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Abstract: Air quality monitoring systems differ in composition and accuracy of observations and their
temporal and spatial coverage. A monitoring system’s performance can be assessed by evaluating
the accuracy of the emission sources identified by its data. In the considered inverse modeling
approach, a source identification problem is transformed to a quasi-linear operator equation with the
sensitivity operator. The sensitivity operator is composed of the sensitivity functions evaluated on the
adjoint ensemble members. The members correspond to the measurement data element aggregates.
Such ensemble construction allows working in a unified way with heterogeneous measurement
data in a single-operator equation. The quasi-linear structure of the resulting operator equation
allows both solving and predicting solutions of the inverse problem. Numerical experiments for
the Baikal region scenario were carried out to compare different types of inverse problem solution
accuracy estimates. In the considered scenario, the projection to the orthogonal complement of
the sensitivity operator’s kernel allowed predicting the source identification results with the best
accuracy compared to the other estimate types. Our contribution is the development and testing of a
sensitivity-operator-based set of tools for analyzing heterogeneous air quality monitoring systems.
We propose them for assessing and optimizing observational systems and experiments.

Keywords: air quality; monitoring systems; transport and transformation of impurities; inverse
problem; emission source identification; sensitivity operator; adjoint equations; Lake Baikal region

1. Introduction

Atmospheric air quality monitoring systems vary in their temporal and spatial cov-
erage, the composition of the chemicals observed, and the accuracy of the data obtained.
With the help of various monitoring systems, a huge amount of heterogeneous data is
collected. The effective use of data is a significant scientific problem [1,2]. Moreover, new
measurement systems are deployed to obtain new air-quality data, and new observational
experiments are carried out. Choosing or optimizing the configuration of a monitoring
system or observational experiment [3–11] is a multi-criteria decision-making task. It is
necessary to compare the cost and accuracy of measuring equipment, maintenance costs,
the goals of building such a system, its use cases, and other factors [12–14]. An essential
criterion for choosing the configuration of the monitoring system is the value of the infor-
mation content of prospective measurements. Hence, the methods of different accuracy
and computational intensity for analyzing the information content of measurement data
are essential. Finally, all the factors have to be compared, and a decision should be made
about choosing the best variant. To choose one of the options, one can, for example, use the
Multiple Criteria Decision-Making methods (see, e.g., [15]).
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The joint use of process models and observational data makes it possible to solve a
number of applied inverse problems, including the identification of air pollution sources
and restoration of pollution fields in unobserved areas [3,4,16–23]. Data assimilation
algorithms [24,25] are widely used in operative and quasi-operative air quality applica-
tions [26–31]. A data assimilation problem can be considered as the sequence of linked
sources identification problems [32]. Air pollution sources pattern extracting is needed
to compile emission inventories [33]. Knowing the emission sources is essential to model
air quality since the emission sources largely determine the system’s behavior [34,35].
These considerations make the source identification problem’s solution accuracy a relevant
instrument to measure the value of the information content of the observation data.

The methods of utilizing heterogeneous measurement data are referred to as “data
fusion” [36–38]. Data of different sources and types can complement and cross-validate
each other. In the paper, we focus on data fusion of heterogeneous measurements from
the perspective of inverse modeling. In particular, previously, we considered the data
obtained from the time series of concentrations at monitoring sites [39,40] and those were
presented as images of concentration fields [41,42], as well as a combination of these two
data types [43]. In the paper, we additionally consider Pointwise (in situ) monitoring data
in space and time, which allows processing data from mobile monitoring systems mounted
on ships [44], aircraft [45], unmanned aerial vehicles [46], and cars [47]. Moreover, the
support for time-averaged concentration data is incorporated that allows one to include,
for example, snow cover monitoring data, bio-monitoring techniques data, as well as the
other, averaged data, for example, those published by Roshydromet [48].

Our approach is based on ensembles of solutions of adjoint equations and sensitivity
operators. It consists of constructing families of sensitivity operators of various dimensions
based on the inverse problems, linking the observed characteristics with the model’s
uncertainty functions (e.g., emission sources). The approach bridges an idea proposed by
G.I. Marchuk in [49], methods of sensitivity theory [50], the essence of the mollification
method [51], and the “image to structure” operator concept [52]. In [49], G.I. Marchuk
suggested gathering adjoint problem-based interpretations of separate measurement data
elements to a single equation. In the case of many data elements (e.g., high-resolution
satellite images), the straightforward application of the approach is complicated since one
needs to solve a large number of adjoint problems, equal to the number of the considered
data elements (e.g., pixels).

The first approach to this issue is considering a misfit cost function comparing the
measured and simulated data. It dramatically decreases the ensemble of the adjoint
problems to obtain the gradient of the cost function [53–55]. In this case, one has to solve
only one adjoint problem, defined by the misfit between the measured and simulated data.
This approach is widely used in the applications (see the review in [24,25]).

Another solution is to consider some arbitrary aggregates of the measurement data
(which is relevant to the mollification method and the “image to structure” operator con-
cept) and evaluate the set of adjoint problem solutions for these aggregates. The sensitivity
operator is then composed of this adjoint problem solutions ensemble. Sensitivity operators
allow formulating a family of quasi-linear operator equations for the inverse problem, the
sets of solutions of which contain the solutions of the original problem. The quasi-linear
structure of the equations provides a more straightforward way of analysis with the linear
tools [39,41], compared to the case of the misfit cost function-based aggregation of the mea-
surement data, i.e., the sensitivity operators can be used to solve and analyze the inverse
problems in a unified way. Similar algorithms have been applied to the linear passive
transport problem [56] and the nonlinear transport–transformation model with Pointwise
sources and in situ measurements [20]. An overview of the other adjoint-ensemble-based
methods can be found in [23].

Furthermore, the sensitivity of the operator-based approach allows naturally fusing
various data types [57]. To do this, it is enough to construct the sensitivity operator from the
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adjoint problem solution ensembles corresponding to multiple data types (see Section 2.3
for more details).

The paper’s objective is to briefly describe the features of the proposed approach
to solving inverse modeling problems using heterogeneous data coming from various
monitoring systems. In particular, we want to study the characteristics of the sensitivity
operator that can be used to predict the source identification results based on different
monitoring system configurations. The ultimate goal of the study is to find a few char-
acteristics that can be used in the observation system optimization that includes various
data sources. The purpose of such optimization in the context of source identification is
to reduce the source identification error by configuring the observation network. We can
solve the corresponding inverse problems for different observation system configurations
to measure this error, but their solution may take significant time. That is why we are
looking for approximate estimates that are computationally cheaper.

The approach is tested on the air quality inverse modeling scenario for the domain
containing the Baikal Natural Territory (BNT) (Figure 1). In 1996, UNESCO recognized
Lake Baikal as a World Heritage Site [58]. In 1999, the Federal Law on the protection of
Lake Baikal was adopted, which defined the concept of BNT, where environmental zoning
was carried out, prescribing special conditions for implementing economic activities in
each zone [59]. The Baikal region is located in Eastern Siberia in the belt of temperate
latitudes, considerably far away from the oceans. However, the big water masses of about
23,000 km3 of fresh lake’s water leave their mark on the climate and weather in the region.
The complex terrain, including high mountain ranges that frame the lake, contributes to
the emergence of strong local winds, which even have unique names: Barguzin, Shelonik,
Gornaya, etc. The region is exposed to various anthropogenic and natural factors. For
example, it suffers from forest fires of different origins [60–63]. The industrial activity that
develops in the region, mainly near urban settlements, certainly affects the quality of the
environment [64–66].

Figure 1. The geographical domain with monitoring sites locations “measuring” time series (red
crosses); Pointwise measurements in space and time (white circles); Integrals over a time interval
(magenta triangles).

This unique natural object, BNT, is observed by various means [44,63,67–71]. Hence,
adequate measurement data-fusion is essential to carry out multidisciplinary studies in the
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region and provide the governing authorities with the necessary data to make decisions in
terms of environmental protection to ensure the region’s sustainable development.

The paper is organized as follows: In Section 2.1, we state the basic source identi-
fication problem. Section 2.2 presents our sensitivity-operator-based framework. The
supported measurement types are indicated in Section 2.3. Some approaches to analyze the
measurement system data are considered in Section 2.4. Section 2.5 describes the inverse
modeling scenario for BNT. In Section 3, we analyze the numerical results and discuss the
conclusions in Section 4.

2. Materials and Methods
2.1. Chemical Transport Model

The Chemical Transport Model (CTM) for l = 1, . . . , Nc reacting substances is consid-
ered in a domain ΩT = Ω × (0, T), where Ω is a sufficiently smooth approximation of a
bounded rectangular domain [0, X]× [0, Y] in R2, T > 0. The domain ΩT is bounded by
∂ΩT = ∂Ω × [0, T].

∂ϕl
∂t
−∇ · (diag(µl)∇ϕl − uϕl) + Pl(t,ϕ)ϕl = Πl(t,ϕ) + fl + rl , (x, t) ∈ ΩT , (1)

n · (diag(µl)∇ϕl) + βl ϕl = αl , (x, t) ∈ Γ(out) ⊂ ∂Ω× [0, T], (2)

ϕl = αl , (x, t) ∈ Γ(in) ⊂ ∂Ω× [0, T], (3)

ϕl = ϕ0
l , x ∈ Ω, t = 0, (4)

where t is time and x is space coordinate, Nc is the number of considered substances,
ϕl = ϕl(x, t) denotes the concentration of the lth substance at a point (x, t) ∈ ΩT , ϕ is the
vector of ϕl(x, t) for l = 1, . . . , Nc, which is called the state function, and L = {1, . . . , Nc}.
The functions µl(x, t) ∈ R2 correspond to the diffusion coefficients, diag(a) is the diagonal
matrix with the vector a on the diagonal, u(x, t) ∈ R2 is the underlying wind speed.
Γ(in) and Γ(out) are parts of domain boundary ∂ΩT in which the vector u(x, t) points
inwards the domain ΩT and is zero or points outwards the domain ΩT , respectively, n
is the outer normal. The functions αl(x, t) and ϕ0

l (x) describe the boundary and initial
conditions, respectively, βl is the boundary condition parameter, fl(x, t) is the a priori
known source function. The transformation model defines loss and production operator
elements Pl , Πl : [0, T]×RNc

+ → R+. In the considered case of the chemical transformations,
they are polynomials with positive time-dependent coefficients.

In our approach to inverse modeling, the model parameters are divided into “prede-
fined parameters” v and “uncertainty functions” q, belonging to some set Q. Most often,
the uncertainty functions in the air quality studies are unknown sources of pollution q = r.
To connect the current work with the other papers of the series, we intentionally keep
a more complicated notation than it is needed to describe the considered problem. The
presented approach is general and can be used as a framework for a broad spectrum of
different inverse modeling problems. Let r ∈ Q, where Q is the set of admissible sources,
defined by a priori information:

• We suppose that only a given set of species Lsrc is emitted. For the rest of species
rl(x, t) = 0, l /∈ Lsrc.

• The emission sources are supposed to be constant in time (rl(x, t) = rl(x)).
• We do not require the emission sources to be positive since variables unconsidered in

the model, chemical transformations, various land types, and meteorological condi-
tions, such as rains and snowfalls, can act as sinks for the specific chemicals.

The rest of the parameters are considered as predefined, hence v =
{

µ, u, α, β,ϕ0, f
}

.
Let us define the pair of “direct” and “inverse” problems:

• In the Direct problem, v and q ∈ Q are given, and we find ϕ from (1)–( 4). The solution
of the direct problem is denoted by ϕ[q]. Let there be an “exact” uncertainty function
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value q(∗) = r(∗) to be found and ϕ(∗) = ϕ
[
q(∗)

]
be the corresponding solution of the

direct problem with the source function r(∗).
• In the Inverse problem, the uncertainty function q(∗) has to be identified from the

partial information (“measurement data”) about ϕ(∗), described in Section 2.3.

2.2. Sensitivity-Operator Based Representation of Measurement Data

We use the algorithm based on the sensitivity operators described in [39,41] to solve
the source identification problem. It is based on the sensitivity relation, which links the
model state function variation with that of the uncertainty function. For any q(2), q(1) ∈ Q:〈

S[q(2), q(1); h], q(2) − q(1)
〉

Q
= 〈h, δϕ〉H . (5)

Here S[q(2), q(1); h] denotes the sensitivity function, which is calculated by the solution
of the adjoint problem (the details can be found in [41]). The solution of the adjoint problem
is determined by its source function h, which is defined by the measurement operator (see
Section 2.3). Scalar products in (5) are:

〈a, b〉H =
Nc

∑
l=1

∫ T

0

∫
Ω

al(x, t)bl(x, t)dxdt, 〈a, b〉Q =
Nc

∑
l=1

∫
Ω

al(x)bl(x)dx. (6)

The right-hand side corresponds to an element of the measurement data.

If we consider a set of functions U =
{

h(ξ)
}Ξ

ξ=1
, then combining the corresponding

relations (5), we obtain a sensitivity operator relation

MU

[
q(2), q(1)

](
q(2) − q(1)

)
= HUϕ

[
q(2)

]
− HUϕ

[
q(1)

]
, (7)

where

MU

[
q(2), q(1)

]
z =

Ξ

∑
ξ=1

e(ξ)
〈

S[q(2), q(1); h(ξ)], z
〉

Q
, HUϕ =

Ξ

∑
ξ=1

e(ξ)
〈

h(ξ),ϕ
〉

H
.

Here e(ξ) is the ξ-th element of the canonical basis in RΞ. The adjoint functions
corresponding to different elements of U, needed to compose the sensitivity operator, can
be evaluated in parallel as an ensemble. Combining the ensembles of solutions of adjoint
equations corresponding to different measurement data types into one sensitivity operator
allows us to consider heterogeneous data.

If q(∗) is the exact solution of the source identification problem, I is the measurement
data, aggregated in the state-function form (i.e., it is equal to ϕ(∗) in the parts of ΩT
where there are measurements and is zero otherwise), and δI is its perturbation (i.e., the
measurement noise), then for any U and q the relation holds:

MU

[
q(∗), q

](
q(∗) − q

)
= HU I + HUδI − HUϕ[q]. (8)

Quasi-linear operator Equation (8) can be solved by any appropriate operator equation
solution method. In our work, we use the Newton–Kantorovich-type algorithm regular-
ized with the truncated singular value decomposition (SVD) analogous to the algorithms
in [41,42]. We present the algorithm in Appendix A. In this modification, we enforce
the monotonic decrease of the discrepancy function with the iterations by choosing the
appropriate step sizes.

2.3. Measurement Data Types

To use the approach, we have to present the measurement data in the form of a
scalar product of the model state function with some projection functions. To define
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the measurements and corresponding projection functions h, we need appropriate delta-
functions over space, time, and species denoted by δ and elements of the cosine-basis on
the interval [0, X]:

C(X, θ, x) =
1√
X

{√2 cos
(

πθx
X

)
, θ > 0

1, θ = 0
.

The elements of cosine-basis are used to transform image-type data to a finite set of val-
ues through Fourier transform. The symbol (.)meas denotes the parts of the domain where
there are measurements available. For example, usually, only a small set Lmeas ⊂ {1, . . . Nc}
of chemical species is monitored.

We consider the following measurement types defined by their correspondence to the
model state function and projection functions h(ξ) in the sense of (6):

• “Timeseries”: NTimeseries time series of concentrations of the specific species in the
specific points. In the state function terms:{

ϕl(m)(x(m), t), t ∈ [0, T],
(

x(m), l(m)
)
∈ (Ω× L)meas, m = 1, . . . , NTimeseries

}
.

Projection system:

h(ξ) = C(T, θ(ξ), t)δ(x− x(ξ))δ(l − l(ξ)), ξ = 1, . . . , ΞTimeseries.

For any element of
(

x(m), l(m)
)

, the parameter θ ranges from 0 to ΘTimeseries − 1. The
number of the frequencies ΘTimeseries is the parameter of the projection system. This
parameter is responsible for the temporal resolution of the considered data. Hence
the total number of projection functions corresponding to the Timeseries is

ΞTimeseries = ΘTimeseries × NTimeseries.

• “Pointwise”: NPointwise Pointwise concentration measurements of the specific species
at specific moments and specific points. In the state function terms:{

ϕl(m)(x(m), t(m)),
(

x(m), t(m), l(m)
)
∈ (ΩT × L)meas, m = 1, . . . , NPointwise

}
.

Projection system:

h(ξ) = δ(x− x(ξ))δ(t− t(ξ))δ(l − l(ξ)), ξ = 1, . . . , ΞPointwise.

The projection system is naturally defined by the measurement points. Hence the
total number of the projection functions is ΞPointwise = NPointwise. In the case of a large
number of points, these data can be aggregated.

• “Integral”: NIntegral Integrals of concentrations over the time interval of the specific
species in the specific points. In the state function terms:{∫ T

0
ϕl(m)(x(m), t)dt,

(
x(m), l(m)

)
∈ (Ω× L)meas, m = 1, . . . , NIntegral

}
.

Projection system:

h(ξ) = δ(x− x(ξ))δ(l − l(ξ)), ξ = 1, . . . , ΞIntegral .

Here ΞIntegral = NIntegral . Integral measurements are equivalent to “Timeseries”
measurements with θ(ξ) = 0.
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• “Snapshot”: NSnapshot specific species concentration fields images at specific moments
in time. In the state function terms:{

ϕl(m)(x, t(m)), x ∈ Ω,
(

t(m), l(m)
)
∈ ([0, T]× L)meas, m = 1, . . . , NSnapshot

}
.

Projection system:

h(ξ) = C(X, θ
(ξ)
x , x)C(Y, θ

(ξ)
y , y)δ(t− t(ξ))δ(l − l(ξ)), ξ = 1, . . . , ΞSnapshot.

The projection system has two parameters: Θ(x)
Snapshot and Θ(y)

Snapshot, which de-
fine the spatial resolution of the considered data. For any image, θx and θy

range in 0, . . . , Θ(x)
Snapshot − 1 and 0, . . . , Θ(y)

Snapshot − 1, respectively. Hence ΞSnapshot =

NSnapshot ×Θ(x)
Snapshot ×Θ(y)

Snapshot.

In the numerical algorithm, the operator Equation (8) is transformed to the discrete
form. Hence, the projection functions are also substituted by their discrete analogs. To unify
the scales of the different projection functions [57], their discrete analogs are normalized
with respect to a discrete version of scalar products (6). This normalization makes any
element of measurement data equally important. To make some elements more important
than others, they can be additionally weighted.

2.4. Sensitivity-Operator-Based Analysis of Measurement System

Considering the quasi-linear representation (8) of the inverse problem data, we com-
pare the following sensitivity-operator-based measurement system analyses.

2.4.1. Inverse Problem Solution

The basic way to evaluate the informative content of the measurement data is to
directly compare the result of solving (8) by a source identification algorithm with the
known exact solution. The better the reconstruction, the more information is contained
in the data. However, this estimation method requires a complete setting of the inverse
modeling scenario (including the “exact” emission source), an appropriate algorithm of
source identification, and enough time and computational capacities to solve the inverse
problem. We call this approach “empirical”.

The procedure of evaluating the measurement system is carried out according to the
following scheme:

1. The “exact” solution q(∗) is given. In our case, this is the location and capacity of the
emission sources.

2. The “exact” solution q(∗) is then used to simulate the "measurement data". This
“measurement data” is used in the algorithm to solve the inverse problem.

3. The result q(∞) of the algorithm is compared with the "exact" solution. In this case,
both the reconstruction of the source is estimated, and the convergence parameters of
the algorithm are analyzed.

This estimation strongly depends on the source identification algorithm, which may
have its features. For example, it can be locally convergent, and therefore, dependent on
the initial guess.

2.4.2. Sensitivity Operator Properties Analysis

The quasi-linear inverse problem representation (8) can be used to predict the qual-
ity of solving the inverse problem prior to solving it [39,41]. Indeed, if we assume that
MU [q(∗), q] is known or is weakly dependent on q(∗), then Equation (8) becomes a lin-
ear ill-posed operator equation, and we can use linear theory to evaluate the inverse
problem properties.

Let there be grid domains Ωh and Ωh
T , corresponding to Ω and ΩT , and a map that

encodes a grid point with coordinates (xi, yj, l) ∈ Ωh × Lsrc by a single index. Let Nx, Ny
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be the numbers of grid points of Ωh in the x and y dimensions, respectively. In the rest of
the paper, we work with the discretized versions of the considered aggregates. Hence we
can consider q as the vector from RNx Ny |Lsrc |. Here, |Lsrc| means the number of elements in
Lsrc. The sensitivity operator MU [q(∗), q] can be considered as the matrix RΞ×(Nx Ny |Lsrc |).

In the theory of ill-posed problems, the linearized version of the operator Equation (8)
in the neighborhood of the exact solution:

M(q(∗) − q) ≈ fM, fM := HU I − HUϕ[q], M := MU [q(∗), q(∗)]

is considered. According to p. 49 in [72], regularization algorithms search for the best
approximate solution of δq†, which in our case is defined as:

δq† = (M∗M)† M∗ fM ≈ (M∗M)†(M∗M)(q(∗) − q), (9)

where (M∗M)† is the generalized Moore–Penrose inverse for M∗M. The aggregate M∗M
is the Fisher information matrix. The aggregate (M∗M)†(M∗M) is an orthogonal projector
on the orthogonal complement to the sensitivity operator’s kernel. Indeed, if the singular
value decomposition of M is {U, S, V} and for any z:

Mz =
N

∑
n=1

Unsn〈Vn, z〉,

where N is the number of nonzero singular vectors. Then,

M∗Mz =
N

∑
n=1

Vns2
n〈Vn, z〉, (M∗M)†z =

N

∑
n=1

Vn
〈Vn, z〉

s2
n

,

and

(M∗M)†(M∗M)z =
N

∑
n=1

Vn〈Vn, z〉.

Roughly speaking, only the projection of q(∗)−q on the nonzero right singular vectors
of the sensitivity operator matrix can be restored at best because the rest of the information
about the uncertainty variation is lost.

The disadvantage of using (M∗M)†(M∗M) in the source identification problem is that
the dimensionality of M∗M, which has to be pseudo-inverted, is the (number of unknowns
× number of unknowns), which is as large as Nx Ny|Lsrc|. Another way to express the
projector is to use the equivalent (Appendix B) aggregate:

M∗(MM∗)† Mz =
N

∑
n=1

Vn〈Vn, z〉. (10)

In this case, the matrix MM∗ has the dimensionality (number of adjoint ensemble
members × number of adjoint ensemble members) or Ξ× Ξ, which is under our control.
The representation (10) is more useful when the number of adjoint ensemble members is
less than the number of unknowns, and therefore, we use it in our calculations. Let:

Υ[q(2), q(1)] := M∗(MM∗)† M,

where M = M[q(2), q(1)]. As the first predictor of the solution, we consider:

q(p) := q(0) + Υ[q(0), q(0)]
(

q(∗) − q(0)
)

. (11)
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Another estimate that seems to be even more appropriate is:

q(e) := q(0) + Υ[q(∗), q(0)]
(

q(∗) − q(0)
)

. (12)

Estimates (11) and (12) take the exact solution q(∗), and it takes less time to evaluate
them than solving the inverse problem with an algorithm.

Let us consider the properties of Υ = Υ[q(0), q(0)], which are independent of the exact
solution. In the ideal case, Υ should be equal to the identity operator Id. It means that
the sources can be potentially reconstructed exactly. If we apply this operator to a single
source with a unitary emission rate located in the κ-th point, we obtain the result of its
representation by the monitoring system. This single source corresponds to the vector
[Id]κ with only one unitary element on the κ-th place. In the inverse modeling scenario
(see Section 2.5), we deal with the Pointwise sources and [Υ]κ = Υ[Id]κ . Hence, the κ-th
column of Υ describes how the unitary source, located in the κ-th point of the grid domain,
is transformed by the inverse problem. In the ideal case, [Υ]κ should be equal to [Id]κ .

We can characterize the difference between [Υ]κ and [Id]κ on the Pointwise basis with
several meaningful characteristics linked to the structure and interpretation of Υ. The first
characteristic is:

E(n)
κ = ‖[Id]κ − [Υ]κ‖. (13)

If the information about the source in the κ-th point is lost completely, then the
norm ‖[Υ]κ‖ is zero. In the ideal case, ‖[Υ]κ‖ = 1. We consider the following error-
type characteristic:

E(e)
κ = 1− ‖[Υ]κ‖, (14)

To evaluate the characteristics E(n)
κ and E(e)

κ , we have to evaluate the complete Υ
matrix. Let us look at the characteristics that are evaluated with the reduced amount of Υ’s
elements. In [19], there is an aggregate called “Illumination” and it is expressed as:

[M]∗κ(MM∗)†[M]κ = [Υ]κκ , (15)

where [Υ]κκ is the κ-th diagonal element of Υ. Since Υ is equal to Id in the ideal case, hence
[Υ]κκ should be equal to 1. We consider the error-type characteristic:

E(i)
κ = 1− [M]∗κ(MM∗)†[M]κ . (16)

Let us consider the application of Υ to the set of sources of interest {[Id]κ , κ ∈ K}. For
example, K can be a priori known source locations or the whole domain. We can evaluate
characteristics (13), (14), and (16) on K. Corresponding cumulative characteristics are:

E(c) =
1
|K| ∑

κ∈K
E(c)

κ , c ∈ {n, e, i}. (17)

The analysis tool that does not take knowing the exact solution is the decay rate of
the sensitivity operator singular spectrum {sn}N

n=1, as it is done in [73]. The issue with this
analysis type is how to compare different singular spectra quantitatively.

2.5. Inverse Modeling Scenario

Constructing a realistic inverse modeling scenario is an essential part of inverse
modeling. In the context of the source identification problem, the main components of an
inverse modeling scenario are:

• Geographical domain.
• Monitoring system characteristics: locations and accuracy.
• Main emission sources to construct the “exact” solution.
• Chemical transformation mechanism, initial, and boundary conditions.
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• Meteorological conditions, determining CTM model coefficients.

The geographical domain (Figure 1) is the most definite component of the scenario.
The monitoring system is also a definite component of the inverse modeling scenario since
the positions of all the monitoring sites are known. The locations of some Roshydromet
sites [48] (Figure 1) were taken as the prototype of the measurement system in the scenario.
According to [48], the system measures several components, including SO2, CO, NO2, NO,
O3, HS, PM2.5, and PM10. The measurement data is provided in the open-access mode on
a daily-averaged basis. In the scenario, we suppose that there are only O3 concentration
measurements (Lmeas = {#(O3)}). Here #(O3) denotes the index of O3 concentration in the
state function ϕ. The types of measurements collected at the measurement sites are defined
in the numerical experiments.

In the considered scenario, the images (Snapshots) cover the whole domain simultane-
ously. The geostationary satellites can potentially obtain this type of image [74,75]. Never-
theless, the instant image of the whole domain is a simplification since each instrument
has its spatial and temporal resolution and coverage. Non-geostationary satellites collect
images as the series of smaller images along their tracks with a given swath width [76–78].
More details about the satellite images of the concentration fields can be found in [74–78].
In our scenario, the images of the concentration field are available on the third day of the
period (t = 3× 24× 3600 s).

Emission sources are the factor that largely determines the air quality in the region,
but the information about the sources is incomplete. This is the main reason for developing
the source identification algorithms. We need to construct a realistic “exact” solution to
move in this direction. It will be required to check the source identification algorithms
(see Section 2.4.1) and to provide the estimate of q(∗) to evaluate the sensitivity operator
MU

[
q(∗), q

]
for the analysis purposes (see Section 2.4.2).

We construct the “exact” solution as a set of Pointwise sources with constant time emis-
sion rates. Furthermore, we suppose that the only emitted substance is NO (Lsrc = {#(NO)}).
In this scenario, we have so-called “indirect” measurements, when the measured substance
(O3) is different from the emitted one (NO).

To define realistic emission rates, we depart from the estimate q̄(Irkutsk)
NO of the Irkutsk

(the largest city in the region) total production of NO from [65]:

q̄(Irkutsk)
NO = 125× 103 mg

s
. (18)

To obtain the concentration change in the grid cell due to the emissions, we divide
q̄(Irkutsk)

NO by the volume of the grid cell Vcell in m3:

Vcell = 19502× 21991.6× 100m3,

q(Irkutsk)
NO ≈ 2.91× 10−6 mg

s m3 .

In the figures, we use the dimensionality mg
s m3 for the sources and mg

m3 for the concentrations.
The emission of the c-th city in the region is estimated as proportional to the ratio of

its population to Irkutsk’s population:

q(c)NO = q(Irkutsk)
NO × Population(c)

Population(Irkutsk)
, (19)

where Population(c) is the population in the c-th city according to Wolfram Alpha Ser-
vice [79]. This construction of the scenario allows obtaining a spatially heterogeneous
distribution of the unequal emission sources.

The city’s emissions are attributed to the nearest grid-point. If more than one city
corresponds to a grid point, then the emissions of these cities are added. We call this
configuration a “realistic” source configuration (Figure 2a). In the second configuration
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(Figure 2c) all the cities have identical emission rates, while the total of the emission rates
is the same as in the “realistic” source configuration. We call it a “unified” configuration.
In the third configuration (Figure 2e) all the emissions from the “realistic” configuration
are localized in the nearest grid-point to the Irkutsk city. We denote this configuration by a
“single”. All these source configurations have the same L1 norm. The initial guess for the
source identification is zero emissions. Therefore, the relative error of the initial guess is
100%. A priory emission source is considered as zero f = 0.

(a) (b)

(c) (d)

(e) (f)
Figure 2. Emission sources and corresponding mean concentration fields of NO for considered source
configurations: “realistic” (a,b); “unified” (c,d); “single” (e,f), respectively.

Along with the anthropogenic sources, the sources and sinks are determined by the
natural processes: rains and snowfalls, vegetation, forest fires, swamps, etc. The chemical
reactions, unconsidered in the transformation model, also contribute to the distributed
sources and sinks. These sources are not addressed in the paper since we use only synthetic
data. In the case of the real measurement data, these sources should also be taken into
consideration. The primary anthropogenic emission sources and the natural factors define
the chemical transformation model to be considered. Since the inverse modeling tasks are
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time-consuming, the chemical system should be as small as possible but relevant to the
main chemical components, especially the major primary and secondary pollutants.

As the transformation model (operators P and Π in (1)), we chose the Leighton
relationship-based atmospheric chemistry model (e.g., [80]), described in Appendix C.
Initial conditions ϕ0

l are taken as constant in space according to (A11)–(A13). This simplifi-
cation can be refined by using the output of the global chemical transport models (e.g., [81])
or setting the model’s spin-up period. The boundary conditions are:

αl =

{
0, (x, t) ∈ Γ(out)

ϕ0
l , (x, t) ∈ Γ(in) , βl = 0, (20)

where ϕ0
l is the constant value of the corresponding initial conditions. The values of ϕ0

l
denote background concentrations of the considered substances. This simplification can
also be refined by taking the output of the global CTMs as the boundary conditions.

Meteorological conditions are the most variable component in the system. Modern
meteorological models can evaluate the meteorological fields with high accuracy. The
weather data for the scenario was chosen for the period from 12:00 on 23.07.2019 to
12:00 on 26.07.2019. The results of the COSMO (Consortium for Small-scale Modeling)
model calculation [82] are used as the 2D wind-speed vector field u at the surface level.
The description of the meteorological conditions is given in Appendix D. The diffusion
coefficient µ = 1000 m2/s was chosen as a constant one.

To generate the “exact” solution ϕ(∗), we solve the direct problem. The O3 elements
of the “exact” solution are used to obtain the synthetic measurement data. To show the
differences between the source configurations, we present mean (over time interval [0, T])
NO concentration fields in Figure 2b,d,f.

3. Results
3.1. Heterogeneous Measurements

To evaluate the synergistic effect of using different measurement types, we compare
the source identification (or simply reconstruction) results obtained for composite mea-
surements with those obtained for the specialized measurement types. The measurement
sites are divided into three groups (Figure 1): Timeseries, Pointwise, and Integral. In the
considered configurations, we use the parameters of the projection functions ensembles
given in Table 1. Pointwise measurements are taken at 6-hour time intervals.

Table 1. Adjoint ensemble sizes.

Type ΞType NType Description

Pointwise 60 60 5 sites× 12 measurement moments
Timeseries 60 6 6 sites× 10, ΘTimeseries = 10

Integral 5 5 5 sites
Snapshot 625 1 1 image× 25× 25, Θ(x)

Snapshot = Θ(y)
Snapshot = 25

Composite 750 Sum of the above

The source reconstruction results for individual measurement types in the “realistic”
source configuration are presented in Figure 3. We see that the positions of “Pointwise”
measurements are far from the largest source cluster located near Irkutsk. Respectively, the
reconstruction by “Pointwise” measurements is less accurate for this cluster compared to
other measurement types. Snapshot reconstruction allows one to identify the sources that
are far from the air quality monitoring network. Still, it contains many artifacts explainable
by a relatively small number of the projection functions.
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(a) (b)

(c) (d)

Figure 3. Source reconstruction results in the “realistic” source configuration for specific measurement
types: Pointwise (a); Timeseries (b); Integral (c); Snapshot (d).

In Figure 4, we compare composite data reconstruction results for different source
configurations. In Figure 5, the relative errors in different measurement configurations and
their estimates are presented. Here “empirical” denotes the error obtained with the inverse
problem solution algorithm; “init projection”, and “exact projection” denote the errors of
the estimates (11) and (12), respectively. The less is the red (“empirical”) bar, the better the
solution is. Since “init projection” (blue bars) and “exact projection” (green bars) are the
estimates of the “empirical” relative error, then in the ideal case, they should have the same
lengths as the red bar. As we can see, projections (11) and (12) give a relatively accurate
estimate of the inverse problem solution.

Comparing the different source configuration results, we can see that the best re-
constructions for the composite measurements are obtained for “realistic” and “single”
emission sources. The best “Snapshot” results are obtained for the “unified” sources con-
figuration. The localized measurements (Pointwise, Timeseries, Integral) are taken near the
most populated cities in the region. In the “realistic” and “single” source configurations ,
they provide better reconstruction than in the “unified” case. In the “unified” case , the lo-
cation of the measurements plays a less important role, and the “Pointwise” reconstruction
results are comparable to the “Timeseries” results.

In Figure 6, we compare the characteristics that do not know the exact emission rates.
Here “EnergySrc”, “ErrorSrc”, and “IlluminationSrc” denote E(e), E(n), and E(i) from (17),
respectively, for K containing the indices of the grid points with “cities”. “EnergyTotal”,
“ErrorTotal”, and “IlluminationTotal” denote the same characteristics but for K containing
all grid points indices. These characteristics are also considered as the estimates of the
“empirical” relative error. The characteristics in Figure 6a,b take the information of the
source positions. The characteristics in Figure 6c,d are completely independent of the
information about the sources.
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(a) (b)

(c)

Figure 4. Composite data reconstruction results for different source configurations: “realistic” (a);
“unified” (b); “single” (c).

(a) (b)

(c)

Figure 5. Comparison of empirical reconstruction errors and their projection-based estimates for
“realistic” (a); “unified” (b); “single” (c) sources. These estimates take knowing the “exact” solution.



Atmosphere 2021, 12, 1697 15 of 30

(a) (b)

(c) (d)

Figure 6. Characteristics dependent on the source locations for “realistic”, “unified” (a), and “single”
(b) source configuration. Characteristics that are independent of the source locations: Log10 of the
sensitivity operator MU [q(0), q(0)]’s matrix singular spectrum versus the singular value number (c),
and the same characteristics as in Figure 6a,b, calculated for the whole domain (d).

3.2. Specific Measurement Types

In these experiments, we compare the reconstruction results for the “realistic” source
configuration in cases when the whole measurement network collects data of the same
type. The second question is how the ensemble parameters (such as ΘTimeseries, Θ(x)

Snapshot,

Θ(y)
Snapshot) influence the reconstruction results. In Figure 7, we present the results for

different numbers of projection functions in the case of time-series measurements. The
label on a figure “Timeseries, N” means that ΘTimeseries = N. In Figure 8, we compare
the results of Pointwise measurements for different numbers of measurement acquisition
times. The label on a figure “Pointwise, N” means that time series in each of 16 sites are
approximated by N values uniformly distributed on the time interval, i.e., for “Pointwise,
40” Ξ = 16× 40. In the last experiment (Figure 9), we consider reconstruction results
for the different number of projection functions in the Snapshot case. The label on a
figure “Snapshot, N × N” means that Θ(x)

Snapshot = N, Θ(y)
Snapshot = N. In Figure 10, we

compare the reconstruction results for different numbers of the projection functions in the
Snapshot scenario.
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(a) (b)

(c)

Figure 7. Reconstruction with Timeseries measurements for different numbers of projection functions.
“Empirical” reconstruction error and error estimated by projection (a); Log10 of the sensitivity opera-
tor’s singular values versus the singular value number (b); Projection operator characteristics (c).

(a) (b)

(c)

Figure 8. Reconstruction with Pointwise measurements for different numbers of measurement times.
“Empirical” reconstruction error and error estimated by projection (a); Log10 of the sensitivity opera-
tor’s singular values versus the singular value number (b); Projection operator characteristics (c).
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(a) (b)

(c)

Figure 9. Reconstruction with Snapshot measurements for different numbers of projection functions.
“Empirical” reconstruction error and error estimated by projection (a); Log10 of the singular spectrum
versus the singular value number (b); Projection operator characteristics (c).

(a) (b)

(c) (d)
Figure 10. Cont.
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(e) (f)
Figure 10. Snapshot reconstruction for different numbers of ensemble members: 25 × 25 (a);
35 × 35 (b); 45 × 45 (c); 54 × 54 (d); 55 × 55 (e); 56 × 56 (f).

In Figure 11, we compare the reconstruction results for different measurement types.
Timeseries configuration is presented for Ξ = 40× 16, Pointwise for Ξ = 40× 16, and
Snapshot for Ξ = 56× 56. In Figure 12, we can see the projection-based estimates of the
results in Figure 11. In Figure 13, there are the corresponding illumination functions (15).

(a) (b)

(c) (d)
Figure 11. Reconstruction results for different measurement types: Integral (a); Timeseries (b);
Pointwise (c); Snapshot (d).
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(a) (b)

(c) (d)
Figure 12. Initial guess-based projection estimate (11) for different measurement types: Integral (a);
Timeseries (b); Pointwise (c); Snapshot (d).

(a) (b)

(c) (d)

Figure 13. Illumination functions (15) for different measurement types: Integral (a); Timeseries (b);
Pointwise (c); Snapshot (d).
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3.3. Accuracy of the Reconstruction’s Prediction

To summarize the relationship between the considered characteristics and the resulting
“Empirical” source identification errors, we made the scatter plots in Figures 14 and 15.
The colors in Figures denote different experiments:

• Red: Section 3.1, “realistic” source case;
• Green: Section 3.1, “single” source case;
• Blue: Section 3.1, “unified” source case;
• Black: Section 3.2, Timeseries experiment;
• Cyan: Section 3.2, Pointwise experiment;
• Magenta: Section 3.2, Snapshot experiment.

In Figure 14, we present the characteristics that take the “Exact” solution. The charac-
teristics in Figure 15a,c,e take the locations of the “Exact” sources. The characteristics in
Figure 15b,d,f are entirely independent of the “Exact” solution.

(a) (b)
Figure 14. Correspondence of the “Empirical error” to “Exact Projection” (a) and “Init Projection” (b)
in the numerical experiments. The different colors denote different experiments.

(a) (b)
Figure 15. Cont.



Atmosphere 2021, 12, 1697 21 of 30

(c) (d)

(e) (f)
Figure 15. Correspondence of the “Empirical error” to “ErrorSrc” (a), “ErrorTotal” (b), “Illumination-
Src” (c), “IlluminationTotal” (d), “EnergyTotal” (e), and “EnergySrc” (f) in the numerical experiments.
The different colors denote different experiments.

4. Discussion

An essential advantage of the sensitivity-operator-based approach to inverse modeling
is that various problems can be reduced in a unified way to a family of quasi-linear operator
equations. Due to the properties of adjoint equations and sensitivity relations, the devel-
oped approach makes it possible to work in a unified way with heterogeneous measurement
data. Note that these properties of the sensitivity relations are also used in the variational
algorithms where various measurements can be combined by adding corresponding dis-
crepancy functions to the cost function. However, in contrast, the sensitivity-operator-based
approach also provides a straightforward way to analyze the inverse problem properties
by analyzing the properties of the corresponding sensitivity operator family. Moreover, a
sensitivity operator can combine not only different measurement types and their ensem-
bles. If the source (or source pattern) persists for a long time, it may combine different
meteorological scenarios to a single sensitivity operator.

Sensitivity functions are calculated with the adjoint equation’s solutions. The adjoint
equation structure is determined by the equations in variations for the direct problem,
i.e., by the process model. We do not discuss the limitations of the approach that are
inherited from the process model here (1)–(4), since the air quality model development
is a separate work direction, which deserves special attention. Nevertheless, the need
to derive the adjoint problems for complicated models can also be considered as the
limitation of the approach. This limitation can be alleviated by using automatic adjoint
code generators [83–85].
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In turn, the measurement data determine the sources for the adjoint equations. Hence,
a limitation of the approach is that a measurement data element has to be presented as the
application of the scalar-product-type aggregate to the model state function. This is a weak
limitation in the case of the linear measurement operators, connecting the model’s state
function with the measurement data. To consider nonlinear measurement operators, the
adjoint problem has to be altered. This is a matter of further research.

Based on the sensitivity operator analysis of the inverse problem, methods of express
analysis and refined analysis of the information content of monitoring systems data can
be considered. The quasi-linear structure of the resulting operator equation admits using
linear (matrix) analysis tools to estimate the inverse problem properties. Since solving
the inverse problem may take a significant amount of time compared to the solution of
the direct problem, it is advantageous to have an express estimate of the inverse problem
solution quality that can be achieved in the given conditions. This is especially important
for the monitoring system design (or optimization) task when one has to try and compare
different system configurations. Our approach gives such a possibility straightforwardly.

On the other hand, the gain in computational time takes its payback. The difference
between the “empirical” relative error and its estimates can be considered as the limitation
of the approach. To overcome this limitation, we recommend checking the conclusions
obtained with the estimates by the “empirical” solution of the inverse problem. There
can be several reasons for these differences. The first one is that the properties discussed
in Section 2.4.2 are obtained for the linear approximates of the sensitivity operator. The
quasi-linear construction of the sensitivity operator admits the use of higher-order analysis
and solution algorithms. It may be the direction of future work. Nevertheless, we can see
that (11) and (12) provide similar estimates (Figures 5, 7a, 8a, and 9a) notwithstanding that
(12) uses the exact solution in the sensitivity operator and (11) does not. It may indicate
that some inaccuracy in the sensitivity operator can be tolerated when using it to make
projection-type estimates.

The second possible reason for the differences is that the considered sensitivity oper-
ator properties are independent of the operator equation (8) solution algorithm (e.g., its
parameters and initial guess). At the same time, the “empirical” results are determined by
the algorithm’s efficiency.

In the ideal case, the points in Figures 14 and 15 should lie on the diagonal. This
configuration would mean that the estimates match the “empirically” (“experimentally”)
obtained errors. Another favorable situation is when the estimate depends on the error
monotonically. This dependence allows using such estimates in the observation system
optimization. Analyzing Figures 14 and 15, we conclude that projection-based estimates,
summarized in Figure 14, provided the most efficient estimates of the source identification
problem. The estimates in Figure 15a,c,e are harder to interpret in the source identification
error terms. We can tentatively conclude that there may be some monotonic relation
between the predicted and predicting characteristics in the given experiments. Moreover,
we can conclude that there is a difference between the “ErrorSrc”, “IlluminationSrc”, and
“EnergySrc” characteristics, but it is not essential. The relation between the characteristics
in Figure 15b,d,f is the most unclear, and currently, we can not recommend using it as
the estimate.

We did not include a priori information about the Pointwise character of the sources in
the algorithm. On the one hand, the account of this information can reduce the problem’s
uncertainty, but on the other hand, there can be the sources treated as distributed ones.
For example, the sources, such as intercity highways, may be considered linear sources.
The chemical reactions and aerosol formation processes not considered or improperly
considered in the model can be responsible for spatially distributed emission sources or
sinks. Moreover, rains, snowfalls, forests, swamps, lakes, and rivers can also be responsible
for spatially distributed sources and sinks. See Appendix D for the description of the
weather conditions in the specified time interval.
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In this study, we mainly considered the spatial and temporal resolution of the mea-
surement data. Another essential question, especially important for heterogeneous mea-
surement data, is different measurement data quality. To take into account these differences,
we can weigh corresponding projection functions accordingly. The analysis of the different
data quality in the case of heterogeneous measurements is a matter of future research.

As we see, the reconstruction results with respect to “exact” solutions have distinct
artifacts, especially in the case of small projection function sets. In the current paper,
we deal with this issue by increasing the adjoint ensembles, which comes at the price of
increasing the computation time. The need for large ensembles can be considered as the
limitation of the approach. This limitation is weakened by the fact that the sensitivity
operator construction takes the solution of ensembles of similar but independent adjoint
problems. Therefore, the elaborated algorithm may be naturally parallelized. Previously
we carried out such an analysis in [86].

To further improve the technology, we plan to test machine learning approaches [87–89]
to reduce these identification artifacts for relatively small ensembles. Another way to
optimize (reduce) the number of the ensemble elements is to evaluate the most informative
ensemble members (as it was done in [42] by choosing the elements with the largest
projection on the initial discrepancy) or aggregate the ensemble members (as it was done
in [90], where the elements were aggregated according to the left singular vectors of the
sensitivity operator). This is a matter of separate research, which is justified by the current
results demonstrating the potential advantages of the approach.

5. Conclusions

The combined use of process models and observational data makes it possible to solve
a number of environmental problems, including the identification of pollution sources.
Moreover, the mathematical model and source identification problem can integrate hetero-
geneous air quality measurement data.

The sensitivity-operator-based approach provides tools with different information
requirements and computation complexity and intensity for analyzing air quality moni-
toring systems. The approach was illustrated by analyzing the monitoring system in the
Lake Baikal region. As the result of the analysis, we estimated which of the regional source
clusters are observable by the monitoring systems with different configurations and data
acquisition schemes.

In conclusion, we note the approach can be applied to the other sets of process
models and believe the general inverse modeling scheme based on the sensitivity opera-
tors will successfully solve a wide range of environmental protection, atmosphere, and
ecology problems.
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Appendix A. Newton–Kantorovich-Type Algorithm

To solve (8) in the numerical experiments, we use the Newton–Kantorovich-type
Algorithm A1, which is the modified version of the algorithm from [41]. Equation (8) is
presented in the form:

MU [q, q]
(

q(∗) − q
)
= HU I − HUϕ[q]

+
(

MU [q, q]−MU

[
q(∗), q

])(
q(∗) − q

)
+ HUδI.

The inversion procedure that is used in Newton-type algorithms is regularized with
truncated SVD:

Θ(m, Σ) := mT
[
mmT

]+
Σ

. (A1)

Here
[
mmT]+

Σ denotes the regularized matrix inversion procedure based on the
truncated SVD. We need the following notation for the r-pseudoinverse matrix [91] for a
matrix mmT ∈ RK×K:[

mmT
]+

Σ
=

p

∑
l=1

Ul

s2
l
〈., Ul〉RK , s2

1/s2
p ≤ Σ < s2

1/s2
p+1, (A2)

where 〈., .〉RK is the Euclidean scalar product in RK, {Ul}
rank(m)
l=1 is the orthonormal system

of left singular vectors of m, and sl are the singular values.
The first modification of Algorithm A1 with respect to the algorithm from [41] is that

the function JU is enforced to decrease monotonically by the choice of the appropriate step
parameter γ as in [92]:

JU(q) := ‖HU I − HUϕ[q]‖2
RΞ . (A3)

The second modification is the absence of the projection to the set Q after a Newton-
type step.

Algorithm A1 has three levels of nested iterations. On the upper level, the inversion
regularization parameter Σ is increased. On the second level, the Newton-type iterations
are carried out up to the stabilization with the fixed Σ. On the third level, the step parameter
γ is chosen to provide the monotonic decrease of the data misfit. In order to initialize the
algorithm, one has to set ∆Σ, q0, εstab, and imax. The details can be found in [41,92].

https://opendata.dwd.de/weather/nwp/icon/grib
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Algorithm A1 Newton–Kantorovich-type Algorithm

Σ← 1
k← 0
q(k) ← q0
Jmin ← JU(q(k))

qmin ← q(k)

while Σ < Σmax and JU(q(k)) > ‖HUδI‖2
RΞ do

i← 0
repeat

m(k) ←matrix of the sensitivity operator mU[q(k), q(k)]

d(k) ← HU I − HUϕ
[
q(k)

]
δq(k) ← Pr

src
Θ(m(k), Σ)d(k)

γ← 1
q(test)(γ)← q(k) + γδq(k)

while (not ‖HUδI‖2
RΞ < JU(q(test)(γ)) < JU(q(k))) do

γ← γ/2
end while
q(k+1) ← q(k) + γδq(k)

k← k + 1
if Jmin ≥ JU(q(k)) then . Storing a “minimizing” iteration

Jmin ← JU(q(k))

qmin ← q(k)

end if
i← i + 1

until JU(q(k)) > ‖HUδI‖2
RΞ and

∥∥∥q(k) − q(k−1)
∥∥∥ ≤ εstab

∥∥∥q(k−1)
∥∥∥ and i < imax

Σ← Σ× ∆Σ
if Jmin < JU(q(k)) then . Restoring the last “minimizing” iteration

q(k) ← qmin
end if

end while
return qmin

Appendix B. Projection Equivalence

Indeed,

MM∗z =
N

∑
n=1

Uns2
n〈Un, z〉, (MM∗)†z =

N

∑
n=1

Un
1
s2

n
〈Un, z〉.

Hence,

M∗(MM∗)† Mz =
N

∑
n=1

Vn〈Vn, z〉. (A4)

Appendix C. Chemical Transformation Model (Leighton Relationship-Based)

Let us apply the developed framework to the inverse modeling scenario with a low-
dimensional atmospheric chemistry model [80]:

NO2 + hν
y1→ NO + O(3P), (A5)

O(3P) + O2
y2→ O3, (A6)

NO + O3
y3→ O2 + NO2. (A7)
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The first reaction rate coefficient y1 is time-dependent and y2, y3 are constant:

y1(t) =
{

10−5esec(t), 4 < th < 20
10−40, otherwise

, (A8)

sec(t) =
(

sin
( π

16
(
th − 4

)))0.2
, th = th − 24int

(
th
24

)
, th =

t
3600

, (A9)

y2 = 1.87 · 10−14, y3 = 10−16, (A10)

and int
(

th
24

)
is the integer part of th

24 .
The system’s feature is that its dynamics changes dramatically when “the sun rises”

at 4 o’clock. The concentration of O2 is considered constant. The initial distribution of
concentrations is constant in the domain:

[NO] = 4 · 1010 1
cm3 ≈ 0.002

mg
m3 , [NO2] = 1.3 · 1010 1

cm3 ≈ 0.001
mg
m3 , (A11)

[O2] = 5.3 · 1018 1
cm3 ≈ 284202

mg
m3 , [O] = 0

1
cm3 ≈ 0

mg
m3 , (A12)

[O3] = 1.5 · 1012 1
cm3 ≈ 0.12

mg
m3 . (A13)

The concentrations in the model are measured in 1
cm3 . Hence, q(Irkutsk)

NO is equivalent to
58493180 1

s cm3 .

Appendix D. The Description of the Meteorological Scenario

According to the synoptic processes over southern Siberia–Mongolia–Transbaikalia,
the period from July 23 to August 3 is generally characterized by the slow development of
cyclone waves in the latitudinal band between the northern (polar) and southern (subtropi-
cal) branches of the high-altitude frontal zone (approximately between 45 and 55 degrees
north latitude).

The formation of a cut-off high-altitude cyclone from the polar depression over the
southern regions of Western and Eastern Siberia is best traced. In the trajectory of its blurred
center, a gap is noticeable when rounding the northern spurs of the Sayan Mountains and
already regenerating southeast in the Selenga basin. Heavy rainstorms in the foothills of
the Altai and Sayan mountains, including the infamous Tulun flooding, are associated with
this rounding and delay at the windward slopes.

Processes chronicled by date (Figure A1 shows Irkutsk observation station point):

• 23.07 Rain zone in the foothills of the Altai, in the Kuzbass. The cold front from the
west offset to the east. There is practically no leading stream. Weak variable wind in
the west of Lake Baikal.

• 24.07 Rain zone in the foothills of Altai-Sayan (Khakassia), Western Sayan (Daily
precipitation HMS 29698 Nizhneudinsk-57mm). With the approach of a cold front
from the west, the wind is mainly south-easterly.

• 25.07 The rain zone encircles the Western Sayans from the north. Cold front, offset to
the east, the wind weakens and changes direction to mainly western.

• 26.07 The cold front approaches the Hangar from the west. Baikal, in the warm sector
orographically cut off in the south (baric depression, thunderstorms south and north
of Lake Baikal).
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Figure A1. Observation data of wind at the 10-meter level, the temperature at the 2-meter level, and
pressure at station level.

References
1. Brunet, G. Seamless Prediction of the Earth System: From Minutes to Months; World Meteorological Organization: Geneva,

Switzerland, 2015.
2. WMO. Measurement of Meteorological Variables, chapter Measurement of atmospheric composition. In Guide to Instruments and

Methods of Observation; World Meteorological Organization: Geneva, Switzerland, 2018; Volume I, pp. 506–541.
3. Penenko, V.; Raputa, V.; Panarin, A. Planning an experiment for determining the position and strength of a pollution source. Sov.

Meteorol. Hydrol. 1985, 11, 10–16.
4. Penenko, V.; Raputa, V.; Bykov, A. Design of an experiment for the Pollution Source Power Estimation problem. Izv. Atmos.

Ocean. Phys. 1986, 21, 705–710.
5. Abida, R.; Bocquet, M.; Vercauteren, N.; Isnard, O. Design of a monitoring network over France in case of a radiological accidental

release. Atmos. Environ. 2008, 42, 5205–5219. [CrossRef]
6. Saunier, O.; Bocquet, M.; Mathieu, A.; Isnard, O. Model reduction via principal component truncation for the optimal design of

atmospheric monitoring networks. Atmos. Environ. 2009, 43, 4940–4950. [CrossRef]
7. Keats, A.; Yee, E.; Lien, F.S. Information-driven receptor placement for contaminant source determination. Environ. Model. Softw.

2010, 25, 1000–1013. [CrossRef]
8. Araki, S.; Iwahashi, K.; Shimadera, H.; Yamamoto, K.; Kondo, A. Optimization of air monitoring networks using chemical

transport model and search algorithm. Atmos. Environ. 2015, 122, 22–30. [CrossRef]
9. Ngae, P.; Kouichi, H.; Kumar, P.; Feiz, A.A.; Chpoun, A. Optimization of an urban monitoring network for emergency response

applications: An approach for characterizing the source of hazardous releases. Q. J. R. Meteorol. Soc. 2019, 145, 967–981. [CrossRef]
10. Kouichi, H.; Ngae, P.; Kumar, P.; Feiz, A.A.; Bekka, N. An optimization for reducing the size of an existing urban-like monitoring

network for retrieving an unknown point source emission. Geosci. Model Dev. 2019, 12, 3687–3705. [CrossRef]
11. Cao, S.J.; Ding, J.; Ren, C. Sensor deployment strategy using cluster analysis of Fuzzy C-Means Algorithm: Towards online

control of indoor environment’s safety and health. Sustain. Cities Soc. 2020, 59, 102190. [CrossRef]
12. Fattoruso, G.; Nocerino, M.; Toscano, D.; Pariota, L.; Sorrentino, G.; Manna, V.; Vito, S.D.; Cartenì, A.; Fabbricino, M.; Francia,

G.D. Site Suitability Analysis for Low Cost Sensor Networks for Urban Spatially Dense Air Pollution Monitoring. Atmosphere
2020, 11, 1215. [CrossRef]

13. deSouza, P.; Anjomshoaa, A.; Duarte, F.; Kahn, R.; Kumar, P.; Ratti, C. Air quality monitoring using mobile low-cost sensors
mounted on trash-trucks: Methods development and lessons learned. Sustain. Cities Soc. 2020, 60, 102239. [CrossRef]

14. Schafer, K.; Lande, K.; Grimm, H.; Jenniskens, G.; Gijsbers, R.; Ziegler, V.; Hank, M.; Budde, M. High-Resolution Assessment of
Air Quality in Urban Areas—A Business Model Perspective. Atmosphere 2021, 12, 595. [CrossRef]

15. Hadi-Vencheh, A.; Tan, Y.; Wanke, P.; Loghmanian, S.M. Air Pollution Assessment in China: A Novel Group Multiple Criteria
Decision Making Model under Uncertain Information. Sustainability 2021, 13, 1686. [CrossRef]

16. Marchuk, G. Mathematical Models in Environmental Problems. In Studies in Mathematics and Its Applications Book Series; Elsevier
Science & Techn.: Amsterdam, The Netherlands, 1986; Volume 16.

17. Pudykiewicz, J.A. Application of adjoint tracer transport equations for evaluating source parameters. Atmos. Environ. 1998,
32, 3039–3050. [CrossRef]

18. Desyatkov, B.M.; Sarmanaev, S.P.; Borodulin, A.I.; Kotlyarova, S.S.; Selegei, V.V. Determination of some characteristics of an
aerosol pollution source by solving the inverse problem of pollutant spread in the atmosphere. Atmos. Ocean. Opt. 1999,
12, 130–133.

19. Issartel, J.P. Rebuilding sources of linear tracers after atmospheric concentration measurements. Atmos. Chem. Phys. 2003,
3, 2111–2125. [CrossRef]

20. Mamonov, A.V.; Tsai, Y.H.R. Point source identification in nonlinear advection-diffusion-reaction systems. Inverse Probl. 2013,
29, 035009. [CrossRef]

21. Turbelin, G.; Singh, S.K.; Issartel, J.P. Reconstructing source terms from atmospheric concentration measurements: Optimality
analysis of an inversion technique. J. Adv. Model. Earth Syst. 2014, 6, 1244–1255. [CrossRef]

http://doi.org/10.1016/j.atmosenv.2008.02.065
http://dx.doi.org/10.1016/j.atmosenv.2009.07.011
http://dx.doi.org/10.1016/j.envsoft.2010.01.006
http://dx.doi.org/10.1016/j.atmosenv.2015.09.030
http://dx.doi.org/10.1002/qj.3471
http://dx.doi.org/10.5194/gmd-12-3687-2019
http://dx.doi.org/10.1016/j.scs.2020.102190
http://dx.doi.org/10.3390/atmos11111215
http://dx.doi.org/10.1016/j.scs.2020.102239
http://dx.doi.org/10.3390/atmos12050595
http://dx.doi.org/10.3390/su13041686
http://dx.doi.org/10.1016/S1352-2310(97)00480-9
http://dx.doi.org/10.5194/acp-3-2111-2003
http://dx.doi.org/10.1088/0266-5611/29/3/035009
http://dx.doi.org/10.1002/2014MS000385


Atmosphere 2021, 12, 1697 28 of 30

22. Kumar, P.; Feiz, A.A.; Singh, S.K.; Ngae, P.; Turbelin, G. Reconstruction of an atmospheric tracer source in an urban-like
environment. J. Geophys. Res. Atmos. 2015, 120, 12589–12604. [CrossRef]

23. Bieringer, P.E.; Young, G.S.; Rodriguez, L.M.; Annunzio, A.J.; Vandenberghe, F.; Haupt, S.E. Paradigms and commonalities in
atmospheric source term estimation methods. Atmos. Environ. 2017, 156, 102–112. [CrossRef]

24. Bocquet, M.; Elbern, H.; Eskes, H.; Hirtl, M.; Žabkar, R.; Carmichael, G.R.; Flemming, J.; Inness, A.; Pagowski, M.; Camaño, J.L.P.;
et al. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology
models. Atmos. Chem. Phys. Discuss. 2014, 14, 32233–32323. [CrossRef]

25. Carrassi, A.; Bocquet, M.; Bertino, L.; Evensen, G. Data assimilation in the geosciences: An overview of methods, issues, and
perspectives. Wiley Interdiscip. Rev. Clim. Chang. 2018, 9, e535. [CrossRef]

26. Elbern, H.; Friese, E.; Nieradzik, L.; Schwinger, J. Data assimilation in atmospheric chemistry and air quality. In Advanced Data
Assimilation for Geosciences; Oxford University Press: Oxford, UK, 2014; pp. 507–534. [CrossRef]

27. Silver, J.D.; Christensen, J.H.; Kahnert, M.; Robertson, L.; Rayner, P.J.; Brandt, J. Multi-species chemical data assimilation with the
Danish Eulerian hemispheric model: system description and verification. J. Atmos. Chem. 2015, 73, 261–302. [CrossRef]

28. Nguyen, C.; Soulhac, L.; Salizzoni, P. Source Apportionment and Data Assimilation in Urban Air Quality Modelling for NO2:
The Lyon Case Study. Atmosphere 2018, 9, 8. [CrossRef]

29. Xing, J.; Li, S.; Ding, D.; Kelly, J.T.; Wang, S.; Jang, C.; Zhu, Y.; Hao, J. Data Assimilation of Ambient Concentrations of Multiple Air
Pollutants Using an Emission-Concentration Response Modeling Framework. Atmosphere 2020, 11, 1289. [CrossRef] [PubMed]

30. Mijling, B. High-resolution mapping of urban air quality with heterogeneous observations: A new methodology and its
application to Amsterdam. Atmos. Meas. Tech. 2020, 13, 4601–4617. [CrossRef]

31. Nguyen, C.V.; Soulhac, L. Data assimilation methods for urban air quality at the local scale. Atmos. Environ. 2021, 253, 118366.
[CrossRef]

32. Elbern, H.; Strunk, A.; Schmidt, H.; Talagrand, O. Emission rate and chemical state estimation by 4-dimensional variational
inversion. Atmos. Chem. Phys. Discuss. 2007, 7, 1725–1783. [CrossRef]

33. Huang, W.S.; Griffith, S.M.; Lin, Y.C.; Chen, Y.C.; Lee, C.T.; Chou, C.C.K.; Chuang, M.T.; Wang, S.H.; Lin, N.H. Satellite-based
Emission Inventory Adjustments Improve Simulations of Long-range Transport Events. Aerosol Air Qual. Res. 2021, 21, 210121.
[CrossRef]

34. Markakis, K.; Valari, M.; Perrussel, O.; Sanchez, O.; Honore, C. Climate-forced air-quality modeling at the urban scale: sensitivity
to model resolution, emissions and meteorology. Atmos. Chem. Phys. 2015, 15, 7703–7723. [CrossRef]

35. Holnicki, P.; Nahorski, Z. Emission Data Uncertainty in Urban Air Quality Modeling—Case Study. Environ. Model. Assess. 2015,
20, 583–597. [CrossRef]

36. Munir, S.; Mayfield, M.; Coca, D. Understanding Spatial Variability of NO2 in Urban Areas Using Spatial Modelling and Data
Fusion Approaches. Atmosphere 2021, 12, 179. [CrossRef]

37. Ponomarev, N.; Yushkov, V.; Elansky, N. Air Pollution in Moscow Megacity: Data Fusion of the Chemical Transport Model and
Observational Network. Atmosphere 2021, 12, 374. [CrossRef]

38. Carnevale, C.; Angelis, E.D.; Finzi, G.; Turrini, E.; Volta, M. Application of Data Fusion Techniques to Improve Air Quality
Forecast: A Case Study in the Northern Italy. Atmosphere 2020, 11, 244. [CrossRef]

39. Penenko, V.V.; Penenko, A.V.; Tsvetova, E.A.; Gochakov, A.V. Methods for Studying the Sensitivity of Air Quality Models and
Inverse Problems of Geophysical Hydrothermodynamics. J. Appl. Mech. Tech. Phys. 2019, 60, 392–399. [CrossRef]

40. Penenko, A. A Newton-Kantorovich Method in Inverse Source Problems for Production-Destruction Models with Time Series-
Type Measurement Data. Numer. Anal. Appl. 2019, 12, 51–69. [CrossRef]

41. Penenko, A. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction
models with image-type measurements. Inverse Probl. Imaging 2020, 14, 757–782. [CrossRef]

42. Penenko, A.; Zubairova, U.; Mukatova, Z.; Nikolaev, S. Numerical algorithm for morphogen synthesis region identification with
indirect image-type measurement data. J. Bioinform. Comput. Biol. 2019, 17, 1940002–1–1940002–18. [CrossRef]

43. Penenko, A.; Gochakov, A.; Penenko, V. Algorithms based on sensitivity operators for analyzing and solving inverse modeling
problems of transport and transformation of atmospheric pollutants. IOP Conf. Ser. Earth Environ. Sci. 2020, 611, 012032.
[CrossRef]

44. Khodzher, T.V.; Zhamsueva, G.S.; Zayakhanov, A.S.; Dementeva, A.L.; Tsydypov, V.V.; Balin, Y.S.; Penner, I.E.; Kokhanenko, G.P.;
Nasonov, S.V.; Klemasheva, M.G.; Golobokova, L.P.; Potemkin, V.L. Ship-Based Studies of Aerosol-Gas Admixtures over Lake
Baikal Basin in Summer 2018. Atmos. Ocean. Opt. 2019, 32, 434–441. [CrossRef]

45. Antokhin, P.N.; Arshinova, V.G.; Arshinov, M.Y.; Belan, B.D.; Belan, S.B.; Davydov, D.K.; Ivlev, G.A.; Fofonov, A.V.; Kozlov, A.V.;
Paris, J.D.; et al. Distribution of Trace Gases and Aerosols in the Troposphere Over Siberia During Wildfires of Summer 2012. J.
Geophys. Res. Atmos. 2018, 123, 2285–2297. [CrossRef]

46. Gu, Q.; Michanowicz, D.R.; Jia, C. Developing a Modular Unmanned Aerial Vehicle (UAV) Platform for Air Pollution Profiling.
Sensors 2018, 18, 4363. [CrossRef] [PubMed]

47. Arshinov, M.Y.; Belan, B.D.; Davydov, D.K.; Kozlov, A.V.; Fofonov, A.V.; Arshinova, V.G. Study of the Spatial Distributions of CO2
and CH4 in the Surface Air Layer over Western Siberia Using a Mobile Platform. Atmos. Ocean. Opt. 2020, 33, 661–670. [CrossRef]

48. Roshydromet. Unified Information System for Monitoring Atmospheric Air Pollution. Available online: http://www.feerc.ru/
uisem/portal/ad/irkutsk (accessed on 1 November 2021). (In Russian)

http://dx.doi.org/10.1002/2015JD024110
http://dx.doi.org/10.1016/j.atmosenv.2017.02.011
http://dx.doi.org/10.5194/acp-15-5325-2015
http://dx.doi.org/10.1002/wcc.535
http://dx.doi.org/10.1093/acprof:oso/ 9780198723844.003.0022
http://dx.doi.org/10.1007/s10874-015-9326-0
http://dx.doi.org/10.3390/atmos9010008
http://dx.doi.org/10.3390/atmos11121289
http://www.ncbi.nlm.nih.gov/pubmed/33425379
http://dx.doi.org/10.5194/amt-13-4601-2020
http://dx.doi.org/10.1016/j.atmosenv.2021.118366
http://dx.doi.org/10.5194/acp-7-3749-2007
http://dx.doi.org/10.4209/aaqr.210121
http://dx.doi.org/10.5194/acp-15-7703-2015
http://dx.doi.org/10.1007/s10666-015-9445-7
http://dx.doi.org/10.3390/atmos12020179
http://dx.doi.org/10.3390/atmos12030374
http://dx.doi.org/10.3390/atmos11030244
http://dx.doi.org/10.1134/S0021894419020202
http://dx.doi.org/10.1134/S1995423919010051
http://dx.doi.org/10.3934/ipi.2020035
http://dx.doi.org/10.1142/S021972001940002X
http://dx.doi.org/10.1088/1755-1315/611/1/012032
http://dx.doi.org/10.1134/S1024856019040067
http://dx.doi.org/10.1002/2017JD026825
http://dx.doi.org/10.3390/s18124363
http://www.ncbi.nlm.nih.gov/pubmed/30544691
http://dx.doi.org/10.1134/S1024856020060056
http://www.feerc.ru/uisem/portal/ad/irkutsk
http://www.feerc.ru/uisem/portal/ad/irkutsk


Atmosphere 2021, 12, 1697 29 of 30

49. Marchuk, G.I. Formulation of some converse problems. Sov. Math. Dokl. 1964, 5, 675–678.
50. Penenko, V. Methods for Numerical Simulation of Atmospheric Processes; Hydrometeoizdat: Leningrad, Russia, 1981. (In Russian)
51. Murio, D.A. The Mollification Method and the Numerical Solution of Ill-Posed Problems; John Wiley & Sons, Inc.: New York, NY, USA, 1993.

[CrossRef]
52. Dimet, F.X.L.; Souopgui, I.; Titaud, O.; Shutyaev, V.; Hussaini, M.Y. Toward the assimilation of images. Nonlinear Process. Geophys.

2015, 22, 15–32. [CrossRef]
53. Penenko, V.V.; Obraztsov, N.N. A variational initialization method for the fields of the meteorological elements. Engl. Transl. Sov.

Meteorol. Hydrol. 1976, 11, 3–16.
54. Marchuk, G.I.; Penenko, V.V. Application of optimization methods to the problem of mathematical simulation of atmospheric

processes and environment. In Modelling and Optimization of Complex System; Springer: Berlin/Heidelberg, Germany, 1978;
pp. 240–252. [CrossRef]

55. Dimet, F.X.L.; Talagrand, O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical
aspects. Tellus 1986, 38A, 97–110. [CrossRef]

56. Issartel, J.P. Emergence of a tracer source from air concentration measurements, a new strategy for linear assimilation. Atmos.
Chem. Phys. 2005, 5, 249–273. [CrossRef]

57. Penenko, A.V.; Gochakov, A.; Antokhin, P. Numerical study of emission sources identification algorithm with joint use of in situ
and remote sensing measurement data. In Proceedings of the 26th International Symposium on Atmospheric and Ocean Optics,
Atmospheric Physics, Moscow, Russia, 29 June–3 July 2020; Matvienko, G.G.; Romanovskii, O.A., Eds.; SPIE: Bellingham, WA,
USA, 2020. [CrossRef]

58. UNESCO. Lake Baikal. Available online: https://whc.unesco.org/en/list/754/ (accessed on 1 December 2021).
59. Plyusnin, V.; Vladimirov, I.; Sorokovoi, A. Baikal region in the UNESCO “Man and Biocphere” Programme. Probl. Geogr. 2021,

152, 202–221. [CrossRef]
60. Golobokova, L.; Khodzher, T.; Khuriganova, O.; Marinayte, I.; Onishchuk, N.; Rusanova, P.; Potemkin, V. Variability of Chemical

Properties of the Atmospheric Aerosol above Lake Baikal during Large Wildfires in Siberia. Atmosphere 2020, 11, 1230. [CrossRef]
61. Efimova, N.V.; Rukavishnikov, V.S. Assessment of Smoke Pollution Caused by Wildfires in the Baikal Region (Russia). Atmosphere

2021, 12, 1542. [CrossRef]
62. Popovicheva, O.; Molozhnikova, E.; Nasonov, S.; Potemkin, V.; Penner, I.; Klemasheva, M.; Marinaite, I.; Golobokova, L.;

Vratolis, S.; Eleftheriadis, K.; et al. Industrial and wildfire aerosol pollution over world heritage Lake Baikal. J. Environ. Sci. 2021,
107, 49–64. [CrossRef]

63. Gorshkov, A.G.; Izosimova, O.N.; Kustova, O.V.; Marinaite, I.I.; Galachyants, Y.P.; Sinyukovich, V.N.; Khodzher, T.V. Wildfires as
a Source of PAHs in Surface Waters of Background Areas (Lake Baikal, Russia). Water 2021, 13, 2636. [CrossRef]

64. Grigorieva, M.A.; Ippolitova, N.A. Big business in socio-economic development of cities in the Baikal region. Geogr. Nat. Resour.
2011, 32, 166–171. [CrossRef]

65. Akhtimankina, A.; Arguchintseva, A. Zagryaznenie atmosfernogo vozduha promyshlennymi predpriyatiyami g. Irkutska.
IZVESTIYA Irkutsk. Gos. Univ. 2013, 6, 3–19. (In Russian)

66. Brown, K.P.; Gerber, A.; Bedulina, D.; Timofeyev, M.A. Human impact and ecosystemic health at Lake Baikal. WIREs Water 2021,
8, e1528. [CrossRef]

67. Khuriganova, O.I.; Obolkin, V.A.; Golobokova, L.P.; Bukin, Y.S.; Khodzher, T.V. Passive Sampling as a Low-Cost Method for
Monitoring Air Pollutants in the Baikal Region (Eastern Siberia). Atmosphere 2019, 10, 470. [CrossRef]

68. Zayakhanov, A.S.; Zhamsueva, G.S.; Tcydypov, V.V.; Balzhanov, T.S.; Dementeva, A.L.; Khodzher, T.V. Investigation of Transport
and Transformation of Tropospheric Ozone in Terrestrial Ecosystems of the Coastal Zone of Lake Baikal. Atmosphere 2019, 10, 739.
[CrossRef]

69. Mashyanov, N.; Obolkin, V.; Pogarev, S.; Ryzhov, V.; Sholupov, S.; Potemkin, V.; Molozhnikova, E.; Khodzher, T. Air Mercury
Monitoring at the Baikal Area. Atmosphere 2021, 12, 807. [CrossRef]

70. Golobokova, L.; Netsvetaeva, O.; Khodzher, T.; Obolkin, V.; Khuriganova, O. Atmospheric Deposition on the Southwest Coast of
the Southern Basin of Lake Baikal. Atmosphere 2021, 12, 1357. [CrossRef]

71. Obolkin, V.; Molozhnikova, E.; Shikhovtsev, M.; Netsvetaeva, O.; Khodzher, T. Sulfur and Nitrogen Oxides in the Atmosphere of
Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks. Atmosphere 2021, 12, 1348. [CrossRef]

72. Engl, H.; Hanke, M.; Neubauer, A. Regularization of Inverse Problems; Kluwer: Dordrecht, The Netherlands, 1996.
73. Voronina, T.A.; Tcheverda, V.A.; Voronin, V.V. Some properties of the inverse operator for a tsunami source recovery. Sib. Elektron.

Mat. Izv. 2014, 11, 532–547.
74. Judd, L.M.; Al-Saadi, J.A.; Valin, L.C.; Pierce, R.B.; Yang, K.; Janz, S.J.; Kowalewski, M.G.; Szykman, J.J.; Tiefengraber, M.;

Mueller, M. The Dawn of Geostationary Air Quality Monitoring: Case Studies From Seoul and Los Angeles. Front. Environ. Sci.
2018, 6, 1–17. [CrossRef]

75. Kim, J.; Jeong, U.; Ahn, M.H.; Kim, J.H.; Park, R.J.; Lee, H.; Song, C.H.; Choi, Y.S.; Lee, K.H.; Yoo, J.M.; et al. New Era of Air
Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS). Bull. Am. Meteorol. Soc. 2020,
101, E1–E22. [CrossRef]

http://dx.doi.org/10.1002/9781118033210
http://dx.doi.org/10.5194/npg-22-15-2015
http://dx.doi.org/10.1007/bfb0004167
http://dx.doi.org/10.1111/j.1600-0870.1986.tb00459.x
http://dx.doi.org/10.5194/acp-5-249-2005
http://dx.doi.org/10.1117/12.2575649
https://whc.unesco.org/en/list/754/
http://dx.doi.org/10.24057/probl.geogr.152.7
http://dx.doi.org/10.3390/atmos11111230
http://dx.doi.org/10.3390/atmos12121542
http://dx.doi.org/10.1016/j.jes.2021.01.011
http://dx.doi.org/10.3390/w13192636
http://dx.doi.org/10.1134/S1875372811020119
http://dx.doi.org/10.1002/wat2.1528
http://dx.doi.org/10.3390/atmos10080470
http://dx.doi.org/10.3390/atmos10120739
http://dx.doi.org/10.3390/atmos12070807
http://dx.doi.org/10.3390/atmos12101357
http://dx.doi.org/10.3390/atmos12101348
http://dx.doi.org/10.3389/fenvs.2018.00085
http://dx.doi.org/10.1175/BAMS-D-18-0013.1


Atmosphere 2021, 12, 1697 30 of 30

76. Mettig, N.; Weber, M.; Rozanov, A.; Arosio, C.; Burrows, J.P.; Veefkind, P.; Thompson, A.M.; Querel, R.; Leblanc, T.; Godin-
Beekmann, S.; et al. Ozone profile retrieval from nadir TROPOMI measurements in the UV range. Atmos. Meas. Tech. 2021,
14, 6057–6082. [CrossRef]

77. Liu, S.; Valks, P.; Pinardi, G.; Xu, J.; Chan, K.L.; Argyrouli, A.; Lutz, R.; Beirle, S.; Khorsandi, E.; Baier, F.; et al. An improved
TROPOMI tropospheric NO2 research product over Europe. Atmos. Meas. Tech. 2021, 14, 7297–7327. [CrossRef]

78. Stebel, K.; Stachlewska, I.S.; Nemuc, A.; Horálek, J.; Schneider, P.; Ajtai, N.; Diamandi, A.; Benešová, N.; Boldeanu, M.; Botezan,
C.; et al. SAMIRA-SAtellite Based Monitoring Initiative for Regional Air Quality. Remote Sens. 2021, 13, 2219. [CrossRef]

79. Wolfram Research. Wolfram Alpha. Available online: https://www.wolframalpha.com/ (accessed on 12 December 2020).
80. Hundsdorfer, W.; Verwer, J.G. Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations; Springer Series in

Computational Mathematics; Springer: Berlin/Heidelberg, Germany, 2013.
81. Hauglustaine, D.A.; Brasseur, G.P.; Walters, S.; Rasch, P.J.; Muller, J.F.; Emmons, L.K.; Carroll, M.A. MOZART, a global chemical

transport model for ozone and related chemical tracers: 2. Model results and evaluation. J. Geophys. Res. Atmos. 1998,
103, 28291–28335. [CrossRef]

82. Baldauf, M.; Seifert, A.; Forstner, J.; Majewski, D.; Raschendorfer, M.; Reinhardt, T. Operational Convective-Scale Numerical
Weather Prediction with the COSMO Model: Description and Sensitivities. Mon. Weather. Rev. 2011, 139, 3887–3905. [CrossRef]

83. Griewank, A.; Walther, A. Evaluating Derivatives; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2008.
[CrossRef]

84. Vlasenko, A.; Kohl, A.; Stammer, D. The efficiency of geophysical adjoint codes generated by automatic differentiation tools.
Comput. Phys. Commun. 2016, 199, 22–28. [CrossRef]

85. Naumann, U. Adjoint Code Design Patterns. ACM Trans. Math. Softw. 2019, 45, 1–32. [CrossRef]
86. Penenko, A.; Gochakov, A. Parallel speedup analysis of an adjoint ensemble-based source identification algorithm. J. Phys. Conf.

Ser. 2021, 1715, 012072–1–012072–6. [CrossRef]
87. Koh, J.; Lee, J.; Yoon, S. Single-image deblurring with neural networks: A comparative survey. Comput. Vis. Image Underst. 2021,

203, 103134. [CrossRef]
88. Zhang, Q.; Hu, Z.; Jiang, C.; Zheng, H.; Ge, Y.; Liang, D. Artifact removal using a hybrid-domain convolutional neural network

for limited-angle computed tomography imaging. Phys. Med. Biol. 2020, 65, 155010. [CrossRef]
89. Xie, S.; Zheng, X.; Chen, Y.; Xie, L.; Liu, J.; Zhang, Y.; Yan, J.; Zhu, H.; Hu, Y. Artifact Removal using Improved GoogLeNet for

Sparse-view CT Reconstruction. Sci. Rep. 2018, 8. [CrossRef]
90. Penenko, A.; Nikolaev, S.; Golushko, S.; Romashenko, A.; Kirilova, I. Numerical Algorithms for Diffusion Coefficient Identification

in Problems of Tissue Engineering. Math. Biol. Bioinform. 2016, 11, 426–444. (In Russian), [CrossRef]
91. Cheverda, V.A.; Kostin, V.I. R-pseudoinverses for compact operators in Hilbert spaces: existence and stability. J. Inverse Ill-Posed

Probl. 1995, 3, 131–148. [CrossRef]
92. Penenko, A.V.; Salimova, A.B. Source Identification for the Smoluchowski Equation Using an Ensemble of Adjoint Equation

Solutions. Numer. Anal. Appl. 2020, 13, 152–164. [CrossRef]

http://dx.doi.org/10.5194/amt-14-6057-2021
http://dx.doi.org/10.5194/amt-14-7297-2021
http://dx.doi.org/10.3390/rs13112219
https://www.wolframalpha.com/
http://dx.doi.org/10.1029/98JD02398
http://dx.doi.org/10.1175/MWR-D-10-05013.1
http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1016/j.cpc.2015.10.008
http://dx.doi.org/10.1145/3326162
http://dx.doi.org/10.1088/1742-6596/1715/1/012072
http://dx.doi.org/10.1016/j.cviu.2020.103134
http://dx.doi.org/10.1088/1361-6560/ab9066
http://dx.doi.org/10.1038/s41598-018-25153-w
http://dx.doi.org/10.17537/2016.11.426
http://dx.doi.org/10.1515/jiip.1995.3.2.131
http://dx.doi.org/10.1134/S1995423920020068

	Introduction
	Materials and Methods
	Chemical Transport Model
	Sensitivity-Operator Based Representation of Measurement Data
	Measurement Data Types
	Sensitivity-Operator-Based Analysis of Measurement System 
	Inverse Problem Solution
	Sensitivity Operator Properties Analysis

	Inverse Modeling Scenario

	Results
	Heterogeneous Measurements
	Specific Measurement Types
	Accuracy of the Reconstruction's Prediction

	Discussion
	Conclusions
	Newton–Kantorovich-Type Algorithm
	Projection Equivalence
	Chemical Transformation Model (Leighton Relationship-Based)
	The Description of the Meteorological Scenario
	References

