeast France and England. A somewhat more inferior agreement
could be observed in southern Europe, particularly Spain and some parts of Italy. Figure 2
revealed many sites with very low r-value in Spain, mostly at rural background sites. Si-
multaneously, sites in the Madrid and Barcelona agglomerations showed a good agreement
between observed and GAM predicted levels, which are discussed further below.
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Figure 2. Linear correlation coefficients (Pearson r) and normalised mean gross error (NMGE) for the GAM predicted vs.
observed daily mean values of NO2 during March–July 2015–2019. Squares = traffic sites, diamonds = urban/suburban
sites and circles = rural background sites. These maps show all stations before screening for r ≥ 0.65.
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3. Results and Discussion
3.1. The Impact of Lockdown and Recovery on European NO2 Levels

As explained above, the GAM was first trained on the measured daily data from
March–July for the five years 2015–2019 for each monitoring station separately. The
estimated GAM model (Equation (1)) was then applied for predicting the expected levels in
March–July 2020 given normal conditions and no lockdown. The differences between the
GAM model predictions and the measured values are then seen as the effect of the pandemic
lockdown restrictions. Only sites fulfilling the criterion of r ≥ 0.65 were included in the
following analyses. Figures 3–5 show the calculated mean relative differences between
the predicted and measured NO2 levels for April 2020, the month with the strongest
impact from the lockdown, for the three categories of stations. Stations with a statistically
significant change in NO2 (on a p = 0.05 level) were plotted as squares, while the others
were plotted as circles.
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The results show marked regional differences in Europe, with the most substantial
impacts in the south and west and the least impact in the east. These maps indicated that
the largest reductions in NO2 levels occurred in Spain, France and Italy and the smallest
declines in eastern countries, such as Hungary, Slovakia and Poland.

This is further illustrated in Figure 6, showing the country-averaged spread in the
observed minus expected NO2 levels for April in each of the preceding years (2015–2019)
given in blue and for April 2020 in red for each country separately. For traffic sites, we



Atmosphere 2021, 12, 131 11 of 20

estimated the largest median decrease in NO2 levels in Spain (60%), Italy (57%), Portugal
(57%), France (56%) and Great Britain (46%). These results agree well with other published
studies [4,6–8].
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Figure 6. The country-wise differences between measured and expected mean NO2 concentration in
April 2020 for traffic sites (upper panel) and urban/suburban sites (lower panel). The numbers in
brackets give the number of stations. Only countries with at least four stations in the given category
were included in the figure. The centreline shows the median value while the boxes span from the 25-
to 75-quantile and the whiskers from the 9- to the 91-quantile.

These values were calculated as:

∆NO2 =
NOobs

2 − NOpred
2

NOpred
2

× 100(%) (2)

where the averages of observed and GAM predicted concentrations were taken over all
stations of each category in each country for April in each of the years 2015–2020.

To investigate if the estimated differences in NO2 reductions between the countries
could be explained by systematic differences in GAM performance and reflect a model
artefact, we looked at the relationship between model performance and ∆NO2. This showed
no covariation between the linear correlation coefficients (r) and ∆NO2. Furthermore, the
country-wise differences in NO2 concentration reductions during lockdown estimated by
our study agrees very well with the results from many other European studies [3,4,6–8,18]
based on different methodologies. Therefore, we are confident that these differences
between the countries express real differences in the lockdown effect on NO2 levels in
different countries.
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The box-whisker plots shown in Figure 6 are sensitive to outliers when the number of
stations is small. This is seen for the traffic sites in Sweden where the results were affected
by one single station (SE0058—Dalaplan) in Malmö reporting substantially higher levels
than expected in April 2020. These measurements were most likely wrong or reflect a very
local change to the traffic pattern since a neighbouring traffic station (SE0096—Bergsgatan)
located just 1 km away did not show any signs of such elevated NO2 levels. In addition, in
previous years, these two sites were highly correlated with each other.

The initial lockdown effect and the gradual recovery is indicated in Figure 7. This
shows the monthly median deviation from the expected NO2 levels, as calculated by the
GAM at all urban and suburban stations (including traffic sites) in 2020 for April–July for
each country with at least ten such sites. The lockdown was introduced around the middle
of March in most countries, whereas lifting the restrictions varied substantially between
the countries concerning date and content.
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Figure 7. The median relative drop in NO2 concentration at all urban and suburban sites is given by the difference between
the GAM predicted and observed level in April–July 2020. Only countries with at least ten sites are shown.

The monthly data given in Figure 7 show a gradual recovery during April–July for all
countries. Still, none of the countries was “back to normal” even in July, indicating reduced
NO2 levels in all of Europe even long after the lockdown restrictions had been lifted. This
agrees with the findings of [7]. Countries in the east with the least reduction in NO2 levels
in April, such as Poland and the Czech Republic, also showed the least change during the
period, staying at around 20% reduction during these months. In the countries with the
largest NO2 reduction in April, the NO2 drop changed in these four months from 60% to
30% in Spain, and from 51% to 19% and 20% in France and Italy, respectively.
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The time series of the aggregated NO2 data (observed and predicted) for all traffic
stations in Spain and the Czech Republic from 2015 to 2020 is given in Figures 8 and 9 as
examples. Similar figures for all countries are given in Figure S1–S3 in the Supplementary
Material based on traffic stations, urban/suburban background stations, and rural stations,
respectively. These results showed a very good agreement between the observations and
the GAM predictions when averaged over the country. The weekly cycle and the peaks and
dips through the period were reproduced very satisfactorily by the GAM. The data from
the Czech Republic indicated a tendency for an underestimation of the NO2 levels during
some of the peak episodes. These results gave strong support that the GAM provides
reasonable predictions for the daily NO2 levels at these sites. It should be noted that the
model performance was comparable for the other European countries, as can be seen from
the plots in the Supplementary Material.

1 
 

 

1 

 

8 
 

Figure 8. Daily mean NO2 levels as observed (blue) and predicted (red) by the GAM for 60 traffic stations in Spain during
March–July 2015–2020. The start and end of the lockdown in 2020 are indicated in the plot. Grey shading indicates the 95
percent uncertainty in the prediction interval for each day, as explained in Section 3.



Atmosphere 2021, 12, 131 14 of 20

 

2 

 

9 
 

Figure 9. Same as Figure 8 for traffic sites in the Czech Republic.

The results for 2020 in Figure 8 show a substantial reduction in measured NO2 levels
compared to the Spanish traffic sites’ predictions, most pronounced during the lockdown
(14 March–9 May). After lifting the lockdown in May, the disparity between the expected
and observed levels was gradually reduced, and by the end of July, the measured NO2
levels were within the 95% confidence interval of the GAM predictions.

In contrast, the results for the Czech traffic sites in 2020 (Figure 9) showed that the
measured NO2 levels were below the predictions of the whole period, but mostly within the
95% confidence interval of the predictions and without a very clear trend from March to July,
as also discussed above. The country-level differences in the estimated lockdown effects
over Europe based on the GAM agree well with other findings as, e.g., reported by [4,7].

3.2. City Level Analysis

Figure 10 shows the observed and predicted NO2 concentrations during March–July
at traffic stations in six large cities in Europe: Barcelona, Madrid, Rome, Paris, Vienna and
Berlin. For the first four of these cities, the results showed substantial reductions in the
NO2 levels compared to the predictions. In contrast, Vienna and Berlin’s levels were only
slightly reduced. The Spanish sites’ results align with the study by [10], using an ML-based
approach to analyse NO2 data from Spain in March–April.
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3 

10

 
Figure 10. Daily mean NO2 levels as observed (blue) and predicted (red) by the GAM for traffic stations in Barcelona,
Madrid, Rome, Paris, Vienna and Berlin during March–July 2020. The start and end of the lockdown in 2020 are indicated in
the plot. Grey shading indicates the 95 percent uncertainty in the prediction interval for each day, as explained in Section 2.

As seen from Figure 10, the day-to-day variations in the observations follow closely
the predictions for all the cities but at lower levels. This is a strong indication that the
reduced levels reflect emission reductions and not weather anomalies or other confounding
processes. In addition, for Berlin, the observations and predictions correlated very well,
indicating that the much smaller reductions in NO2 compared to the other cities reflect
that the emission reduction in Berlin during the lockdown was substantially lower than in
the other three cities. From 1 May, Berlin’s observed levels were close to the predictions
indicating that the road traffic in Berlin was back to normal conditions very early compared
to the other cities.

Figure 11 provides a spatial view for the same set of six cities, showing the station-level
reductions in measured surface NO2 compared to the business-as-usual scenario.
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Figure 11. Relative reduction (in percent) of the observed NO2 level for April 2020 compared to the business-as-usual
scenario for all qualifying air quality monitoring stations in six selected cities (Barcelona, Madrid, Rome, Paris, Vienna
and Berlin). Circles indicate traffic sites, squares indicate urban/suburban sites, and diamonds indicate rural sites. Note
that the colour scale range varies between the panels to highlight the spatial patterns within a city better. In addition, note
that in these maps, all stations within each domain are shown, whereas Figure 10 only shows stations selected according
to a predefined list provided by EEA. Background base map by ESRI (Environmental Systems Research Institute) and
contributors.
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3.3. A Comparison of the GAM Predictions with Satellite Data for Selected Cities

Earth-observing satellites allow for a unique spatially continuous air quality perspec-
tive that is typically not possible with the relatively sparse official air quality monitoring
network. The recently launched Sentinel-5P satellite with its TROPOMI instrument allows
for maps with higher spatial resolution than previously possible. Using such data, simple
comparisons of monthly mean NO2 levels between different years can be made. Figure 12
shows a comparison of the April 2019 NO2 levels against the same period of 2020. Qual-
itatively, the impact of reduced emissions due to lockdown measures is clearly visible.
However, such a simple comparison is prone to various uncertainties, and most impor-
tantly, the effect of different meteorology between the two years is not accounted for [4].
Relative differences calculated in such a way between two years result from a combination
of various effects and can thus not be interpreted as the sole signal of lockdown measures.

Figure 12. Comparison of the average tropospheric vertical column density (TVCD) of NO2 retrieved from the TROPOMI
instrument on board of the Sentinel-5P platform for April 2019 (left panel) and April 2020 (right panel). Units are given in
1015 molecules per square centimetre. Basemap copyright OpenStreetMap contributors and map tiles by Stamen Design,
under CC BY 3.0.

To estimate to what extent quantitative estimates with a simple satellite-based tech-
nique are comparable with a more robust meteorology-correcting approach as the one
presented in this paper, we extracted the relative difference of the 2019 and 2020 April
NO2 Tropospheric Vertical Column Density (TVCD) averages from TROPOMI/S5P over
a circular region of 40 km diameter for all cities for which the GAM-based analysis had
at least ten stations. All available data from the official Level-2 offline NO2 product were
gridded to 0.025◦ by 0.025◦ spatial resolution, filtered for clouds and other retrieval issues
(using only retrievals with quality assurance flag values of greater than 0.75), averaged
to daily mosaics, and subsequently averaged over one month. These non-meteorology-
corrected satellite estimates could then be directly compared to the meteorology-corrected
relative differences from the GAM approach. The results can be seen in Figure 13. There
was a surprisingly strong correlation between the two datasets with an R2 value of 0.91.
However, there appeared to be a positive bias in the satellite data, particularly for relative
differences around −20%. This was also confirmed by the slope of a linear regression,
which showed a slope of 0.81. Nonetheless, the correlation between the two datasets
was robust, particularly considering the substantial uncertainties in the satellite-derived
estimates and the fact that satellites provide integrated atmospheric column measurements
as opposed to the surface-based station observations. This result indicates that simple
year-to-year comparisons from satellite data can be useful for a first indicative analysis,
even though a proper meteorology-correction along the lines demonstrated in this paper
continues to be necessary for a robust quantitative analysis.
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Figure 13. The relative difference in the tropospheric vertical NO2 column density as observed by the TROPOMI instrument
on Sentinel-5P for April 2020 versus the GAM predicted relative reduction in surface NO2 concentration at traffic sites in
various European cities. Gray horizontal lines represent the approximate uncertainties of the satellite estimates, including
the effect of meteorological variability. The dashed black line indicates the 1:1 reference line.

4. Conclusions

The strong restrictions on human activities linked to the first wave of the Covid-19
pandemic in spring 2020 in Europe led to substantial road traffic changes. This, in turn, led
to significant reductions in the level of NO2 and other pollutants. The quantification of this
reduction is not trivial since differing weather patterns and underlying long-term emission
trends could mask the signal from the lockdown in 2020. Various methods have been
published to solve this issue, and in the present paper, we showed that a GAM (generalised
additive model) was very well suited for the task.

The conceptual idea of the GAM is to establish statistical relationships between input
explanatory variables and measured air pollutants by training the model on specific periods
and then applying the established model to predict air concentrations in another period.
The present study was based on NO2 measurement data from the European Environmental
Agency (EEA) and gridded meteorological data extracted from ECMWF for the period
March–July, in 2015–2020. The GAM was applied for nearly 2000 NO2 monitoring stations
separately, first by training on the 2015–2019 period and then used to predict “business-as-
usual” levels for 2020.

The results revealed that a screening of the stations was required. For most of the
sites, the GAM provided good predictions of the daily NO2 levels. In contrast, for a minor
number of the stations, an inferior agreement between predicted and observed levels was
found. Many of these cases could be explained by inconsistent measurement data. A larger
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fraction of the rural background sites showed less good agreement between predicted and
measured NO2 levels, reflecting that NO2 at these sites were, to a more considerable extent,
controlled by long-range transport, which is not captured by the GAM.

The results after aggregating all traffic sites (or urban/suburban sites) for individual
countries show particularly good agreement between predicted and observed daily NO2
levels. This is likely an effect of station-wise peculiarities cancelling out. For the urban
and suburban stations, we estimated the most substantial lockdown effect on NO2 in
Spain with a 60% reduction as a country average, followed by Italy (51%), France (51%),
Portugal (47%) and Great Britain (43%). The least impact was estimated for the eastern
countries of Poland (22%) and Hungary (23%). Our results showed a gradual recovery
during April–July for all countries. Still, even in July, the NO2 levels were 20% lower than
expected in many countries, indicating that the effect of reduced emissions lasted long after
the first lockdown restrictions had been lifted.

Aggregating the results for European cities also revealed large differences between
the cities with Barcelona and Madrid on one end of the scale (mean reduction of around
60% in April) and Berlin, Hamburg and Vienna on the other end (20–30% reduction).

Whereas chemical transport models (CTMs) are state-of-the-art tools concerning
assessment studies on a regional scale [26], they are less applicable for urban and roadside
conditions. For these locations, statistical models such as the GAM could fill a gap assessing
pollutants as documented in the present work.

The GAM has also been applied for PM10, PM2.5 and surface ozone [11,22,23] at rural,
urban and suburban locations. The experience is that the GAM is indeed a valuable tool
even for secondary pollutants at rural background sites, offering a low-cost model type that
is complementary to resource-intensive CTMs. The GAM presented in this work will be
applied to all of 2020, including the second wave and lockdown of the Covid-19 pandemic,
as soon as the data are available.
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based on rural stations.
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