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Abstract: Low visibility, associated with fog, severely affects land, marine, and air transportation.
Visibility is an important indicator to identify different intensities of fog; therefore, improving
the ability to forecast visibility in fog is an urgent need for social and economic development.
Establishing a proper visibility parameterization scheme is crucial to improving the accuracy of fog
forecast operation. Considering various visibility impact factors, including RH, Nd, D, LWC, the
parameterization formula of visibility in fog, as well as their performance in meteorology operation,
are reviewed. Moreover, the estimated ability of the visibility parameterization formulas combined
with the numerical model is briefly described, and their advantages and shortcomings are pointed out.

Keywords: fog; visibility; parameterization scheme; microphysical; atmospheric numerical model

1. Introduction

Visibility (VIS) is an indicator used to distinguish different intensities of fog based
on the grade of fog forecast in the World Meteorological Organization (WMO) guide [1].
The decrease in atmospheric VIS, associated with the formation and development of fog
weather, especially the explosive growth of fog, causes a severe impact on land, marine
and, air transportation, and often cause traffic accidents such as car collisions in high-speed
vehicles which can endanger people’s lives and property [2–5]. Fog is the most common
and severe low–visibility weather occurrence, receiving much attention [6–8]. The number
of articles including the word “fog” in Journals of American Meteorological Society alone
was around 4700 until 2007 [9], with the addition of a further 4268 articles from 2007 to
2021 when searching them in the same way (https://journals.ametsoc.org, accessed on 1
December 2021), indicating that there is substantial interest in this subject.

Until now, our knowledge on the physics of fog remains limited, including the numer-
ous physical processes influencing fog formation, development, and decay. Although the
physical processes of fog, such as droplet microphysics [10–16], aerosol physics and chem-
istry [17–21], radiation [22,23], turbulence [24–27], large/small-scale dynamics [28–31],
and surface conditions [32–36] have been widely investigated, the uncertainty of typical
numerical forecast models estimating VIS is higher than 50% [37–39]. As to VIS estimation
methods in meteorological operations, some forecasting methods provide pure mathemati-
cal statistical fitting without the explicit consideration of physical processes [40], such as
climatological statistical methods [41], the rule-based statistical method [42,43], numerical
model ensemble [39,44,45] and machine learning methods [43,46]. However, other meth-
ods, based on physical factors [47], e.g., extinction coefficient, relative humidity (RH) [48],
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liquid/ice water content (LWC) [49,50], droplet number concentration (Nd) and fog droplets
size [4,14,51,52], which can establish a direct relationship to VIS, are widely adoptable in
atmospheric numerical models [4,53–61]. Therefore, research on the relationship between
the impact factors and VIS, and their application effects are summarized in the review.

In terms of the connection between microphysical parameters and VIS, many studies
focused on the influence of the extinction coefficient, fog droplets size, Nd, and LWC on
VIS. Among them, the effect of the extinction coefficient on visibility provides the basis
of others. The Koschmieder’s law, as we know it, laid the foundation for visibility ob-
servation [1,62]. Other parameters related to the extinction coefficient were later studied,
and LWC. George [63] pointed out that the fog droplet spectrum and LWC provide two
crucial parameters that characterized the microphysical characteristics of fog and that an
excellent inverse relationship exists between LWC and VIS. Eldridge [64] analyzed the
influence of droplet growth on the formation and dissipation of fog, and proposed an
empirical relationship between VIS and LWC. Through a comparison of the observation
results with the conclusions of Houghton and Radford, Eldridge [65] pointed out that
it was necessary to consider the effect of Nd on the relationship between VIS and LWC.
There were inverse correlations between the microphysical parameters and VIS, and there
were also correlations between the parameters themselves. Niu et al. [14] showed that
when nucleation and condensation growth dominated, a pronounced positive correlation
between Nd and LWC existed. When the D increased, and Nd was small, the LWC would
also be smaller. Many other studies have discussed the relationship between VIS and
the evolution of microphysical parameters [4,52,58]. The following sections will further
categorize and explain the corresponding results and their applications in atmospheric
numerical models. The characteristics of fog in a polluted environment are fairly remark-
able; thus, parameterization schemes of VIS in fog that contains chemical composition or
concentrations of aerosol are beyond the scope of this article.

There are many factors impacting VIS in fog, and only several common physical ele-
ments, including RH, extinction coefficient, LWC, Nd, and fog droplets size, are introduced
in this review due to the length limit. The following sections will summarize corresponding
parameterization schemes of VIS in fog and their applications in meteorological operations.

2. Relationships between VIS and Extinction Coefficient

As early as the 1920s, based on the interference effects of fog and haze on the horizontal
visual range, the Koschmieder’s law was proposed [62]. The theory assumes that the
atmosphere is uniform, the horizontal extinction coefficient (βext) of the atmosphere is
constant, and the flat sky is used as the background black body target during the day. Then
the brightness contrast threshold (C) between the target and the background changes with
the distance (VIS), and the relationship is as follows:

C = exp(−βext·VIS), (1)

which can be transformed as
VIS =

1
βext

ln
1
C

, (2)

where βext is measured in units of inverse kilometers, the constant C is a physical quantity
related to the human eye, there are two values for the contrast threshold C, the value
recommended by the International Civil Aviation Organization (ICAO) is 0.05, and the
value recommended by WMO is 0.02. Therefore, as long as the atmospheric extinction
coefficient is obtained, the VIS value can be obtained. The daytime-target visual range
theory proposed by this law has been the basis of manual VIS observation during daytime
for many years. The most significant contribution of the Koschmieder’s law is that it
first links VIS to the atmospheric extinction coefficient, which has become the theoretical
basis for studying atmospheric VIS. To this day, this law is still the basic principle of
various optical VIS measuring instruments. Inverse proportionality between VIS and βext
is only applicable under very minimal conditions: the atmosphere must be illuminated
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homogeneously, the extinction coefficient and the scattering function are not allowed to
vary with space, the object should ideally be black and viewed against the horizon, and the
eye of the observer must have a constant contrast threshold. Horvath et al. [66] proposed
a general formula, taking the facts above into account. Through the proper selection of
the VIS markers, it is possible to use the Koschmieder’s formula to calculate the extinction
coefficient from observed visibilities with an error of less than about 10 percent. Using
radiative transfer theory, Lee et al. [67] point out that the Koschmieder’s model is workable
only in situations where a common-sized object can be viewed tens of kilometers away, but
not applicable for viewable distances of hundreds of meters when the angular dimension
of an object is significantly greater than the eye resolution of the human being. Lee et al.’s
research advocates for the measurement and distribution of detectability in bad weather.

The scattering theory of particles, proposed by Mie [68], is the basis for calculating the
extinction coefficient. Since the diameter of the particles is equivalent to the wavelength
of the light, the forward-scattered light is stronger than the backward-scattered light, and
the scattering intensity is much larger than that of Rayleigh scattering. The βext in Mie
scattering theory is given as follows:

βext =
2
x2 ∑∞

n=1(2n + 1)Re(an + bn), (3)

where an and bn are functions related to the Bessel function and Hankel function, and x is
the radius of the droplet. In 1971, according to Beer’s law, Koening [69] pointed out that
brightness was a function of the microphysical characteristics of the fog, which is due to the
dependence of the extinction coefficient on the concentration and radius of the fog droplets.
That is, βext is related to the Nd, droplet radius, visible light wavelength, etc. Kunkel [70]
pointed out that if the drop-size distribution is known, then βext can be readily determined
from the following equation (Equation (4))

βext = π ∑N
i=1 Qextniri

2, (4)

where Qext is the extinction efficiency (normalized extinction cross-section), n is the Nd,
and r is the droplet radius. Moreover, If the drop-size distribution is unknown, then an
empirical formula must be used to relate the LWC to βext, and related content is discussed
in detail in the next section.

The total extinction coefficient is a sum of components from clean air, aerosol, cloud,
and precipitation. The extinction coefficient for aerosols contains a contribution from
different aerosol species, such as sea salt, dust, black carbon, organic matter, sulfates, and
so on [71]. The extinction coefficient of clean air is small and has little practical value, so it
is taken to be equivalent to a VIS of 100 km (105 m), which defines the maximum VIS that
can be diagnosed [72], that is βair = (lne)/105.

The parameterization scheme based on Equation (2) was generally adopted by sub-
sequent numerical research, providing a feasible scheme for the numerical forecast of
horizontal VIS [73–75]. This scheme strongly relies on βext. Koening’s research [69] shows
that the scheme is determined by multiple factors, which will lead to certain errors in calcu-
lations and measurements. For example, Kunkel [70] compared the extinction coefficient βc,
calculated through the droplet spectral distribution and the actually observed βm, showing
that the calculated extinction coefficient βc is larger than the observed βm. The results
of Vali et al. [76] also showed that there was a deviation between the calculated value of
the extinction coefficient and the measured value. The correction method proposed by
Kunkel [70] is as follows:

βm = 2.156β0.717
c (5)

There is significant uncertainty in calculating the extinction coefficient βc through the
droplet spectrum distribution. Therefore, if the VIS is calculated by Equation (2), certain
errors will inevitably occur.
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In aviation applications, not only horizontal but also vertical VIS has a significant
impact on aircraft take-off and landing. Stoelinga and Warner [77] believed that the
maximum horizontal VIS for aviation applications was 10 km, which was smaller than
the horizontal grid spacing set in the NWP (such as 36 km and 12 km). Therefore, it could
be considered that the extinction coefficient has a fixed value, and Equation (2) could
be used to calculate the horizontal VIS. However, this assumption was no longer valid
when calculating the vertical VIS, because the vertical maximum height (2500 m) that
aviation considered was significantly greater than the vertical grid spacing (50–500 m)
in the model. The extinction coefficient, which was closely related to the atmospheric
environment, varied greatly in different model levels. Therefore, the extinction coefficient
should be a function of height z, and the expression must be integrated layer by layer in an
upward direction (replacing x with z) to determine the ceiling zclg [77]:

− ln(0.02) =
∫ zclg

0
β(z)dz, (6)

3. Relationships between VIS and RH

Fog is a weather phenomenon with a horizontal VIS of less than 1 km due to water
vapor near the ground condensing into tiny water droplets or ice crystals and becoming
suspended in the air [1]. Air saturation is the prerequisite for the appearance of fog
weather in a clean atmosphere. Since human activities produce many aerosols which
absorb moisture and also contribute to poor VIS, pollution fog affected by industrialization
often occurs when the atmosphere does not reach saturation conditions [78,79]. VIS
decaying in the unsaturated atmosphere is closely related to increasing RH. Therefore,
summarizing the empirical relationship between VIS and RH, which can be used in the
atmospheric numerical models to output the final VIS value, has certain practicability. In
1976, Hanel [80] proposed an empirical formula between VIS and RH, and the empirical
equation is as follows:

VIS = 67.7(1 − RH)0.67, (7)

Equation (7) is valid under the condition of 58% < RH < 97%. Due to only a single
factor being involved in the empirical formula, the simple, clear formula can reflect the
changing trend of unsaturated atmospheric VIS well and can guide for forecasting. Based
on Hanel’s work, Smirnova et al. [81] further improved the VIS-RH empirical formula,
following Equation (8),

VISRUC = 60 exp(−2.5(RH − 15)/80), (8)

the condition of Equation (8) is 30% < RH ≤ 100%. The parameterization scheme is applied
using the Rapid Update Cycle (RUC) model of the National Environmental Forecast Center
of the United States. Based on the Fog Remote Sensing And Modeling (FRAM) at Pearson
Airport, and the Alliance Icing Research Study (AIRS 2) at Mirabell Airport in Canada,
Gultepe et al. [82] pointed out that Smirnova’s scheme used in the RUC is not applicable
in Canada, and further identified a significant issue in that when the RH was close to
100%, the calculated VIS using the Smirnova’s scheme was approximately twice of the
observed value. Based on the ground observation data of two airports, the more suitable
VIS parameterization schemes for forecasting local VIS are provided in Equation (9),

VISFRAM = −41.5 ln(RH) + 192.3, (9)

and Equation (10)
VISAIRS = −0.0177RH2 + 1.462RH + 30.8. (10)

The newly proposed scheme, applied in the numerical model, showed better appli-
cation performance and the proved to be more suitable for local VIS forecasting. How-
ever, the VIS-RH schemes proposed by Gultepe [82] are not applicable in other regions.
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Cao et al. [83] studied the VIS parameterization scheme in the fog model of Dalian, China,
and also found that under high humidity conditions, the calculation value of Smirnova’s
scheme was significantly greater than the actual observation value. For example, when
RH = 100%, VISRUC = 4.2 km; moreover, approximate 95.3% of the measured VIS ≤ 1 km.
If this scheme is used to calculate visibility, when RH is high, the calculated result will
be significantly larger than the observed value. A more suitable VIS-RH relationship was
proposed based on the Dalian ground observation data. The newly built scheme [83] had
greatly enhanced the local low VIS forecasting ability and is represented in Equation (11).

VIS = −0.00003272RH3 + 0.00238RH2 − 0.1165RH + 21.2 (11)

It can be seen from Equation (11) that when RH = 100%, VIS = 0.63 km, when RH = 95%,
VIS = 3.56 km, and when RH < 80%, VIS > 10 km. The revised VIS-RH parameterization
scheme has greatly improved the ability to predict local low visibility compared to RH-VIS
formula developed by Smirnova [81] and Gultepe [82].

In 2009, Gultepe et al. [84] further analyzed the relationship between VIS and RH,
and pointed out that the VIS-RH relationship, based only on observational data fittings
cannot be well used for VIS calculations, because for the same RH, the corresponding
VIS value varied greatly. Therefore, Gultepe et al. [84] proposed a probability method,
that is, a method in which all VIS values for the same RH are sorted by value, and the
top 5%, 50%, and 95% of the data sets are used to fit, so as to meet different needs,
respectively. For example, due to the concern of extremely poor VIS at an airport, it is more
meaningful to obtain a possible minimum VIS value than to know the most likely VIS value.
Therefore, the forecast scheme with 5% of the data is more practical, meaning that 95% of
the data points have a higher VIS value. Gultepe et al. suggested the replacement of the
deterministic forecast with the probability method, and the established parameterization
scheme was found to be more suitable for the actual local meteorology operation. Lin
et al. [85] performed the local application of the above probability method in Sichuan
Province. The prediction effect of the mesoscale Weather Research and Forecasting Model
(WRF) on the RH was evaluated, and the VIS-RH parameterization scheme by the measured
VIS and RH data from Chengdu Shuangliu airport was obtained. The test results showed
that the VIS values of the dense fog calculated by the VIS-RH parameterization scheme,
which accounted for 5% of the data, were the most accurate, that is, the fitting curve with a
probability of 5% was the closest to the low VIS both in trend and magnitude.

Fog is sensitive to meteorological factors. Even under the same weather condition,
fog formation is still a probability event. The method proposed by Gultepe et al. [84]. can
provide the probability of low VIS under the same RH condition, but the results are limited
by the sampling. By the LEPS (Local Ensemble Prediction System), based on ensemble
forecast, which can directly output the probability of LVP (Low VIS Procedure) events,
Roquelaure et al. [86] carried out low VIS prediction assessment of Paris Charles de Gaulle
Airport. The category of LVP can be obtained according to the established comparison
table of event probability and categories. The results show that the system can reduce false
alarms by 50–60%.

Results from some studies investigating the VIS-RH relationship are listed in Table 1.
Using VIS and RH observation data from the automatic weather station(AWS) from 2016
to 2017 in Tianjin urban meteorological observation (Tianjin), a localized VIS-RH scheme
based on the probability method of 5%, proposed by Gultepe et al. [84], was made. The
results show that T5, T10, T9, and the localized fitting curve can represent low VIS under
the condition of high RH, but T5 overestimates VIS for all RH, and T10 also overestimates
VIS under the condition of RH > 95% and RH < 40%. Comparatively speaking, the localized
fitting curve can denote a better VIS-RH relationship (Figure 1).
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Table 1. The related VIS-RH parameterization schemes.

Equation No Relationship Conditions Reference

(7) VIS = 67.7(1 − RH)0.67 RH in decimal form
For 58% < RH < 97% Hanel [80]

(8) VISRUC = 60 exp[−2.5(RH − 15)/80]
For 30% ≤ RH ≤ 100%

Set to 5 km at
RH ≥ 95%

Smirnova et al. [81]

(9) VISFRAM−C = −41.5 ln(RH) + 192.30 For RH > 30% Gultepe et al. [82]
(10) VISAIRS = −0.0177RH2 + 1.46RH + 30.80 For RH > 30% Gultepe et al. [82]

(11) VISMX11 =
−0.00003272RH3 + 0.00238RH2 − 0.1165RH + 21.2 For 30% ≤ RH ≤ 100% Cao et al. [83]

(12) VISFRAM−L(5%) = −0.000114RH2.7 + 27.45 For RH > 30% Gultepe et al. [84]
(13) VISFRAM−L(50%) = −5.19 × 10−10RH5.44 + 40.10 For RH > 30% Gultepe et al. [84]
(14) VISFRAM−L(95%) = −9.68 × 10−14RH7.19 + 52.20 For RH > 30% Gultepe et al. [84]
(15) VISFit = 63.19 − 13.04 ln(RH + 11.31) For 20% < RH < 100% Lin et al. [85]
(16) VISFit−5% = 21.38 − 4.938 ∗ ln(RH − 24.53) For 25% < RH < 100% Lin et al. [85]
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Even though the VIS-RH schemes vary in different regions and have obvious regional
characteristics, the VIS-RH relationship has been widely used in various models, including
Numerical Weather Prediction (NWP) and fog models [87–89]. The RH value is easily
obtained through the atmospheric numerical model, and it is also a direct observational
element, which is convenient for VIS-RH verification. For the same RH value, the calculated
VIS values vary in a wide range. Moreover, there are significant differences between
VIS parameterization schemes, and the calculation accuracy cannot meet the needs of
refined forecasting services. At present, most NWP and fog models no longer use VIS-RH
schemes separately.

4. Relationships between VIS and LWC

The VIS-LWC scheme, based on the Koschmieder’s law [62], is relatively common in
VIS parameterization schemes. The scheme calculates the VIS using LWC, and Equation (17)
is as follows:

VIS = − ln(0.02)
βext

= a ∗ LWCb, (17)

where LWC is provided in g/m3. A large number of studies have shown that the relation-
ship between βext and LWC satisfies the power–function relationship mentioned above.
The values of empirical coefficients a and b from various regions vary greatly. The size dis-
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tributions of droplets are affected by many factors such as the observation range of droplet
size, experiment design, air particulates, and fog types. For example, in 1966 and 1971,
Eldridge [65,90] conducted a comparative analysis of different droplet size ranges through
experiments, and the obtained empirical values of a and b varied across a broad range.
When the droplet size is between 0.6 and 16 µm, β = 163LWC0.65, and when the upper
limit of the droplet size range increases, β = 91LWC0.65. In 1976, Tomasi and Tampieri [91]
obtained empirical values of a and b for different types of fog. Under the warm and humid
fog conditions β = 65LWC2/3 was obtained, while β = 115LWC2/3 was obtained under
cold fog conditions. In the existing research, the empirical coefficient ranges from 65 to 178,
and b ranges from 0.63 to 0.96 [58]. It can be seen that the performance of the VIS-LWC
parameter scheme is analogous to that of the VIS-RH scheme, which is also affected by
many other factors and has a strong regional character.

At present, the most commonly used VIS-LWC program is the K84 program. In 1984,
Kunkel [70] found that the correlation coefficient between the extinction coefficient and
LWC reached 95% in the observational study of advection fog. Compared with the research
results of other studies [90–92], there is a higher correlation between the two parameters.
Kunkel [70] proposed the formula for calculating the extinction coefficient with the LWC in
the fog, which is given as follows

β = 144.7LWC0.88. (18)

Substituting this formula into the Koschmieder’s law (Equation (2)), the K84 scheme
is obtained as follows:

VIS = 0.027LWC−0.88. (19)

Some models work with LWC, and the K84 scheme provides a convenient solution for
relating LWC to VIS. So, the K84 scheme is widely used in numerical models to calculate
the values of VIS [54,73–75,89,93,94]. However, the K84 scheme was still improved as
following Equation (20) by Gultepe [58] using Radiation and Aerosol Cloud Experiment
(RACE) observation in 1995 in the eastern Canada area.

VIS = 0.0219LWC−0.9603 (20)

The LWC, Nd from the fog droplet spectral observation and VIS from AWS during
2016–2017 in TianJin [16] were used to validate VIS parameter formulas from literatures
and to fit the local formula. The observation VIS and LWC ranged from 0 to 8.2 km and 0
to 0.25 g/m3, respectively. The VIS_K84 [70] and VIS_Gultepe schemes [58] were verified
in Figure 2 with a logarithmic plot. It should be pointed out that only data for VIS that
were less than 1 km were adopted in Figure 2a, while the full range of observation data
was adopted in Figure 2b.
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The VIS_K84 and VIS_Gultepe schemes simulation show a sharply decreasing VIS
trend with LWC increasing. However, both of them are obviously larger than observation
VIS especially for VIS less than 1 km in fog events. Deviations between simulated and
observed VIS shows that something need to do to improve current VIS-LWC relation-
ships. The local relationship of VIS and LWC was fitted as VIS = 0.0618LWC−0.126 and
VIS = 0.0813LWC−0.126 when using the VIS data less than 1 km and the full range of data,
respectively. The local VIS-LWC shows a flatter decline than the VIS_K84 and VIS_Gultepe
schemes, which are denoted by the black dashed line. It is due to a larger number of VIS
observations being located at numerical intervals of less than 1 km. Evidently, the local
fitting formula does not have the ability to express a VIS of larger than 1 km when LWC
exists. So, no satisfactory corresponding relationship has been found between VIS and
LWC as of yet.

Most of the visibility values simulated by the visibility parameterization schemes are
greater than the observed values, as Figure 2 shows. Some widely used VIS parameteriza-
tion schemes are conducted where air pollution is commonly not serious. When applied to
fog forecast/simulation in the polluted environments, these schemes may overestimate
VIS and underestimate fog intensity due to the absence of aerosol extinction [95,96].

So far, the three parameterization schemes of VIS-RH, VIS-β, and VIS-LWC, which
correspond to the three key elements of RH, β and LWC respectively, have been discussed in
this study. There are certain correlations that exist between the three elements, and research
on the relationship between β and LWC has been introduced in this section. Some studies
demonstrate a negative correlation between RH and LWC. For example, Gonser et al. [97]
first revealed the inverse relationship between RH and LWC in topographic fog through
mountain cloud and fog observation experiments in the Chilan Mountains of Taiwan, and
pointed out that, in principle, this situation can be explained by the cohesion growth theory
of droplets containing soluble or insoluble substances, but the reasons for this need to be
further studied. In addition, compared with the smaller droplets, larger diameters droplets
can exist in a lower RH environment, but whether it can be used to explain the significant
changes in RH and LWC is still unclear. The local imbalance between the droplet and the
air mass during the turbulent transport process may also be a potential cause of the inverse
relationship. Therefore, more research that includes the chemical properties of droplets,
and microphysical modeling, are required to further explain the correlation between RH
and LWC.

5. Relationships between VIS, Nd, and Fog Droplets Size

In 1980, Meyer et al. [98] proposed that VIS was negatively related to the fog-droplets
number concentration and the square of the diameter, and that it varied with the con-
centration of fog. Therefore, the parameterization schemes of VIS under the thick fog
(VISMH ≤ 1 km) and the thin mist (VISML > 1–2 km), are obtained, respectively, as follows

VISMH = 80Nd
−1.1, (21)

and
VISML = 120N−0.77

d , (22)

where the Nd, which is given in PCS m−3, both equations can be applied to the droplet
with a diameter of larger than 0.5 µm. Meyer’s observational experiments also showed
that the average droplet size essentially remains constant in thin fog, while VIS decreased
with increasing droplet size in thick fog, and the formula under the condition of visibility
in 1–2 km was VIS = 1.46 × 10−4(D2

e
)−0.49, where De was the effective diameter of the

droplet. Assuming that the scattering coefficient is a constant in the spectrum, the Nd·De is
proportional to the extinction coefficient. Combined with the relationship between VIS and
extinction coefficient,

VIS = 1.75 × 10−5
(

NdD2
e

)−0.86
(23)
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was obtained, with the slope parameter approaching −1.0. Furthermore, a tiny variation
in index results in significant changes of VIS, which might be due to the assumption that
the scattering coefficient is a constant and the assumption is valid only for sufficiently
large droplets.

The size spectrum of each hydrometeor category is often described by a three-parameter
gamma distribution function, Nd = N0Dαe−λD. Two-moment schemes generally treat
N0 and λ as prognostic parameters while maintaining the shape parameter α constant.
Milbrandt et al. [99] analyzed the influence of shape parameter α on sedimentation and
microphysical growth rate using different schemes. The results show that α plays an
important role in determining the rate of size sorting. Kunkel [70] analyzed more than
1400 droplet size samples in 1983, finding a good correlation between the droplet terminal
velocity and c (LWC2/Nd)d (parameter c and d are both fitting coefficients). Under the
condition of a fixed LWC value, air pollutants interact with water vapor to form a mass
of liquid drops, which increase the Nd. At the same time, a smaller droplet radius de-
creases the droplet terminal velocity, which results in the deposition rate of liquid water
being reduced.

The extinction coefficient increases, and the VIS decreases, due to the increasing
average number concentration of droplets associated with the above two physical processes
and other chemical processes. Kunkel [70] also indicated that the effect of pollutant
concentration in fog should be taken into account. Therefore, the appropriate formulas and
droplet terminal velocity should be selected for different polluted conditions. The VIS in
fog is affected by the extinction of fog droplets [69,70,76,84], and based on Mie scattering
theory, the extinction coefficient is closely related to the Nd. Therefore, the Nd is considered
as one of the impact factors of VIS.

In 2006, Gultepe [82] also pointed out that the VIS in fog was not only related to LWC,
but also relied on Nd. Result showed that there were differences in the VIS-Nd relationship
of the ice fog and liquid fog. The fog was classified into either ice fog (T < −1 ◦C) or liquid
fog (T ≥ −1 ◦C) on the basis of temperature threshold. Approximate formulas between
the VIS, ice fog number concentration (Ni) and liquid fog number concentration (Nd) were
obtained through observational analysis and the relationships are as follows:

VISNi = 18N−0.56
i , (24)

and
VISNd = 238N−1.31

d , (25)

where the unit of Ni is PCS L−1, and the unit of Nd is PCS cm−3, and PCS is the abbreviation
of pieces. Gultepe [82] also noted that the results for VIS > 50 km were invalid due to
uncertainties in the observation of small droplet by existing instruments. Moreover, on
account of the properties of logarithmic relationships, the VISNi, which should be treated
cautiously, varied greatly for a given Ni. Based on the observational data from the forward-
Scattering Spectrometer in the same year, a new relationship between VIS and Nd was
developed by Gultepe [58] as follows:

VISobs = 44.989N−1.1592
d (26)

Compared with that calculated using Meyers’s expression, the VIS calculated using
the new relationship reduced at a faster rate than with the increase of number concentration.
Gultepe suggested that the discrepancy may be due to the uncertainty of the number con-
centration observations in earlier studies or impact factors such as conducting observations
in low clouds. The Nd should be treated as an independent variable in parameterization
schemes of VIS. Furthermore, in order to establish a more rational parameterization scheme,
the accurate monitoring of the number concentration is required.

Based on the observational Nd and VIS_obs data, which were obtained using droplet
spectrometer (DMT, FM-120) and VIS meter (Vaisala, PWD 10) in Tianjin [16] from 2016 to
2017, the relationship between VIS and Nd in Tianjin was obtained as the fitting formula:
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VIS = 0.2522N−0.121
d (Figure 3). The constants and exponents parameter of local formula

for VIS-Nd relationship is largely different to others. Although a generally decreasing power
relationship exists between VIS and Nd, there is still large uncertainty in various regions.
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Both the droplet size and the number concentration were not used as a direct output
for many previous numerical models. For the droplet size, introducing droplet types and
calculating droplet spectra will increase the complexity significantly, while using empirical
expressions can simplify the model. For the number concentration, there are no micro-
physical schemes for the near-surface fog. Even though some numerical models contain
microphysical schemes that can directly predict the number concentration, the output of
the cloud droplet concentration cannot be treated as the fog-droplets number concentration
under the condition of high clouds. The distribution of cloud droplet spectrum is different
from that of fog-droplet spectrum; therefore, it is necessary to use the empirical statistical
method to estimate the droplets number concentration. For example, Nd is usually given a
constant value. Fu G. [6] discussed the performance of the parameterization scheme when
Nd = 300 PCS cm−3, and showed that the obtained results are significantly smaller than
those that do not considering the number concentration.

6. Relationships between VIS, LWC and Nd

Based on the descriptions in Sections 3 and 4, both the LWC and the Nd are consid-
ered as the impact factors of VIS; moreover, there is no simple one-to-one relationship
between the two factors. For example, the Nd varies over a wide range for a certain LWC,
resulting in great differences in VIS. Moreover, the two factors are related to each other.
Considering these two main factors at the same time can better reflect the changes of VIS
than considering one of them alone [70]. In 2006, based on the previous studies, a new
parameterization scheme was established by Gultepe [58], combining the LWC and Nd, t
expressed as Equation (27)

VIS = 1.002/(LWC × Nd)
0.6473, (27)

which is suitable for the conditions of 0.005 gm−3 < LWC< 0.5 gm−3 and 1 cm−3 <
Nd < 400 cm−3. Additionally, a new definition of the fog index (FI) was formulated
FI = 1/(LWC*Nd), Compared with Kunkel’s studies [70], Gultepe [58] established a quanti-
tative relational equation, and applied the new scheme to the mesoscale non-hydrostatic
model of NOAA. By comparing the results with schemes of K84 and Meyer [98], the results
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show Equation (27), in which LWC and Nd were taken into account, was more accurate in
predicting VIS.

Compared with the K84 scheme, which only considers the LWC, Equation (27) per-
formed better, with significantly lower uncertainty in VIS prediction. While Equation (27)
is applied to the Tianjin area (Figure 4), there are still overestimates of VIS over all FI ranges,
especially an absence of many low VIS cases in which the FI is large. According to the form
of Equation (27), the localized VIS-LWC & Nd formula was fitted as VIS = 0.1418FI0.065. The
local relationship is far lower than in Equation (27), while it has no ability to express some
larger VIS. That is to say, even though Equation (27) had done well compared to schemes of
K84 and Meyer [98], there is still some work required to promote a parameterized VIS-LWC
& Nd relationship in the future.
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Hu et al. [100] established a coastal-fog forecast procedure based on the VIS-LWC &
Nd parameterization scheme proposed by Gultepe et al. [82]. The LWC was calculated from
the physical quantity qcloud output by the WRF model, and the Nd was solved using a
historical experience statistical method. The Nd was obtained according to the inversion
formula of VIS:Nd = eTmp, where Tmp = 1

0.6437 ln
(

1.002
VISobs

)
ln(LWCobs), in which VISobs and

LWCobs were the VIS and LWC of similar cases, respectively. The VIS forecast value can be
obtained by substituting the obtained LWC and Nd values into the parameterized scheme,
which improves the fog forecast accuracy from 61% to 73%, compared with the Stoelinga-
Warner scheme [77]. There is also a correlation between LWC and Nd. Gultepe et al. [58]
observed that LWC increased with increasing Nd, while the range of Nd changes was very
large for a given LWC value. Huang et al. [101] observed and analyzed the microphysical
characteristics of sea fog using a droplet spectrometer, finding that an increasing number
of droplets with a diameter of more than 10 µm is the main reason for the increase of LWC,
while the increase of LWC is the main reason for the decrease of atmospheric VIS under the
same Nd interval.

The VIS-LWC & Nd parameterization scheme has certain advantages and a rather
high accuracy rate, since both the LWC and Nd are considered, and the microphysical
interpretation is relatively more realistic. Similar to the VIS-Nd scheme, it suffers from
the same problem of using empirical statistical methods to estimate the concentration
of droplets. In addition, the scheme still has a high degree of uncertainty. The research
of Gultepe [58] showed that the uncertainty of the scheme for the calculation of VIS in
various types of fog still reached 27%. In their study of the characteristics of the fog-droplet
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spectrum during heavy fog in Tianjin, Liu et al. [52] found that the effects of LWC and Nd
on VIS are not the same, and that there was a pronounced negative correlation between
VIS and Nd while not so obvious for LWC. Therefore, to better apply the VIS-LWC &
Nd relationship obtained by Gultepe et al. [58], the scheme also needs to be improved
according to the actual situation in various regions. Song [102] developed a new visibility
parameterization by further taking De into the VIS-LWC & Nd relationship consideration
at a mountain site in Korea, and indicated that this new parameterization showed better
performance than the original VIS-LWC & Nd relationship obtained by Gultepe et al. [58] in
visibility value prediction when De was larger than 10 µm, while no obvious improvement
was observed when De was less than 10 µm.

In addition, certain correlations still exist among these factors. In order to establish
VIS parameterization schemes that are more applicable for the forecast of local VIS, some
scholars have carried out the “combination schemes”, which are composed of different
parameterization schemes based on the observation data. To solve the problem of abrupt
changes in VIS as calculated by LWC scheme, Cao et al. [83] used the localized VIS-RH
scheme value to replace discontinuity points in the VIS-LWC scheme. Using 0.05 g kg−1 as
the critical lower limit of LWC, Bao et al. [103] simulated cluster fog along the Shanghai-
Nanjing Expressway, and used Equation (27) to calculate the value of visibility, and when
Nd = 0 or LWC = 0, Equation (27) is found to be no longer applicable, so the VIS-RH scheme
is replaced. The results show that in the early stage of heavy fog, the simulated value
is lower than the observed value, but the trend of the simulated value and the observed
value is consistent during the maintenance and dissipation of the fog. Long et al. [104]
determined a combination scheme of VIS-LWC and VIS-RH for the North Coast of Bohai
Bay; the results show that if only one scheme is adopted, the simulated VIS value and
the measured VIS value will deviate significantly when LWC = 0.03 g/kg. However, the
combination scheme behaves well in this condition.

7. Conclusions and Discussion

The characteristics and applications of different parameterization schemes, developed
based on various impact factors of VIS, such as RH, extinction coefficient, LWC, and Nd,
have been summarized. It can be seen that the fitted parameters, with precise physical
meanings, allow for the calculation of VIS by interfacing with numerical forecast products.
Therefore, many models are directly interfaced with the corresponding parameterization
schemes while postprocessing VIS.

By reviewing the achievements of the VIS parameterization schemes, we understand
that none of the current formulas, derived from introducing impact factors or environmen-
tal factors, can always accurately calculate the VIS in the fog. It’s important to point out the
occurrence and development of fog is the result of multiple processes occurring simultane-
ously that interact nonlinearly with each other. These interactions likely result in nontrivial
sets of key fog parameter values leading to fog formation, while other combinations of
values prevent fog formation [105]. Owing to the specific correlations among these factors,
the “combination schemes” have also been adopted by many researchers.

The parameterization scheme, which is based on a statistical analysis, has certain
shortcomings due to the incomplete consideration of physical processes, and because the
physical factors introduced depend on other factors. In fact, the main impact factors vary
in different environments, such as the influences of aerosols, as many widely used VIS
parameterization schemes are conducted in areas where air pollution is commonly not
severe. When applied to fog forecast/simulation in polluted areas, these schemes may
overestimate VIS due to the absence of aerosol extinction. For the most commonly used
scheme of VIS-LWC, there discrepancies exist between the observed LWC and the model
output LWC. The discrepancies in LWC lead to deviations in VIS prediction, and the same
problem exists for the observation and data acquisition of RH, Nd, etc. Gultepe et al. [8]
point out that further modifications in microphysical observations and parametrizations
are needed to promote the fog predictability of numerical-weather-prediction models.
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Although existing VIS parameterization schemes have regional limitation, the im-
provement of the VIS parameterization scheme in the future still required sustained explo-
ration, and it is hoped that a universal scheme can be applied to the atmospheric forecast
operation. In addition, with the continuous innovation of computer technology, further
studies on the mechanism of different types of fog [106,107], the application of artificial
neural network methods [43,108–110], and the rapid advance of machine learning and
artificial intelligence technologies [111,112], can utilize more tools by which to enhance the
accurate numerical calculations of VIS.

VIS parameterization schemes are often highly dependent on the accuracy of the
meteorological elements or trigger conditions provided by microphysical schemes [96] or
numerical models [95]. When numerical forecast accuracy is not sufficient, even if the VIS
parameterization scheme is ideal, the VIS forecast will vary. Some trigger mechanisms
or enhancing/limiting processes, such as wind and surrounding buildings, also affect
fog prediction accuracy in numerical models [94,97]. Furthermore, the vertical resolu-
tion setting has certain influence on fog prediction in the numerical model. Fog can be
modeled as different types under the condition of various vertical resolutions [78]. There-
fore, it is also important to select the appropriate numerical model for the established
parameterization scheme.

Author Contributions: Conceptualization, Q.L.; writing—original draft preparation, Q.L. and B.W.;
writing—review and editing, Q.L., B.W. and T.J.; supervision, B.W., X.M., S.L. and X.F.; funding ac-
quisition, B.W. and X.F. All authors have read and agreed to the published version of the manuscript.

Funding: This work was jointly funded by the National Natural Science Foundation of China (No.
41675018, 41805028), Forecaster Subject of Research and Development Project of Hebei Meteorological
Bureau (No. 19ky35), and Tangshan Science and Technology Research and Development Project
(No. 20150222C).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: The datasets analyzed during the current study are available from the
corresponding author on reasonable request.

Acknowledgments: We thank the anonymous reviewers for helpful comments and constructive
suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. WMO. WMO Guide to Meteorological Instruments and Methods of Observation; Secretariat of the WMO: Geneva, Switzerland, 2006;

p. 569.
2. Wu, B.G.; Xie, Y.Y.; Wu, D.Z.; Wang, Y.N.; Wang, D.S. Poor visibility on Jingjintang Expressway in autumn/ winter and relevant

measures. J. Nat. Disaster 2009, 18, 12–17. (In Chinese)
3. Lewis, J.M.; Koracin, D.; Redmond, K.T. Sea Fog Research in the United Kingdom and United States: A Historical Essay Including

Outlook. Bull. Am. Meteorol. Soc. 2004, 85, 395–408. [CrossRef]
4. Niu, S.J.; Lu, C.S.; Lü, J.J.; Xu, F.; Zhao, L.J.; Liu, D.Y.; Yue, Y.Y.; Zhou, Y.; Yu, H.Y.; Wang, T.S. Advances in fog research in China.

Adv. Meteor. Sci. Technol. 2016, 6, 6–19.
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