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Abstract: Wind energy is a type of renewable and clean energy which has attracted more and more
attention all over the world. The Northwest China is a region with the most abundant wind energy
not only in China, but also in the whole world. To achieve the goal of carbon neutralization, there is
an urgent need to make full use of wind energy in Northwest China and to improve the efficiency
of wind power generation systems in this region. As forecast accuracy of the near-surface wind is
crucial to wind-generated electricity efficiency, improving the near-surface wind forecast is of great
importance. This study conducted the first test to incorporate the subgrid surface drag into the
near-surface wind forecast under the complex terrain conditions over Northwest China by using two
TopoWind models added by newer versions of the Weather Research and Forecasting (WRF) model.
Based on three groups (each group had 28 runs) of forecasts (i.e., Control run, Test 01 and Test 02)
started at 12:00 UTC of each day (ran for 48 h) during the period of 1–28 October 2020, it was shown
that, overall, both TopoWind models could improve the near-surface wind speed forecasts under the
complex terrain conditions over Northwest China, particularly for reducing the errors associated
with the forecast of the wind-speed’s magnitude. In addition to wind forecast, the forecasts of sea
level pressure and 2-m temperature were also improved. Different geographical features (wind-farm
stations located south of the mountain tended to have more accurate forecast) and weather systems
were found to be crucial to forecast accuracy. Good forecasts tended to appear when the simulation
domain was mainly controlled by the high-pressure systems with the upper-level jet far from it.

Keywords: wind energy; forecast accuracy; weather systems; root mean square error

1. Introduction

Wind energy (WE) is the kinetic energy associated with the air flow [1,2]. This type of
energy is renewable and clean, which has got more and more attention and development
all over the world [3,4]. However, the disadvantages of WE are also obvious, as it features
remarkable randomness, diversity and uncontrollability [5,6]. Therefore, effective utiliza-
tion of the WE requires an accurate wind-field perception. There are roughly two ways
to get the information of the wind field. One is to observe the wind field directly, and the
other is to predict the wind field by using numerical models [7–9]. For the former, although
it is of high accuracy, it cannot provide the information of wind field in the future; for the
latter, although its errors are inevitable, it can provide future information [10,11].

Based on a series of equations that describe the atmosphere (e.g., thermodynamic
and dynamic equations of the atmosphere), numerical models can gain the information of
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wind field without directly observing it [12]. Owing to its notable advantages, applications
of various types of numerical models for the WE-resource evaluation and wind power
prediction have become the developing trend in the future [13–17]. For example, scientists
in Denmark had used the KAMM (Karlsruhe Atmospheric Mesoscale Mode) and WAsP
(Wind Atlas Analysis and Application Program) models [18] to obtain a high-resolution
distribution map of the WE-resources in Europe [19]. Bai et al. [20] and Yang et al. [21]
utilized the mesoscale model MM5 [22] to forecast the regional wind power in Inner
Mongolia and to simulate the WE-resources in Yunnan Province, respectively. Zhang
et al. [23] applied the Weather Research and Forecasting (WRF) model [24] to simulate the
wind speed of the wind farms in Guizhou Province. The results showed that the WRF
model could capture the variational characteristics of near-ground wind field well, and the
accuracy of wind-field simulation was greatly affected by terrain and surface roughness.
Due to its relatively high forecasting skills, the WRF model had also been used in Kenya [7],
Spain [11], Portugal [25], the Atlantic Iberian coast [26], and the regions offshore and over
sea [27–29] for predicting the wind power. Comparisons between wind forecasts on land
(where terrain and land use were complicated) and those over the sea and in offshore
regions (where the underlying surface was nearly homogeneous) indicated that the latter
usually showed higher forecasting skills.

Although the WRF model has been widely used in the WE prediction and is known
for its relatively high forecasting skills for reproducing the variational trend of low-level
wind field, its prediction errors of wind speed are notable, particularly for regions with
complicated terrains [7,10,11,23,25]. One of the key reasons is that the previous WRF
model versions lacked a parameterization of the subgrid surface drag, which resulted
in notably larger wind speed in plains and valleys and lower wind speed in mountains
and hills [10,30]. In new versions of WRF models, in order to improve the simulation
accuracy of the low-level wind speed, two surface drag parameterization options (i.e.,
TopoWind model) [10,31,32] were developed. They are both associated with the Yonsei
University (YSU) planetary boundary layer (PBL) scheme [33]. The TopoWind model has
two options, both of which can be switched on in the namelist file of the WRF model:
the first is topo_wind = 1 (from WRFv3.4 on), which included the standard deviation
of subgrid-scale orography in the wind calculation; the second is topo_wind = 2 (from
WRFv3.4.1 on), which included the subgrid terrain variance in calculating the friction
velocity in addition to the procedures added by topo_wind = 1 [10,31,32]. Thus far, there
are few reports that evaluate the performances of the TopoWind models in Northwest
China, where the WE is abundant [34]. Therefore, the primary purpose of this study is to
test whether the TopoWind models can improve the near-surface wind prediction under
complex terrain conditions over Northwest China. The complicated physics processes
of the atmosphere in this region were simulated by using the schemes documented in
literatures [35–38]. To the best of our knowledge, this study is the first attempt to improve
the near-surface wind forecasts in Northwest China by using the TopoWind models. The
findings would be helpful to make full use of the WE in Northwest China and to improve
the efficiency of wind power generation system there. In addition, for the regions with
similar topography and climate, this study could be used as a reference to improve their
near-surface wind forecasts.

The remainder of the paper is structured as follows: data and model configuration are
shown in Section 2; comparisons among different tests are provided in Section 3; the effects
related to the forecast accuracy of the near-surface winds are discussed in Section 4; and
finally, a conclusion is provided in Section 5.

2. Data, Model Configuration and Methods

The hourly, 0.125◦ × 0.125◦ atmospheric model high resolution 10-day forecast from
the European Centre for Medium-Range Weather Forecasts (ECMWF) [39] was used in
this study for generating the initial and boundary conditions to drive the WRF model
(Table 1). The hourly 0.25◦ × 0.25◦ ECMWF ERA5 (ECMWF Reanalysis the 5th version;

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
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https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 (accessed on
1 June 2021)) reanalysis data (Hersbach and Dee, 2016) and the wind-farm wind speed
observation were used to evaluate the simulation results by different model configurations.
In this study, the 7 variables shown in Table 2, i.e., 10-m zonal wind (u10), 10-m meridional
wind (v10), 10-m wind speed (spd10), 2-m temperature (t2), sea level pressure (slp), 500-hPa
geopotential height (z50), 500-hPa temperature (t50) were evaluated by using the ERA5
reanalysis data; and the 70-m wind speed was evaluated by using wind-farm observations.
Of these, t2 and slp were evaluated as they acted as dominant factors for the variations of
near-surface wind field [40–44]; z50 and t50 were evaluated as they served as important
background environment for near-surface wind field [1].

Table 1. Model configurations of the control run and two test runs. RRTMG = Rapid Radiative
Transfer Model for General circulation models. NOAH = National Centers for Environmental
Prediction, Oregon State University, Air Force, and Hydrology Lab.

Control Run Test 01 Test 02

Planetary boundary layer
scheme

YSU
[33] YSU YSU

Microphysics scheme Ferrier
[35] Ferrier Ferrier

Land surface model NOAH
[36] NOAH NOAH

Short wave radiation scheme RRTMG
[37] RRTMG RRTMG

Long wave radiation scheme RRTMG
[38] RRTMG RRTMG

TopoWind model none topo_wind = 1 topo_wind = 2

The multi-scale processes related to the lower-level wind speed in Northwest China
were simulated by using the WRF version 4.1.1. A total of 3 model configurations were used
in this study as shown in Table 1. Of these, the control run used the model configuration
that was selected from a series of comparisons (in our operational forecasting, we compared
a total of 10 model configurations to determine the best configuration) as it showed overall
the best performance in forecasting the near-surface winds. The Test 01 run was the
same to the control run but used the TopoWind model with topo_wind = 1; the Test 02
run was the same to the control run but used the TopoWind model with topo_wind = 2.
These two runs were used to evaluate the performances of the two TopoWind models
(discussed in the introduction) in improving the near-surface wind forecasts. Only one
domain with 169 × 169 grid points (Figure 1), 51 vertical levels, and a horizontal resolution
of 3 km × 3 km were used in the simulations. The simulation period was from 12:00 UTC
01 to 12:00 UTC 28 October 2020, with the WRF model started at 12:00 UTC each day (there
was 28 runs for a set of model configuration) and ran for 48 h.

Atmosphere 2021, 12, x FOR PEER REVIEW  4  of  21 
 

 

 

Figure 1. Panel (a) shows the terrain of Northwest China (shading; m). Panel (b) illustrates the do‐

main (thick blue line) used for simulation, where shading is terrain (m) and small blue circles show 

the locations of wind farm observations. 

From WRFv3.4 on, the WRF provided a TopoWind model that was associated with 

the YSU PBL scheme [33] to improve the topographic effects on the near‐surface winds. 

There was a total of three options for the YSU PBL scheme: (i) topo_wind = 0, which did 

not include the additional topographic effects from the TopoWind model in the near‐sur‐

face wind calculation; (ii) topo_wind = 1, which included the standard deviation of the 

subgrid‐scale orography  in  the near‐surface wind  calculation; and  (iii)  topo_wind = 2, 

which used a method  the  same as  that of  topo_wind = 1  to  calculate  the near‐surface 

winds, but meanwhile enhanced the calculation of the friction velocity by including the 

subgrid terrain variance. More detailed information about the TopoWind models can be 

found in literatures [10,31,32]. 

In  this  study,  the  root mean  square  error  (RMSE)  and  the  correlation  coefficient 

(CORC) were used to evaluate the performances of different model configurations: 

RMSE = ∑ 𝐹 𝑂    (1)

CORC = ∑ 𝐹 𝐹  𝑂 𝑂 / ∑ 𝐹 𝐹 ∑ 𝑂 𝑂     (2)

where N is the total number used for calculation (e.g., for evaluation of the 24‐h forecast, 

N = 24, as we used hourly output and hourly ERA5/observation for evaluation); Fi is the 

forecast at time i; Oi is the reanalysis/observation at time i. The RMSE was utilized to eval‐

uate the forecast’s performance in reproducing the magnitude of a meteorological varia‐

ble, and  the CORC was used  to evaluate  the  forecast’s performance  in representing  its 

variational trend. For calculating RMSE and CORC, because the resolution of WRF simu‐

lation was much higher  than  that of ERA5  reanalysis data,  firstly, we  interpolated  the 

WRF output into 0.25° × 0.25° resolution (by using bilinear interpolation), which was the 

same as that of ERA5 reanalysis data. Then, for the points within the simulation domain 

(the blue box shown in Figure 1b), (i) we calculated RMSEs and CORCs at each point; and 

(ii) we calculated the area average of the RMSEs and CORCs at all points within the sim‐

ulation domain  to get  the  area‐averaged RMSE  and CORC  for  comparing  the perfor‐

mances of different model configurations. For the comparison using wind‐farm observa‐

tion, a similar approach was taken, during which we interpolated the WRF output into 24 

wind‐farm observational stations (Figure 1b) by using the bilinear interpolation. 

3. Comparisons among Different Model Configurations 

3.1. Evaluation of the 10‐m Wind Speed 

As the primary purpose of this study is to evaluate the performance of the TopoWind 

model in forecasting the near‐surface wind (we used 10‐m and 70‐m wind speed as rep‐

resentatives) under the complex terrain conditions over Northwest China, we first evalu‐
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domain (thick blue line) used for simulation, where shading is terrain (m) and small blue circles
show the locations of wind farm observations.
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Table 2. Performances of Test 01 and Test 02 relative to that of control run (%). u10 = 10-m zonal wind; v10 = 10-m meridional wind;
spd10 = 10-m wind speed; t2 = 2-m temperature; slp = sea level pressure; z50 = 500-hPa geopotential height; t50 = 500-hPa temperature.

u10 v10 spd10 t2 slp z50 t50

24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h 24 h 48 h

Test
01

CORC +3 +3 +3 +3 +6 +4 +1 +0 +1 +1 +1 +1 +1 +1
RMSE −4 −5 −4 −6 −4 −6 −4 −4 −4 −2 −3 −2 −2 −2

Test
02

CORC +8 +8 +7 +8 +9 +9 +3 +1 +2 +4 +2 +2 +3 +2
RMSE −11 −13 −13 −14 −13 −14 −8 −7 −9 −8 −8 −7 −5 −4

From WRFv3.4 on, the WRF provided a TopoWind model that was associated with
the YSU PBL scheme [33] to improve the topographic effects on the near-surface winds.
There was a total of three options for the YSU PBL scheme: (i) topo_wind = 0, which
did not include the additional topographic effects from the TopoWind model in the near-
surface wind calculation; (ii) topo_wind = 1, which included the standard deviation of
the subgrid-scale orography in the near-surface wind calculation; and (iii) topo_wind = 2,
which used a method the same as that of topo_wind = 1 to calculate the near-surface winds,
but meanwhile enhanced the calculation of the friction velocity by including the subgrid
terrain variance. More detailed information about the TopoWind models can be found in
literatures [10,31,32].

In this study, the root mean square error (RMSE) and the correlation coefficient (CORC)
were used to evaluate the performances of different model configurations:

RMSE =

√
1
N ∑N

i=1(Fi − Oi)
2 (1)

CORC = ∑N
i=1

(
Fi − F

)(
Oi − O

)
/
√

∑N
i=1

(
Fi − F

)2 ∑N
i=1

(
Oi − O

)2 (2)

where N is the total number used for calculation (e.g., for evaluation of the 24-h forecast,
N = 24, as we used hourly output and hourly ERA5/observation for evaluation); Fi is
the forecast at time i; Oi is the reanalysis/observation at time i. The RMSE was utilized
to evaluate the forecast’s performance in reproducing the magnitude of a meteorological
variable, and the CORC was used to evaluate the forecast’s performance in representing
its variational trend. For calculating RMSE and CORC, because the resolution of WRF
simulation was much higher than that of ERA5 reanalysis data, firstly, we interpolated
the WRF output into 0.25◦ × 0.25◦ resolution (by using bilinear interpolation), which
was the same as that of ERA5 reanalysis data. Then, for the points within the simulation
domain (the blue box shown in Figure 1b), (i) we calculated RMSEs and CORCs at each
point; and (ii) we calculated the area average of the RMSEs and CORCs at all points
within the simulation domain to get the area-averaged RMSE and CORC for comparing
the performances of different model configurations. For the comparison using wind-farm
observation, a similar approach was taken, during which we interpolated the WRF output
into 24 wind-farm observational stations (Figure 1b) by using the bilinear interpolation.

3. Comparisons among Different Model Configurations
3.1. Evaluation of the 10-m Wind Speed

As the primary purpose of this study is to evaluate the performance of the TopoWind
model in forecasting the near-surface wind (we used 10-m and 70-m wind speed as repre-
sentatives) under the complex terrain conditions over Northwest China, we first evaluated
the near-surface wind forecast. From Figure 2 it can be seen that, for the spd10 forecast
within 0–24 h (24-h forecast for convenience), the CORC and RMSE varied with time
notably. Overall, for the 28 control runs (Section 2), their largest CORC (~0.78) appeared
in the forecast started from 12:00 UTC 16 October (Figure 2a), the smallest CORC (~0.57)
appeared in the forecast started from 12:00 UTC 09 October, and the mean CORC among
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28 control runs was ~0.68. The variation of control-runs’ RMSE showed an obvious inverse
correlation (the correlation coefficient was around −0.69) to their CORC (Figure 2b), imply-
ing that those forecasts with larger CORCs tended to have smaller RMSEs, and vice versa.
Detailed comparisons showed that the smallest RMSE (~1.2 m s−1) appeared in the forecast
started from 12:00 UTC 25 October (Figure 2b), the largest RMSE (~2.6 m s−1) appeared in
the forecast started from 12:00 UTC 06 October, and the mean RMSE was ~1.6 m s−1. Thus,
it can be concluded that the best/worst forecast in terms of CORC and the best/worst
forecast in terms of RMSE were usually different. In order to differ good forecasts from bad
forecasts, we used the following definition: (i) for a series of forecasts, if one of them satis-
fied: (i) its CORC was larger than the mean CORC of these forecasts, and (ii) its RMSE was
smaller than the mean RMSE of these forecasts at the same time, then, it is a good forecast;
otherwise, it was a bad forecast. As Figure 2 shows, ~50% of the control runs were good
forecasts. A similar situation was found in the spd10 forecast within 24–48 h (48-h forecast
for convenience; Figure 3): (i) those forecasts with larger/smaller CORCs tended to have
smaller/larger RMSEs (the correlation coefficient was around −0.63); (ii) the best/worst
forecast in terms of CORC and the best/worst forecast in terms of RMSE were usually
different; and ~50% of the control runs were good forecasts.

1 
 

Figure 2 

 
  Figure 2. The area-averaged correlation coefficient (CORC) for the forecast of 10-m wind speed
(started at 12:00 UTC of each day) within 0–24 h (a); and the area-averaged root mean square error
(RMSE) associated with the 10-m wind speed forecast mentioned above (b). Black, blue, and red solid
lines represent the calculation results of the Control, Test 01 and Test 02 runs, respectively; and the
black, blue and red dashed lines are the temporal means of the values represented by black, blue, and
red solid lines, respectively. Good (i.e., CORCs of Test 01 and Test 02 are above their corresponding
mean CORCs and RMSEs of Test 01 and Test 02 are below their corresponding mean RMSEs) and
bad forecasts (the rest) for Test 01 and Test 02 are marked by green and purple lines, respectively.
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2 

Figure 2 

 
Figure 3. The area-averaged correlation coefficient (CORC) for the forecast of 10-m wind speed
(started at 12:00 UTC of each day) within 24–48 h (a); and the area-averaged root mean square error
(RMSE) associated with the 10-m wind speed forecast mentioned above (b). Black, blue, and red solid
lines represent the calculation results of the Control, Test 01 and Test 02 runs, respectively; and the
black, blue and red dashed lines are the temporal means of the values represented by black, blue, and
red solid lines, respectively. Good (i.e., CORCs of Test 01 and Test 02 are above their corresponding
mean CORCs and RMSEs of Test 01 and Test 02 are below their corresponding mean RMSEs) and
bad forecasts (the rest) for Test 01 and Test 02 are marked by green and purple lines, respectively.

For 24-h/48-h forecast, compared to each of the 28 control runs, almost all Test-01 and
Test-02 runs showed an increase in their CROCs and a decrease in their RMSEs (Figure 2),
with the changes of the Test-02 run larger than those of the Test-01 run. This means that,
overall, both the TopoWind models could improve the 10-m wind speed forecasts within
0–24 h and 24–48 h, and the topo_wind = 2 option showed a better performance than that
of the topo_wind = 1 option. In order to compare the improvements of Test-01 and Test-02
runs relative to the control runs, we defined the relative performance (RP) as follows:

RPCORC =
CORCtest − CORCcontrol

CORCcontrol
(3)

RPRMSE =
RMSEtest − RMSEcontrol

RMSEcontrol
(4)

where subscripts CORC and RMSE stand for the factors that are calculated, the overbar
denotes the mean values among all control, Test 01, and Test-02 runs, respectively, the
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subscript “test” stands for Test 01 or Test 02, and the subscript “control” represents the
control run. From its definition, the RP can represent changes in forecast accuracy.

As shown in Table 2, compared to the control run, on average, for the forecast within
0–24 h, Test 01 increased the mean CORC by ~6% and reduced the mean RMSE by ~4%;
and Test 02 increased the mean CORC by ~9% and reduced the mean RMSE by ~13%.
For the forecast within 24–48 h, Test 01 increased the mean CORC by ~4% and reduced
the mean RMSE by ~6%; and Test 02 increased the mean CORC by ~9% and reduced
the mean RMSE by ~14%. Therefore, it can be concluded that, (i) both topo_wind = 1
and topo_wind = 2 options could improve the 10-m wind speed forecast (particularly for
reducing the RMSE) under the complex terrain conditions over Northwest China (Table 2);
(ii) the improvements were similar for the 24-h (4–13%) and 48-h forecasts (4–14%); and
(iii) the topo_wind = 2 option (9–14%) showed a more notable improvement than the
topo_wind = 1 (4–6%).

3.2. Evaluation of the 10-m Zonal and Meridional Wind

Wind is a vector which could be decomposed into the zonal wind and the meridional
wind. As illustrated in Table 3, in terms of CORC, for all runs, the v10 forecast showed a
much larger correlation coefficient with the 10-m wind speed than that of the u10 forecast,
whereas, in terms of RMSE, the u10 forecast had a larger correlation coefficient. This means
that the forecast of v10 was more important to the variational trend of the 10-m wind
speed and the forecast of u10 was more important to the magnitude of the 10-m wind
speed. Overall, Test 02 had the largest correlation coefficients of CORCs and RMSEs of u10
and v10 for both 24-h and 48-h forecasts (Table 3), whereas, those of the control run were
the smallest.

Table 3. Correlation coefficients between the CORCs/RMSEs of various variables (i.e., u10 and v10) and the CORC/RMSE
of the 10-m wind speed. u10 = 10-m zonal wind; v10 = 10-m meridional wind.

Control Run Test 01 Test 02

24 h 48 h 24 h 48 h 24 h 48 h

u10
CORC 0.62 0.63 0.63 0.64 0.65 0.67
RMSE 0.91 0.93 0.92 0.94 0.95 0.96

v10
CORC 0.81 0.83 0.83 0.85 0.84 0.87
RMSE 0.86 0.88 0.89 0.90 0.91 0.93

Comparing Figures 4 and 5 to Figure 2 shows that, on average, the CORC of the 10-m
wind speed (Figure 2) was between the CORC of u10 (Figure 4) and CORC of v10 (Figure 5),
with the former smaller than the latter. This was true for the Control run, Test 01 and
Test 02, as both the zonal and meridional winds were important to the variational trend of
10-m wind speed. In contrast, for the RMSE, that of the 10-m wind speed (Figure 2) was
smaller than those of u10 and v10 (Figures 4 and 5). This was because that the 10-m wind
speed was larger than u10 or v10. From Table 2 it can be found that, for the 24-h forecasts,
Test 01 increased the CROCs of u10 and v10 forecasts by ~3%, and reduced the RMSEs of
u10 and v10 forecasts by ~4%. Test 02 showed a much better performance, as it increased
the CROCs of u10 and v10 forecasts by ~8%, and reduced the RMSEs of u10 and v10
forecasts by ~11–13%. Similar situations were found for the 48-h forecasts (cf., Figures 4–7),
except that the RMSEs of u10 and v10 showed more notable improvements than those of
24-h forecasts (Table 2). Therefore, it can be concluded that, on average, both TopoWind
models could improve the forecasts of u10 and v10 (particularly for the RMSE), with the
topo_wind = 2 option showed a better performance than that of the topo_wind = 1 option.
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Figure 4. The area-averaged correlation coefficient (CORC) for the forecast of u10 (started at 12:00
UTC of each day) within 0–24 h (a); and the area-averaged root mean square error (RMSE) associated
with the u10 forecast mentioned above (b). Black, blue, and red solid lines represent the calculation
results of the Control, Test 01 and Test 02 runs, respectively; and the black, blue and red dashed lines
are the temporal means of the values represented by black, blue, and red solid lines, respectively.
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Figure 5. The area-averaged correlation coefficient (CORC) for the forecast of v10 (started at 12:00
UTC of each day) within 0–24 h (a); and the area-averaged root mean square error (RMSE) associated
with the v10 forecast mentioned above (b). Black, blue, and red solid lines represent the calculation
results of the Control, Test 01 and Test 02 runs, respectively; and the black, blue and red dashed lines
are the temporal means of the values represented by black, blue, and red solid lines, respectively.
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Figure 6. The area-averaged correlation coefficient (CORC) for the forecast of u10 (started at 12:00
UTC of each day) within 24–48 h (a); and the area-averaged root mean square error (RMSE) associated
with the u10 forecast mentioned above (b). Black, blue, and red solid lines represent the calculation
results of the Control, Test 01 and Test 02 runs, respectively; and the black, blue and red dashed lines
are the temporal means of the values represented by black, blue, and red solid lines, respectively.
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3.3. Evaluation of the 70-m Wind Speed

This study used a total of 24 wind-farm observational stations (Figure 8c) to evaluate
the forecast of 70-m (the height of wind-farm’s wind observation) wind speed. The simu-
lated 70-m wind speed was produced by vertical interpolation using the wind speeds at the
two sigma levels that were the closest to the height of 70-m. As Figure 8a,b and Figure 9a,b
show, for a same set of model configuration (e.g., the Control run, Test 01 or Test 02 shown
in Table 1), its performance at different stations were different. Different geographical
positions (Figure 8) of these stations were key reasons for their different forecast accuracy.
Comparisons among all 24 stations show that, stations #12-#16 generally showed larger
CORCS and smaller RMSEs than those of other stations (Figure 8a,b and Figure 9a,b).
These stations were mainly located south of the mountain, where terrain was below 1000
m. In addition, different weather systems (i.e., systems that produced the wind) were also
an important reason for the different forecast accuracy at different stations.
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for the forecast of 70-m wind speed within 0–24 h at 24 wind-farm observational stations (a); and
the 28-run averaged root mean square error (RMSE) associated with the 70-m wind speed forecast
mentioned above (b). Panel (c) shows the locations of the 24 wind-farm observational stations.
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Figure 9. The 28-run (started at 12:00 UTC of each day) averaged correlation coefficient (CORC)
for the forecast of 70-m wind speed within 24–48 h at 24 wind-farm observational stations (a); and
the 28-run averaged root mean square error (RMSE) associated with the 70-m wind speed forecast
mentioned above (b). Panel (c) is the boxplot of the relative performances of Test 01 and Test 02,
where the solid line within a box marks the median value, the cross shows the mean value, the extent
of the boxes corresponding to 25% (first quartile), 75% (third quartile), and whiskers corresponds to
(third quartile)–1.5 * (interquartile range) and (first quartile) + 1.5 * (interquartile range).

In terms of CORC, for the 24-h forecast, the CORCs of the control run varied from
0.63 (the wind-farm station #22) to 0.79 (#15), with a mean value of ~0.69 (Figure 8a). The
CORCs of the Test 01 varied from 0.65 (the wind-farm station #22) to 0.80 (#15), with a mean
value of ~0.70. The CORCs of the Test 02 varied from 0.67 (the wind-farm station #21) to
0.80 (#15), with a mean value of ~0.71. As Figure 9c shows, on average, Test 01 and Test 02
increased the 24-station mean CORC by 1.9% and 3.3%, respectively. For the 48-h forecast,
similar situations were found (cf., Figures 8a and 9a), except that the CORCs were mainly
smaller than those of the 24-h forecast. Overall, Test 01 and Test 02 increased the 24-station
mean CORC by 2.1% and 3.5%, respectively (Figure 9c), which were larger than those of
the 24-h forecast. All in all, as mentioned above, the TopoWind models could improve the
forecast of the variational trends of the 70-m wind speed, with the topo_wind = 2 option
showing a better performance.

In terms of RMSE, for the 24-h forecast, the RMSEs of the control run varied from
1.9 (the wind-farm station #15) to 3.2 (#5), with a mean value of ~2.6 (Figure 8b). The
RMSEs of the Test 01 varied from 1.9 (the wind-farm station #15) to 2.9 (#5), with a mean
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value of ~2.4. The RMSEs of the Test 02 varied from 1.8 (the wind-farm station #15) to
3.0 (#5), with a mean value of ~2.3. As Figure 9c shows, on average, Test 01 and Test 02
reduced the 24-station mean RMSE by 4.9% and 8.8%, respectively. For the 48-h forecast,
similar situations were found (cf., Figures 8b and 9b), except that the RMSEs were mainly
larger than those of the 24-h forecast (i.e., forecast accuracy was lower). Overall, Test 01
and Test 02 reduced the 24-station mean RMSE by 5.3% and 9.6%, respectively (Figure 9c),
which was larger than those of the 24-h forecast (i.e., improvement for the 48-h forecast was
more notable). All in all, as mentioned above, the TopoWind models could improve the
forecast of the magnitude of the 70-m wind speed, with the topo_wind = 2 option showing
a better performance.

4. Discussion on the Forecast Accuracy of Near-Surface Winds
4.1. Effects of Different Weather Systems

It is known that, for the same model configuration, its performances in forecasting the
wind field associated with different weather systems were notably different [8,15,34–37].
As this study focused on October 2020, it is necessary to first know the main pattern of the
surface wind filed during this period. As Figure 10a shows, in terms of the temporal mean
state, the simulation domain was governed by different wind field. Overall, the northerly
winds were dominant, and westerly and easterly winds also appeared, particularly in the
regions around 44◦ N 91◦ E and 42◦ N 91◦ E. The winds with larger/smaller speed mainly
appeared in the eastern/western section of the simulation domain. In terms of the spatial
mean state, it can be found that the fluctuations of the wind were notable (black line in
Figure 10b), which indicated the surface winds changed significantly. For the zonal wind
(red line in Figure 10b), the period occupied by the negative values was similar to that by
the positive values. This means that the simulation domain was controlled alternately by
easterly and westerly winds. For the meridional wind (blue line in Figure 10b), negative
values appeared much more frequently than the positive values, which means that the
northerly winds were dominant.

As different weather systems were associated with different wind fields [1,34–37], we
summarized the good and bad forecasts according to their background environments. As
Figures 2 and 3 show, for the 24-h/48-h forecast started at each day (there were 28 runs
in the Test-01/Test-02), if CORCs of Test 01 and Test 02 were above their corresponding
mean CORCs (among their corresponding 28 runs), and RMSEs of Test 01 and Test 02 were
below their corresponding mean RMSEs, it was regarded as a good forecast; whereas, if
CORCs of Test 01 and Test 02 were below their corresponding mean CORCs, and RMSEs
of Test 01 and Test 02 were above their corresponding mean RMSEs, it was regarded as
a bad forecast. If the forecast was good both for the 24-h and 48-h runs, it was marked
with a purple closed circle as shown in Figure 11. If the forecast was bad both for the 24-h
and 48-h runs, it was marked with a green closed circle. Comparison of the situations
with purple and green circles (Figure 11) shows that, during good forecasts, the simulation
domain was mainly controlled by high-pressure systems such as a ridge (Figure 11b) or a
closed high-pressure center (Figure 11p), and the upper-level jet was mainly far from the
domain (Figure 11k). In contrast, during bad forecasts, the simulation domain was mainly
controlled by low-pressure systems such as a trough (Figure 11f), and the upper-level jet
was mainly close to the domain (Figure 11s). High-pressure systems were generally more
stable than lower-pressure systems [1]; and upper-level jet could affect lower-level systems
by its secondary circulation (regions close to the upper-level jet were affected notably).
These were key reasons for the differences between good and bad forecasts.
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Figure 10. Panel (a) shows the temporal (during the whole October of 2020) averaged surface wind
speed (shading; m s−1) within/around the simulation domain (the blue box). Panel (b), shows
the simulation-domain averaged wind speed (black line; m s−1), zonal wind (red line; m s−1), and
meridional wind (blue line; m s−1) during October 2020.

4.2. Effects of Near-Surface Features

As discussed in Section 3, both TopoWind models could improve the near-surface
wind forecast. Possible reasons were discussed in this section. As Figures 12a and 13a
illustrate, for both 24-h and 48-h forecast, on average, Test 01 and Test 01 showed improve-
ments in forecasting the variational trends of slp (i.e., CORCs increased). In addition, as
Figures 12b and 13b depict, improvements of the forecast of the magnitude of slp were
more notable (i.e., RMSEs reduced), particularly for the topo_wind = 2 option. This means
that the TopoWind models could improve the slp forecast. This is an important reason for
the improvement of the wind speed forecast, as slp was crucial in determining wind speed
(through doing work by the pressure gradient force; Holton 2004).
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Figure 11. The 200-hPa upper-level jet (shading; m s−1), 500-hPa geopotential height (black solid
contours; gpm) and 500-hPa temperature (red contours; ◦C), where the blue boxes show the location
of simulation. Purple shading circles mark the situation of good forecast (both 24- and 48-h forecasts
are good; see the caption of Figure 2) and green shading circles mark that of bad forecast (both 24-
and 48-h forecasts are bad; see the caption of Figure 2).
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Figure 12. The area-averaged correlation coefficient (CORC) for the forecast of sea level pressure
(started at 12:00 UTC of each day) within 0–24 h (a); and the area-averaged root mean square error
(RMSE) associated with the sea level pressure forecast mentioned above (b). Black, blue, and red
solid lines represent the calculation results of the Control, Test 01 and Test 02 runs, respectively; and
the black, blue and red dashed lines are the temporal means of the values represented by black, blue,
and red solid lines, respectively.
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Figure 13. The area-averaged correlation coefficient (CORC) for the forecast of sea level pressure
(started at 12:00 UTC of each day) within 24–48 h (a); and the area-averaged root mean square error
(RMSE) associated with the sea level pressure forecast mentioned above (b). Black, blue, and red
solid lines represent the calculation results of the Control, Test 01 and Test 02 runs, respectively; and
the black, blue and red dashed lines are the temporal means of the values represented by black, blue,
and red solid lines, respectively.
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From Figures 14 and 15, although the TopoWind models showed unobvious effects
in improving the forecast of the variational trends of the 2-m temperature, they showed
notable contributions in improving the forecast of the 2-m temperature’s magnitude,
particularly for the topo_wind = 2 option. A better forecast of 2-m temperature field
contributed to reach a better forecast of near-surface wind speed, as baroclinity (which
could be represented by temperature gradient) could enhance/weaken the near-surface
wind speed through the baroclinic energy conversion [1,34]. All in all, as discussed above,
it can be concluded that the TopoWind models could improve the forecast of slp and 2-m
temperature field, which finally resulted in the improvements of near-surface wind speed
forecast. Moreover, the topo_wind = 2 option was overall better than the topo_wind = 1
option in the forecast of near-surface wind. This was mainly because that the former had
included the subgrid terrain variance in calculating the friction velocity in addition to the
procedures added by the latter.

Atmosphere 2021, 12, x FOR PEER REVIEW  18  of  21 
 

 

 

Figure 14. The area‐averaged correlation coefficient  (CORC)  for  the  forecast of 2‐m  temperature 

(started at 12:00 UTC of each day) within 0–24 h (a); and the area‐averaged root mean square error 

(RMSE) associated with  the 2‐m  temperature  forecast mentioned above  (b). Black, blue, and red 

solid lines represent the calculation results of the Control, Test 01 and Test 02 runs, respectively; 

and the black, blue and red dashed lines are the temporal means of the values represented by black, 

blue, and red solid lines, respectively. 

 

Figure 15. The area‐averaged correlation coefficient  (CORC)  for  the  forecast of 2‐m  temperature 

(started at 12:00 UTC of each day) within 24–48 h (a); and the area‐averaged root mean square error 

(RMSE) associated with  the 2‐m  temperature  forecast mentioned above  (b). Black, blue, and red 

Figure 14. The area-averaged correlation coefficient (CORC) for the forecast of 2-m temperature
(started at 12:00 UTC of each day) within 0–24 h (a); and the area-averaged root mean square error
(RMSE) associated with the 2-m temperature forecast mentioned above (b). Black, blue, and red solid
lines represent the calculation results of the Control, Test 01 and Test 02 runs, respectively; and the
black, blue and red dashed lines are the temporal means of the values represented by black, blue,
and red solid lines, respectively.
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Figure 15. The area-averaged correlation coefficient (CORC) for the forecast of 2-m temperature
(started at 12:00 UTC of each day) within 24–48 h (a); and the area-averaged root mean square error
(RMSE) associated with the 2-m temperature forecast mentioned above (b). Black, blue, and red solid
lines represent the calculation results of the Control, Test 01 and Test 02 runs, respectively; and the
black, blue and red dashed lines are the temporal means of the values represented by black, blue,
and red solid lines, respectively.

4.3. Limitations of This Study

As discussed above, this study has shown the ability of two TopoWind models in
improving the forecast accuracy of the near-surface winds under the complex terrain
conditions over Northwest China. To better understand this conclusion, one needs to know
the limitations of this study. (i) The result was only based on a forecast period of around
a month. As different weather systems were crucial to the forecast accuracy, we suggest
to conduct more tests in the future. These tests should contain more types of weather
systems, and also should consider the influences of seasonal variations (this study only
focused on autumn). (ii) The simulation domain of this study was small relative to the
Northwest China, therefore more regions in the Northwest China should be used in the
evaluations of the TopoWind models. Properly addressing (i) and (ii) will contribute to
the final improvement of the near-surface wind forecast over Northwest China. (iii) We
only focused on the near-surface features to understand why the TopoWind models could
improve the near-surface winds’ forecast. In fact, as the weather systems that caused the
strong winds usually had a thick vertical extent, more vertical levels (such as 700 hPa,
500 hPa) should also be used in the analyses. This will enhance the understanding of the
TopoWind models, which is useful for improving them in the future.

5. Conclusions

The Northwest China is a region with the most abundant WE in East Asia and even the
world. Because of the WE’s notable features of randomness, diversity and uncontrollability,
the effective utilization of the WE needs accurate near-surface wind forecasts. Although
the WRF model had been widely used for wind forecasts worldwide, its forecasts of near-
surface wind still showed notable errors. In order to improve the simulation accuracy
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of the low-level wind speed, two TopoWind models were developed and added to the
YSU PBL scheme. This study conducted the first test to check whether the two TopoWind
models could improve the near-surface wind prediction under complex terrain conditions
over Northwest China. This contributes to making full use of WE in Northwest China and
to improving the efficiency of wind power generation systems.

Based on three groups (each group had 28 runs) of forecasts (i.e., Control run, Test 01
and Test 02) started at 12:00 UTC of each day (ran for 48 h) during the period of 01–28
October 2020, we found that: (i) the forecast accuracy of 10-m wind speed varied each
day, with ~50% of them belonged to good forecasts; those forecasts with larger CORCs
tended to have smaller RMSEs (i.e., they were in an inverse correlation), and vice versa;
both TopoWind models could improve the 10-m wind speed forecasts under the complex
terrain conditions over Northwest China, particularly for reducing the RMSE, and the
topo_wind = 2 option showed a better performance (improve the forecast accuracy by
9–14%) than that of the topo_wind = 1 option (4–6%). (ii) The forecast of 10-m meridional
wind was more important to the forecast of the variational trend of the 10-m wind speed,
and the forecast of 10-m zonal wind was more important to the forecast of the magnitude
of the 10-m wind speed; on average, both TopoWind models could improve the forecasts of
10-m meridional and zonal winds (particularly for reducing RMSE), with the topo_wind = 2
option showed a better performance (improve the forecast accuracy by 7–14%) than that of
the topo_wind = 1 option (3–6%). (iii) Geographical features (stations located south of the
mountain, where terrain was below 1000 m, tended to have more accurate forecast) were
crucial to the forecast accuracy of the 70-m wind speed; the two TopoWind models could
improve the forecasts of the 70-m wind speed, particularly for lowering the RMSE, with
the topo_wind = 2 option shown a better performance (improve the forecast accuracy by
3–10%). (iv) Different weather systems were crucial to the forecast accuracy, good forecasts
tended to appear when the simulation domain was mainly controlled by high-pressure
systems with the upper-level jet far from it; bad forecasts tended to appear when the
simulation domain was mainly controlled by low-pressure systems with the upper-level
jet close to it. (v) The two TopoWind models could improve the forecast of sea level
pressure (which affected the wind field through the work done by the pressure gradient
force) and 2-m temperature field (which influenced the wind field through the baroclinic
energy conversion), which finally resulted in the improvements of near-surface wind
speed forecast.
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