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Abstract: Air pollution has become a serious problem threatening human health. Effective prediction
models can help reduce the adverse effects of air pollutants. Accurate predictions of air pollutant
concentration can provide a scientific basis for air pollution prevention and control. However, the
previous air pollution-related prediction models mainly processed air quality prediction, or the
prediction of a single or two air pollutants. Meanwhile, the temporal and spatial characteristics and
multiple factors of pollutants were not fully considered. Herein, we establish a deep learning model
for an atmospheric pollutant memory network (LSTM) by both applying the one-dimensional multi-
scale convolution kernel (ODMSCNN) and a long-short-term memory network (LSTM) on the basis of
temporal and spatial characteristics. The temporal and spatial characteristics combine the respective
advantages of CNN and LSTM networks. First, ODMSCNN is utilized to extract the temporal and
spatial characteristics of air pollutant-related data to form a feature vector, and then the feature vector
is input into the LSTM network to predict the concentration of air pollutants. The data set comes from
the daily concentration data and hourly concentration data of six atmospheric pollutants (PM2.5, PM10,
NO2, CO, O3, SO2) and 17 types of meteorological data in Xi’an. Daily concentration data prediction,
hourly concentration data prediction, group data prediction and multi-factor prediction were used to
verify the effectiveness of the model. In general, the air pollutant concentration prediction model
based on ODMSCNN-LSTM shows a better prediction effect compared with multi-layer perceptron
(MLP), CNN, and LSTM models.

Keywords: ODMSCNN; LSTM; atmospheric pollutant concentration prediction; deep learning;
temporal and spatial characteristics

1. Introduction

The problem of the atmospheric environment has received widespread public at-
tention. The quality of the air has a greater impact on human health and the ecological
environment. An increasingly serious air pollution issue has played a role in every cor-
ner of affecting people’s daily lives. The air quality index (AQI) is an index system that
quantitatively describes the air quality status. The higher the value and level, the more
serious the air quality and pollution. It mainly includes fine particulate matter (PM2.5),
inhalable particulate (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3),
and carbon monoxide (CO). According to different limits of pollutants, it is converted
into an air quality index according to different target concentrations. With urbanization
and industrialization developments, air pollution in many cities hides an alarming reality
throughout China. In 2019, WHO announced the top ten threats to global public health, of
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which air pollution is considered the biggest threat [1]. In 2016, the number of premature
deaths caused by PM2.5 in the world was about 4.2 million [2]. Haze is one of the most
serious environmental problems in China, the Chinese government plans to implement
strict control measures to reduce the PM2.5 concentration [3]. CO can indirectly aggra-
vate the greenhouse effect and participate in the formation of near-surface photochemical
smog, which is an important pollution component to measure the regional atmospheric
environment [4]. A high concentration of O3 will affect the human respiratory tract, cardio-
vascular and immune system, leading to asthma, respiratory tract infection, stroke, and
arrhythmia [5–7]. PM10, with a long retention time in the atmosphere and a relatively large
specific surface area, is easy to carry with a large number of toxic and harmful substances.
PM10 can enter human alveoli through the respiratory tract and even participate in blood
circulation, which will cause more obvious harm to human body [8]. When NO2 enters the
alveoli, it causes bronchitis, pneumonia, emphysema, and SO2 with high concentration [9].
It is estimated that the number of deaths caused by indoor and outdoor air pollution in
China is 2.5 million people per year [10]. The reasonable assessment and control of air
quality can help reduce the adverse effects of air pollution. Therefore, it is necessary to
accurately predict the concentration of air pollutants to help management departments
and potentially hazardous groups in various regions to reduce the impact of air pollutants.

In recent years, machine learning and deep learning models have been gradually
applied to predict the concentration of air pollutants. Feng et al. [11] used artificial neural
networks and wavelet transform to predict PM2.5 concentrations based on geographic
models. Ke et al. proposed a stack selection ensemble algorithm for PM2.5 prediction [12],
Zhou et al. exerted the seasonal gray model to predict the air quality indicators in the
Yangtze River Delta of China [13]. Zhang et al. applied the gray multivariate convolution
model to predict the daily PM2.5 and PM10 concentrations in Shijiazhuang City [14]. Nouri
et al. wielded principal component analysis and artificial neural network (ANN) to predict
PM2.5 concentration in Urmia, Iran [15]. Zhou et al. fused the multivariate correlation
function to the Bayesian model averaging method (CBMA) combined with ANN for
PM2.5 prediction [16]. Du et al. utilized the multi-objective Harris Hawk optimization
(MOHO) algorithm to predict the PM2.5 and PM10 hour concentrations in Jinan, Nanjing,
Chongqing [17]. Li et al. made use of integrated reinforcement learning to predict the daily
concentration of PM2.5 [18]. Guo et al. used Lagrangian and Bayesian methods to predict
the hourly concentrations of PM10 and PM2.5 in Xingtai [19].

Aiming at air quality prediction, the main models used in the existing research include
the linear regression model [20] and the generalized weighted mixed model [21]. With the
development of computer technology, machine learning (including deep learning) methods
are increasingly used in concentration estimations due to their strong nonlinear modeling
ability, such as k-nearest neighbor (KNN) [22], random forest (RF) [23], long-term memory
network (LSTM) [24], and convolution neural network (CNN) [25]. These models all show
better performance than traditional statistical models in predicting PM2.5 concentration
and have stronger nonlinear expression capabilities.

Many scholars have begun to try to use deep learning models for prediction. Guo et al.
used deep learning methods such as recurrent neural network (RNN) and LSTM to predict
PM2.5 hourly concentration [26]. Sahin et al. predicted daily PM2.5 and SO2 concentrations
in Istanbul using convolutional neural network (CNN) [27]. Sayeed et al. established
a prediction model of ozone concentration 24 h in advance using a CNN [28]. WANG
et al. combined a chi-square test (CT) and LSTM network model to predict AQI levels in
Shijiazhuang, Hebei Province [29]. Liu et al. used industrial data to establish a factory
aware attentional LSTM neural network (FAALSTM) model to predict PM2.5 [30]. Pak et al.
used the CNN and LSTM models to predict the daily average concentration of PM2.5 in
Beijing on the second day [31]. Wen et al. established a spatio-temporal convolutional
short-term memory neural network expansion model (C-LSTME) to predict the PM2.5
hourly concentration in Beijing and China [32].
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The above research verifies the effectiveness of deep learning methods such as CNN
and LSTM in the prediction of atmospheric pollutants, and also shows that combined
prediction is beginning to be favored by many scholars. Many scholars have begun to pay
attention to the influence of other factors on the prediction of atmospheric pollutant con-
centration. Nourani et al. used temperature, wind speed, humidity, pollutant concentration
and other factors as input variables, and used ANN and adaptive neuro-fuzzy inference
system (ANFIS) combined with the prediction of CO pollutant concentration [33]. Heydari
et al. proposed a hybrid intelligent model based on LSTM and multiple optimization
algorithm (MVO) to predict NO2 and SO2 in air pollutants [34]. Chen et al. predicted
PM2.5 concentration in Zhejiang Province and found that meteorological factors such as
temperature, air pressure, evaporation, and humidity have a significant correlation with
PM2.5 concentration [35]. Zhang et al. found that O3 hourly mass concentration is related
to temperature and sun. There is a positive correlation among radiation, visibility, and
wind speed, and a negative correlation with relative humidity and atmospheric pressure.
The concentration of NO2 is positively correlated with relative humidity and atmospheric
pressure [36], Precipitation [37], season [38], precipitation [39], sunshine time [40], road
transportation [41] and other factors have a significant impact on the concentration of
air pollutants. Through the above research, it is found that meteorological factors have a
significant impact on the concentration of air pollutants.

In summary, through combing the existing literature, it is found that the research has
the following shortcomings: (1) most of the above research focuses on the prediction of
a single or two atmospheric pollutants such as PM2.5 and PM10, and such models were
yet to find the relationship between multiple factors and atmospheric pollutants, so that
the predictive performance of atmospheric pollutants cannot be fully utilized; (2) it is
difficult for a single LSTM network to mine the relationship and characteristic information
among the data; (3) the existing air pollutant concentration prediction models mostly start
from a single or two pollutant concentrations to establish corresponding air pollutant
concentration prediction models; (4) in the prediction of atmospheric pollutant data, most
of the prediction objects are hourly concentration and daily concentration, but the current
model fails to consider both predictions, and the prediction accuracy of some prediction
models needs to be improved; (5) the existing research on air pollutant concentration
prediction still has certain limitations. Most studies only select some important variables
in the pollutant concentration data set, and then model the time information to predict
the pollutant concentration. There is a lack of deep learning models for predicting the
concentration of air pollutants using time information and multivariate time series data in
the prediction of pollutant concentration. Therefore, an appropriate algorithm is necessary
to be selected to model the irregular temporal information of concentration data and the
spatial information of all variables [42,43].

The main contributions of this article are as follows:
(1) To establish an air pollutant prediction model that considers the temporal and

spatial characteristics of pollutants and the combination of multiple factors. By combining
the advantages of the two algorithms of ODMSCNN and LSTM, ODMSCNN has a strong
ability to automatically extract features, and LSTM has a strong ability to deal with time
series problems. ODMSCNN-LSTM-based air pollutant concentration prediction model is
proposed;

(2) PM2.5, PM10, NO2, SO2, O3, CO concentration data are selected as the character-
istics of atmospheric pollutants to predict. The temperature (TEM), evaporation (EVP),
minimum relative humidity (MI-RHU), maximum wind speed (MM-WIN), precipitation
(PRE), sunshine duration (SSD), average wind speed (AV-WIN), and other factors are used
as meteorological features;

(3) Perform daily concentration prediction and hourly concentration prediction and
compare the performance of each model based on grammar correction MLP, CNN, LSTM,
and ODMSCNN-LSTM models;
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(4) The proposed model is compared from the perspective of grouped data and
multivariate factors, and the performance of ODMSCNN-LSTM in different grouped data
sets. The influence of atmospheric pollutant factors and meteorological factors on the
prediction of atmospheric pollutant concentration are analyzed.

2. Study Area and Dataset
2.1. Study Area

The study area is located in Xi’an, a node city on the Fenwei Plain. The specific latitude
and longitude are 107.40 to 109.49 degrees east and 33.42 to 34.45 degrees north. According
to China’s ecological environment status bulletin, the bulletin demonstrates that among
169 cities at the prefecture level and above in China, Xi’an was ranked seventh from the
bottom in 2017 [44] and twelfth from the bottom in 2018 [45]; however, Xi’an ranked first
from the bottom among national central cities in China in terms of air quality. On 25
January 2021, the People’s Government of Xi’an City promulgated the Emergency Plan for
Heavy Pollution Weather in Xi’an City [46]. As shown in Figure 1, the monthly air quality
data for the region from 2014 to 2020 are calculated. The data indicate that the proportion
of slight pollution in the last month is 45.2% and that moderate pollution in the last month
has accumulated to 13 months.
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Figure 1. Distribution of air quality in Xi’an from 2014 to 2020.

2.2. Study Data
2.2.1. Air Quality Data

Since December 2013, China Environmental Protection Agency (EPA) has published
the open-air quality observation data of China’s ground monitoring stations. The research
data of this paper is from the daily concentration data set of air pollutants (PM2.5, PM10,
NO2, SO2, O3, CO) in Xi’an from 2 December 2014, to 30 December 2020, and the hourly
concentration data of the above six air pollutants from 1 January 2019 to 30 December 2020.

2.2.2. Meteorological Data

The meteorological data in this paper comes from the Chinese weather website plat-
form. Through data preprocessing, 15 kinds of meteorological factors are listed in this
paper, and they are as follows: evaporation, daily average surface temperature, daily
maximum surface temperature, daily minimum surface temperature, daily average wind
speed, the wind direction of day and day wind speed, day and night wind speed and direc-
tion, daily precipitation, daily average pressure, daily maximum pressure, daily minimum
pressure, sunshine hours, daily average relative humidity and daily minimum relative
humidity, and the seasons.
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2.3. Analysis of Main Data Characteristics

Through the Pearson correlation analysis of the collected air pollution concentration
data, as shown in Figure 2, the coefficient between PM2.5 and PM10 is 0.89, which proves
that PM2.5 and PM10 are highly correlated. CO and SO2 are highly correlated with a
coefficient of 0.81. PM2.5 and PM10 are highly correlated with CO, with a coefficient of 0.75.
SO2 is highly correlated with PM2.5 (0.6) and PM10 (0.64). NO2 is highly correlated with
PM2.5 and PM10, and both coefficients are 0.65. O3 has a moderate correlation with PM2.5,
SO2, and CO, and a weak correlation with PM10 and NO2.
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2.4. Data Processing
2.4.1. Division of Data Set

The data set needs to be trained by the divided input model, otherwise the prediction
model will have no additional data for effect evaluation, and the training results may
be overfitted due to training on all data. In the experiment, each data set is divided into
training set and test set, and then the training set is divided into training set and verification
set. The data ratio of the training set, test set and verification set is 6:2:2. Among them,
the training set mainly learns sample data sets, and builds a classifier by matching some
parameters. The establishment of a classification method is mainly used to train the model.
The validation set is used to determine the network structure or the parameters that control
the complexity of the model, and to select the number of hidden units in the neural network.
The test set is used to test the performance of the final selected optimal model. It is mainly
to test the resolution ability (recognition rate, etc.) of the trained model.
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2.4.2. Raw Data Processing
1© Identification and Processing of Abnormal Data

The occurrence of abnormal data may be due to errors in the process of collecting
and recording data. Abnormal data will affect the prediction accuracy of the model, so it
is necessary to identify and process the abnormal data. Abnormal data is found through
outlier detection. Here, the statistical quartile analysis method is used to identify the
abnormal data. The first quartile and the third quartile of the variable are solved first. If
any value is less than the first quartile or greater than the third quartile, the value is judged
as an outlier. Then, we use the horizontal processing method to correct abnormal data [47].

The calculation formula of the horizontal processing method is shown in Formulas (1)
and (2):

If, {
|yi − yi−1| > εa
|yi − yi+1| > εa

(1)

Then,

yt =
yt+1 + yt−1

2
(2)

Among them, yi is the concentration of air pollutants in a certain day or hour, yi−1 is
the concentration of air pollutants in the previous day or hour, and yi+1 is the concentration
of air pollutants in the next day or hour, εa is the threshold value.

2© Data Normalization

Due to the different meanings and dimensions of physical quantities such as air
pressure and evaporation, the input to the prediction model will have an impact, so it is
necessary to normalize such data. The input of normalized data into the prediction model
can effectively reduce the training time of the model, accelerate the convergence speed
of the model, and further improve the prediction accuracy of the model. The normalized
calculation formula of the data is shown in formula (3). This method realizes the equal
scaling of the original data [48]:

xnorm =
x− xmin

xmax − xmin
(3)

Among them, xnorm is the normalized value, x is the original data, xmin is the minimum
value in the original data, xmax is the maximum value in the original data, and the size of
the normalized data is constrained to be between [0,1].

2.4.3. Data Encoding

Through the above data feature analysis, it can be concluded that the forecast of
atmospheric pollutant concentration is affected by temperature, weather factors, and
human factors. Among them, temperature, weather conditions, date types, and heating are
qualitative characteristics. These qualitative indicators should be mapped to [0,1] interval,
converted into quantitative data, as shown in Table 1.
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Table 1. Quantification of candidate input variables for air pollutant concentration prediction model.

Type Variable Unit Min Max Transformed

Air quality data

PM2.5 µg/m3 6 296 [0,1]
PM10 µg/m3 11 581 [0,1]
SO2 µg/m3 3 44 [0,1]
CO mg/m3 1 2.7 [0,1]
NO2 µg/m3 8 111 [0,1]
O3_8h µg/m3 6 245 [0,1]

Meteorological
data

Average air pressure 0.1 hpa 9487 9947 [0,1]
Maximum daily pressure 0.1 hpa 9509 9981 [0,1]
Lowest daily pressure 0.1 hpa 9465 9918 [0,1]
Precipitation at 20-8 o’clock 0.1 mm 0 472 [0,1]
Precipitation at 8-20 o’clock 0.1 mm 0 434 [0,1]
Cumulative precipitation from 20-20 o’clock 0.1 mm 0 698 [0,1]
Mean surface temperature 0.1 ◦C −39 417 [0,1]
Average relative humidity 1% 14 99 [0,1]
Sunshine duration 0.1 h 0 130 [0,1]
Average temperature 0.1 ◦C −67 346 [0,1]
Average wind speed 0.1 m/s 3 80 [0,1]
Small scale evaporation 0.1 mm 0 98 [0,1]
Large scale evaporation 0.1 mm 0 270 [0,1]
Season - 1 4 [0,1]
Heating - 0 1 [0,1]

3. Method
3.1. One-Dimensional Multi-Scale Convolutional Neural Network (ODMSCNN)

The convolutional neural network is successfully applied to the direction of image
recognition, verifying that the network has a powerful effect on the feature extraction
ability of feature maps, and this article needs to extract the spatial and temporal features of
atmospheric pollutant concentration data and meteorological factors. This paper analyzes
the data set and finds that the characteristics of the data are multi-features, which are
expressed in the form of numerical values instead of feature maps. Therefore, this paper
first preprocesses the data, merges the features of the data into a feature map, and finally
inputs them into the convolution neural network to extract the spatial and temporal
features.

Taking single-factor SO2 as an example, the spatio-temporal feature extraction of SO2
is shown in Figure 3. The feature map is traversed from left to right on the data feature axis
through a one-dimensional multi-scale convolution kernel (1 × 3, 1 × 5, 1 × 7) to complete
the convolution operation; the number of steps is 1, with different convolution kernels. The
output feature vectors are spliced and fused, and a single-factor spatial feature relationship
is obtained for this purpose. On the time axis, as the convolution kernel traverses from top
to bottom to complete the convolution operation, the number of steps is 1, and the local
trend of single factor changes over time can be obtained. Finally, the spliced and fused
feature vectors are merged in the data feature direction, and the spatio-temporal features
of the multi-site SO2 are output.

The following is the formula derivation of ODMSCNN’s convolution operation on the
special whole. The feature map contains N sample data and N air pollutant factors. Then
the feature map formula of single factor i is as follows:

Xi = [x1
i , x2

i , x3
i , · · · , xN

i ]
T

(4)

Xt:t+T−1
i = [xt

i , xt+1
i , xt+2

i , · · · , xt+T−1
i ]

T
(5)
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In the formula, Xt
i = [xt

i , xt+1
i , xt+2

i , · · · , xt+T−1
i ] ∈ R is the vector of the single factor i

at time t, Xt:t+T−1
i represents the T group vector of Xi in the time zone [t,t + T − 1], and T

represents the matrix transpose.
The convolution operation multiplies the weight matrix Wj and Xt:t+T−1

i
(1) Single-factor spatial feature relationship: multiply Wj by Xt:t+T−1

i on the data
feature axis;

(2) Single factor time change feature: multiply Wj by Xt:t+T−1
i on the time feature axis.

When the first convolution kernel traverses the entire feature map on the time axis,
and the number of steps is 1, the feature vector aj

i is obtained, the size of which is N− T + 1,
and the feature vector obtained by multiple convolution kernels Z is merged with the
size of [N − T + 1] × Z in the data feature direction Ai, Ai represents the single-factor
spatio-temporal characteristic matrix.

aj
i= [aj

t+T−1, j, aj
t+T , j, aj

t+T+1, j, · · · , aj
N

]
(6)

Ai= [a1
n, a2

n, a3
n, · · · , aZ

n

]
(7)

So far, the single-factor spatio-temporal feature extraction is completed, but the data
set also contains other features, such as NO2, O3, CO, etc. Our process includes M factors,
so we can extract the M factors through the same operation as above, and then they can
be extracted. Single-feature spatio-temporal feature matrix, and then linear splicing and
fusion of them, and finally forming a multi-factor fusion spatio-temporal feature matrix A,
as shown in Equation (8):

A= [A1, A2, A3, · · · , AM] (8)

Based on the ODMSCNN convolution neural network, the space-time characteristics
of air quality data are extracted. This method makes a simple transformation of the two-
dimensional feature map to form a side-by-side one-dimensional feature map, which
makes the network training show better generalization ability. The method of automatic
feature extraction by convolutional neural network replaces the traditional manual feature
selection method, which makes feature extraction have a more comprehensive and deeper
effect.
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3.2. Long- and Short-Term Memory Neural Network

LSTM is an improvement on the RNN. There is a long-term dependence on the
problem of RNN’s disappearance and the explosion of gradients during training. LSTM
can effectively solve this problem, it introduces a gate mechanism, which makes LSTM
have a longer-term memory than RNN and can learn more effectively. In LSTM, each
neuron is equivalent to a memory cell (cell, ct). LSTM controls the state of the memory cell
through a “gate” mechanism, increasing or deleting the information in it. The structure of
LSTM is shown in Figure 4.
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In the LSTM cell structure, the Input Gate (it) is used to determine what information
is added to the cell, and the Forget Gate ( ft) is used to determine what information is
deleted from the cell. The output gate (ot) is used to determine what information is output
from the cell. The complete training process of LSTM is that at each time t, the three gates
receive the input vector xt at time t and the hidden state ht−1 of the LSTM at time t− 1
and the information of the memory unit ct, and then perform the received information
Logical operation, the logical activation function σ decides whether to activate it, and then
synthesize the processing result of the input gate and the processing result of the forgetting
gate to generate a new memory unit ct, and finally obtain the final output result ht through
the nonlinear operation of the output gate. The calculation formula for each process is as
follows.

Input gate calculation formula:

it = σ(WT
xixt + WT

hiht−1 + bi) (9)

Forget Gate calculation formula:

ft = σ(WT
x f xt + WT

h f ht−1 + b f ) (10)

Output Gate calculation formula:

ot = σ(WT
xoxt + WT

hoht−1 + bo) (11)

Memory unit calculation formula, Hidden state:

ct = ft × ct−1 + it × tanh(WT
xcxt + WT

hcht−1 + bc) (12)

Hidden state calculation formula:

ht = ottanh(ct) (13)
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Among them, σ is generally a nonlinear activation function, such as a sigmoid or tanh
function. Wxi, Wx f , Wxo, Wxc are the weight matrices of nodes connected to the input vector
Wt for each layer, Whi, Wh f , Who, Whc are the weight matrices connected to the previous
short-term state ht-1 for each layer, bi, b f , bo, b f are the offset terms of each layer node.

In short, the input gate in LSTM can identify important inputs, and the forget gate
can reasonably retain important information and extract it when needed. Therefore, this
feature of LSTM can effectively identify long-term patterns such as time series, making
training convergence faster.

3.3. ODMSCNN-LSTM-Based Atmospheric Pollutant Concentration Prediction Model

As shown in Figure 5, the model is composed of two parts: ODMSCNN and LSTM. The
temporal and spatial features of multiple variable data are extracted through ODMSCNN,
and then pass to the LSTM layer. The LSTM layer models the spatio-temporal feature
information input by the ODMSCNN layer, and then ODMSCNN and LSTM pass through
the connection layer and predict the concentration of air pollutants.

First of all, the starting layer of the model is composed of ODMSCNN to accept
multiple variable inputs of atmospheric pollutant accumulation data, such as relevant
atmospheric pollutant factors and meteorological factors. The factor variables are input
into the convolutional neural network, and the spatio-temporal feature relationship among
each of them is extracted through ODMSCNN. There are multiple hidden layers involved
in the feature extraction process of ODMSCNN. The deeper the number of layers, the
deeper the network depth. The extracted features are used as the input of the LSTM layer.
Secondly, the hidden layer content of CNN consists of a convolutional layer, an activation
function and a pooling layer. The convolution operation simulates the response of a single
neuron to visual stimulation, that is, when processing the time series, each neuron processes
the received data and extracts the data features. The convolution operation can reduce the
number of parameters and make the CNN-LSTM network deeper. Finally, dimensionality
reduction and feature extraction are performed on the data through the CNN convolutional
layer, and the single-factor spatio-temporal feature relationship extracted by ODMSCNN is
simply linearly spliced and fused to obtain the mutual spatio-temporal feature relationship
of multiple factors. Avoid over-fitting phenomenon, improve the robustness in the feature
extraction process, and apply LSTM to solve the problem of long-term data memory, and
realize the source data fusion perception and multi-layer perception.
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3.4. Prediction Process of Atmospheric Pollutant Concentration

Figure 6 is the forecasting process of atmospheric pollutant concentration, including
five parts of data pre-processing, extract features, nodal features, model test and data
prediction.

(1) Data processing preparation. Data preprocessing is performed in the original
data of atmospheric pollutant concentration prediction, and the data set is divided into
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training set, verification set, and test set. The training set is mainly used to train the model.
The validation set is used to adjust the parameters of the concentration prediction model,
determine the network structure of ODMSCNN and LSTM, and select the number of
hidden units. The test set is used to verify the performance of the model;

(2) Feature extract. Input the training set into ODMSCNN to extract spatio-temporal
features and input the extracted spatio-temporal features into LSTM for training to find the
optimal structure and parameters of the model;

(3) Model tuning. Use training set for model tuning. The experiment process adopts
the control variable method. Firstly, determine the initial number of layers and parameters
of the ODMSCNN-LSTM model, fix the structure of LSTM, and the number of layers and
parameters of ODMSCNN. Secondly, after the best structure of ODMSCNN is determined,
adjust the number of layers and parameters of LSTM. Finally, choose the best structure of
ODMSCNN-LSTM, and judge whether loss has converged (loss = mae). If it has converged,
move to the next step. However, if it has not converged, continue with the previous step
until the optimal structure and parameters of the model are found;

(4) Model test. Put the validation set into the trained model for prediction. The
evaluation index is used to evaluate the prediction result to determine whether the predic-
tion effect is the best, that is, whether the predicted value achieved the best fitting effect
with true value. If the fitting result is the best, the prediction is completed. However, if
the fitting effect is not good, go back to the second step to continue iterating the model
parameters, and verify the performance and accuracy of the method, analyze and compare
the experimental results;

(5) Data prediction. Use the test set data to make predictions. The predicted value is
compared with the true value to determine whether the optimal value is obtained. When
the optimum is reached, the predicted value is output.
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where ˆiy  is the predicted values of air pollutants, iy  is the true values of air pollutants, 
and N  is the number of test samples. Generally, the larger the value of RMSE and MAE, 
the greater the error and the lower the prediction accuracy of the model. MAPE is the most 
intuitive criterion for prediction accuracy. When MAPE tends to 0%, it means the model 
is perfect. When MAPE tends to 100%, it means that the model is inferior. Generally, it 
can be considered that the prediction accuracy is higher when the MAPE is less than 10% 
[49]. 
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3.5. Model Evaluation Indicators

Root mean square error (RMSE), mean absolute error (MAE), mean absolute per-
centage error (MAPE), and goodness of fit R2 are two commonly used cross-validation
indicators. This study uses these four indicators to evaluate the model.

The specific formula derivation of the LSTM is as follows:

RMSE =

√
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N
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1
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N

∑
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R2 = 1−
∑
i
(ŷi − yi)

2

∑
i
(y− yi)

2 (17)

where ŷi is the predicted values of air pollutants, yi is the true values of air pollutants, and
N is the number of test samples. Generally, the larger the value of RMSE and MAE, the
greater the error and the lower the prediction accuracy of the model. MAPE is the most
intuitive criterion for prediction accuracy. When MAPE tends to 0%, it means the model is
perfect. When MAPE tends to 100%, it means that the model is inferior. Generally, it can be
considered that the prediction accuracy is higher when the MAPE is less than 10% [49].

4. Results
4.1. Daily Concentration Data Prediction

The daily concentration data from January 2014 to December 2020 is selected. Table 2
shows the daily air pollutant concentration prediction results of different models. In terms
of prediction, the order of RMSE is arranged in descending order of MLP, CNN, LSTM,
and ODMSCNN-LSTM.

As shown in Figure 7, the four prediction models are used to predict the concentra-
tions of six kinds of air pollutants, respectively. The forecast results of the six air pollutant
concentrations in four different models are drawn. The green and red lines of the prediction
results represent the actual and ODMSCNN-LSTM predicted air pollutant concentrations,
respectively. By comparing the predicted values of the four models with their correspond-
ing true values, it is found that the predicted value of ODMSCNN-LSTM shows its more
accurate prediction performance compared with the other three models. It can be seen
from the six air pollutant concentration prediction curves that the constructed ODMSCNN-
LSTM prediction model well reflects the timeliness and nonlinearity of the air pollutant
concentration distribution. This model responds quickly both to short-term and long-term
predictions, and it performs well even when the six kinds of air pollutant concentration
suddenly change. Due to the great change of air pollutant concentration between 2014 and
2020, the RMSE value and the maximum average error value of the ODMSCNN-LSTM
model for daily concentration prediction of air pollutants are greater than those of the
subsequent hourly data, but the prediction effect of the ODMSCNN-LSTM model is better
than other prediction models.

Table 2. Results of different models for daily prediction of atmospheric pollutants (RMSE, MAPE, MAE).

Model Metric PM2.5 PM10 NO2 SO2 O3 CO

MLP

RMSE 32.95 35.4 15.54 4.4 18.74 0.39

MAE 21.27 25.67 12.53 3.6 14.88 0.33

MAPE 0.48 0.28 0.26 0.39 0.44 0.48

CNN

RMSE 35.61 35.82 14.64 3.59 27.06 0.42

MAE 25.37 28.61 11.82 2.9 21.28 0.33

MAPE 0.56 0.32 0.25 0.33 0.74 0.47

LSTM

RMSE 40.8 34.66 13.62 4.39 24.55 0.42

MAE 28.3 25.96 10.85 3.76 19.72 0.35

MAPE 0.61 0.25 0.25 0.41 0.58 0.48

ODMSCNN-LSTM

RMSE 16.14 31.69 11.8 2.23 18.49 0.19

MAE 11.93 23.83 8.19 1.39 14.82 0.14

MAPE 0.3 0.23 0.19 0.15 0.39 0.2
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Figure 7. Comparison of daily data results of four different prediction models.

4.2. Hourly Concentration Data Prediction

In order to better verify the validity and prediction ability of the model, the hourly
concentration data from 1 January 2019 to 31 December 2020 were selected in this paper.
The data from the test set were used as a new prediction range and the performance of the
air pollutant prediction model was evaluated again.

According to the data in Table 3, in terms of model performance, the average values
of RMSE, MAE, and MAPE, evaluation indexes of six kinds of air pollutants in four
prediction models, are arranged in the order of CNN, MLP, LSTM, MSCNN-LSTM. Then,
the three evaluation indexes RMSE, MAE, and MAPE of the four models for hourly data
are compared. It is found that the all the three indexes provided by the MSMSCNN-LSTM
model for all the six air pollutants including PM2.5 are the lowest.

As shown in Figure 8, the four prediction models are used to predict the concentration
of six air pollutants, and their respective prediction results are plotted. The figure shows
the concentration prediction results of the six air pollutants for 6 days (144 h in total). The
green and red lines represent the actual and ODMSCNN-LSTM predicted air pollutant
concentrations, respectively. It can be observed that the ODMSCNN-LSTM model performs
best among the four models. Through the comparison of the prediction results of the four
models in Figure 8 the hourly concentration prediction model based on ODMSCNN-
LSTM well predicts the 6-day air pollutant concentration distribution and shows good
performance. Comparing the hourly concentration data with the daily concentration data.
The MSCNN-LSTM model shows a better prediction effect because the average values
of its three indexes RMSE, MAE and MAPE for the six air pollutants have increased by
68.87%, 66.36%, and 63.09%, respectively. The reason is that the daily concentration data
has fewer samples than hourly data, and the daily concentration data fluctuates greatly,
and ODMSCNN-LSTM performs better for large samples of continuous time series data.
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Table 3. Using hourly concentration data to predict, the prediction performance comparison of MLP, CNN, LSTM and
ODMSCNN-LSTM models.

Model Metric PM2.5 PM10 NO2 SO2 O3 CO

MLP

RMSE 7.357 9.302 3.699 1.216 7.482 0.077

MAE 5.994 6.98 2.817 0.957 6.405 0.059

MAPE 0.167 0.074 0.094 0.073 0.52 0.071

CNN

RMSE 6.143 21.9 5.727 1.98 4.567 0.104

MAE 4.488 20.47 4.423 1.672 3.374 0.074

MAPE 0.09 0.26 0.173 0.123 2.22 0.071

LSTM

RMSE 5.498 10.004 4.694 1.236 5.047 0.088

MAE 3.952 7.986 3.821 1.007 4.226 0.072

MAPE 0.112 0.09 0.106 0.079 0.347 0.102

ODMSCNN-LSTM

RMSE 4.966 7.223 3.588 1.091 4.129 0.06

MAE 3.487 5.287 2.712 0.832 3.155 0.0506

MAPE 0.066 0.0628 0.076 0.063 0.219 0.068
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Figure 8. Comparison of time data results of four different prediction models.

4.3. Grouped Data Comparison

According to the above research, it is found that the overall accuracy and error
of the hourly data of air pollutants are better than those of the daily concentration data.
Therefore, in order to test the performance of ODMSCNN-LSTM in the hourly concentration
prediction, the grouped data comparison method is used to divide all the data into three
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groups to jointly verify the model. The first group of data includes the data set from 1
January 2019 to 31 December 2019, the second group of data consists of the data set from 1
January 2020 to 31 December 2020, and the third group uses data set from 1 January 2020
to 31 December 2020. The three groups of data are divided into the training set, validation
set, and test set according to the ratio of 6:2:2. Additionally, the training set data is used to
verify the prediction effect of each group of data.

The study found that the prediction performance of the same data in every model is
different. In terms of prediction performance, the accuracy of the first group and the overall
prediction performance of the training and validation sets are sorted in ascending order of
MLP, CNN, LSTM, and ODMSCNN-LSTM. The prediction accuracy of the second group
is MLP, CNN, LSTM, and ODMSCNN-LSTM from low to high. The accuracy of the third
group is slightly different, arranged in ascending order of MLP, CNN, ODMSCNN-LSTM,
and LSTM. Compared with the prediction performance of overall data set in the third
group, the first and the second group have similar patterns with the overall prediction
model. Using four deep learning models for training and verification of prediction accuracy,
the results show that ODMSCNN-LSTM has the highest prediction accuracy on most test
sets, and its prediction performance is better than other models for verification.

As shown in Figures 9–11, the RMSE, MAE, and MAPE values of the six air pollutants
in the four models are shown, respectively. The prediction performance of the same
pollutant using different data sets is different in the same model. This study selects the best-
performing ODMSCNN-LSTM as an example. RMSE and MAE of the four air pollutants
PM2.5, PM10, CO and SO2 are arranged in descending order of 2019, 2020, 2019–2020. The
RMSE and MAE of O3 are arranged in descending order of 2019, 2020, 2019–2020, and those
of NO2 are arranged in descending order of 2020, 2019, 2019–2020. The four atmospheric
pollutants MAPE, PM10, CO, O3, and SO2 are arranged in descending order of 2019, 2020,
and 2019–2020.

In general, there may be many reasons why the prediction performance of the daily
concentration data set in 2019 is worse than that in 2020. The concentration of air pollutants
in 2019 is usually higher and there is a large fluctuation, which may lead the prediction
model to make underestimation or overestimation. Therefore, RMSE, MAE and MAPE
increase in the annual data prediction. Relevant laws, regulations and policies formulated
by the Chinese government and the Xi’an municipal government may be one reason for that.
Another reason is that there are less company-made and man-made emissions since the
outbreak of COVID-19. In 2020, the concentration of air pollutants decreased, the overall
air quality became better, and the peak value fluctuated slower. The spatial variation of air
pollutant data set in 2020 tends to be stable compared with that in 2019, so prediction on
air pollutants in 2020 is relatively easier. Which may be the main reason for smaller error
of data prediction in 2020. Another reason for the overall good performance of 2019–2020
data set is related with certain performance of the deep learning model, which reflects that
the more the data, the better the performance.
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Figure 9. Comparison of RMSE predicted by four models for six air pollutants in 2019, 2020, and
2019–2020.
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Figure 10. Comparison of the four models predicted MAE for six air pollutants in 2019, 2020, and
2019–2020.
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Figure 11. Comparison of the four models predicted MAPE for six air pollutants in 2019, 2020, and
2019–2020.

4.4. Comparison of Multiple Factors

After comparing the daily concentration data and hourly concentration data from
the four models, it is found that ODMSCNN-LSTM model is better than others in overall
performance. In order to test the efficiency of the prediction ability of the ODMSCNN-
LSTM model, this paper continues to use the test set data of hourly data concentration to
explore the influence of different factors on the prediction of air pollutant concentration.

The air pollutant concentration in Xi’an is affected by multiple factors. In order to
better verify the ODMSCNN-LSTM model, a prediction model for different influencing fac-
tors has been established. The ODMSCNN-LSTM model was compared with air pollutants,
meteorological factors, and overall factors to further verify the influence of multiple factors
on the effect of the prediction model. All the data can be divided into three categories
according to the types of influencing factors. The first category is to forecast only when
meteorological factors are added. In the second category, only air pollutants are added as
influencing factors. The third type is the whole factor which includes the meteorological
factor and the air pollutant factor at the same time.

The paper draws the prediction curve of air pollutant concentration under different
factors. Figure 12 shows the comparison between: the actual value and the predicted
value obtained after adding meteorological factors, and Figure 13 shows the comparison
between the actual value and the predicted value obtained after adding the air pollutants,
and Figure 14 shows the comparison between the actual value and the predicted value
obtained after adding both the meteorological factors and the air pollutants. It is found
that the prediction with meteorological factors is less effective than the other two types.
Prediction, with only meteorological factors added, is better than the other two types of
prediction. Furthermore, the three index values of MAE, MAPE, and RMSE are lower. By
comparing the three types of influencing factors, it is found that prediction accuracy varies
with different air pollutants.

Different air pollutant models have different performances in reducing errors and
improving the consistency of changes in different factors. Adding meteorological factors
may not be able to effectively improve the prediction accuracy. The decrease in the number
of features of different factors leads to a decrease in the overall data for model training,
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which may limit the prediction ability of ODMSCNN-LSTM. Taking into account the annual
characteristics of the concentration of air pollutants, the prediction error may be related to
the type of air pollutants and the degree of dispersion of the air pollutant concentration in
different seasons.
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Figure 12. Comparison of actual and predicted values with meteorological factors.
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Figure 13. Comparison of actual and predicted values with air pollutant factors added.
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Figure 14. Comparison of actual and predicted values with meteorological and air pollutants added.

5. Discussion

In this study, an air pollutant concentration prediction model based on ODMSCNN-
LSTM was developed and compared with three deep learning methods. The results show
that the ODMSCNN-LSTM model performs better overall, is more suitable for daily or
hourly concentration data sets and performs better on hourly data sets. This research shows
that, compared with other machine learning, deep learning is a more effective method for
processing big data (especially spatio-temporal data). Combining spatio-temporal data and
models can improve the performance of spatio-temporal data prediction to a certain extent
but adding meteorological factors does not necessarily improve the prediction performance
of air pollutants. The reduction in the number of features may also affect the performance
of the model. The prediction method proposed in this paper is feasible for the hourly
concentration data prediction of multiple pollutants, and the method can also be applied
into the air pollutant concentration prediction in multiple locations. In terms of input
variables, regular monitoring data from the China National Environmental Monitoring
Center and China Meteorological Administration are used. In terms of modeling methods,
deep learning algorithms are combined with spatial and temporal features.

The performance of different air pollutants in the ODMSCNN-LSTM model may be
due to differences in driving factors, temporal and spatial features, model types, model
structures, and model development methods. At the same time, the amount of data, the
degree of dispersion and spatial correlation between the concentration of air pollutants may
also affect the prediction performance of the model, so it is necessary to further analyze
the reasons for the difference. In addition, other factors, such as the increased output in
equipment manufacturing, automobile manufacturing, electric power, heat production, gas
and other industries, and the passenger and freight volume of the transportation industry
need to be added in the follow-up research.

6. Conclusions

In this study, the daily concentration data of air pollutants in Xi’an from 2014 to
2020 and the hourly concentration data of air pollutants in Xi’an from 2019 to 2020 were
used for prediction. A deep learning prediction model based on ODMSCNN-LSTM is
established, and its performance is compared to those of MLP, CNN, and LSTM. The main
research results are as follows: ODMSCNN-LSTM performs best in both daily concentration
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prediction and hourly concentration prediction, and the overall performance of hourly
concentration prediction is better than that of daily concentration prediction. From the
perspective of multiple factors, the prediction effect under adding meteorological factors
is not significantly improved compared with the prediction under all influencing factors
all influencing factors, but air pollutants may affect the prediction results. In terms of
grouped data, the prediction on the hourly concentration of air pollutants in 2020 is better
than that of 2019, and the prediction on the hourly concentration of overall data from 2019
to 2020 performs better than that from 2019 and 2020. In general, predictions based on
daily or hourly concentration are more suitable for the overall data, and the more data
sets the better the model performance. In terms of overall performance, the prediction
performance of the ODMSCNN-LSTM model is generally better than that of the MLP,
CNN and LSTM models. Compared with other prediction methods, the prediction of air
pollutant concentration based on the ODMSCNN-LSTM model has better performance in
approximating the true concentration value. Especially at the inflection points and peaks
and valleys of the concentration, it shows a better prediction effect.
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