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Abstract: Accurate forecasting of future meteorological elements is critical and has profoundly
affected human life in many aspects from rainstorm warning to flight safety. The conventional numer-
ical weather prediction (NWP) sometimes leads to unsatisfactory performance due to inappropriate
initial state settings. In this paper, a short-term weather forecasting model based on wavelet packet
denoising and Catboost is proposed, which takes advantage of the fusion information combining the
historical observation data with the prior knowledge from NWP. The feature selection and spatiotem-
poral feather addition are also explored to further improve performance. The proposed method is
evaluated on the datasets provided by Beijing weather stations. Experimental results demonstrate
that compared with many deep-learning or machine-learning methods such as LSTM, Seq2Seq, and
random forest, the proposed Catboost model incorporated with wavelet packet denoising can achieve
shorter convergence time and higher prediction accuracy.

Keywords: weather forecast; Catboost; wavelet packet denoising; machine learning

1. Introduction

Weather prediction is of great importance and can affect some aspects of daily life,
such as air quality, travel plans, energy supply, and so on [1–4]. A conventional predic-
tion method is numerical weather prediction (NWP) method, which solves the numerical
solutions of atmospheric hydro-thermo dynamic equations to predict meteorological dy-
namics [5–7]. However, unsatisfactory prediction results are obtained if inappropriate
initial states are set [7,8]. Moreover, conventional NWP-based approaches do not take full
advantage of vast amount of existing historical observation data [9]. As the observation
techniques develop and the historical meteorological data grow bigger and bigger, some
purely data-driven approaches are expected to be introduced into weather forecasting [10].
They do not solve complex differential equations, but quickly model the meteorological
dynamics by learning from a large amount of historical datasets.

It is well known that several machine-learning methods including artificial intelligence
(AI) methods have been demonstrated to be powerful methods for weather forecasting [9–13].
For one-dimensional timeseries meteorological data, some data-driven machine-learning
approaches have been presented for weather forecasting. In [14], autoregressive integrated
moving average artificial neural networks (ARIMA–ANN) combined with ARIMA–Kalman
is proposed to predict the wind speed and show the effectiveness of the hybrid model.
In [15], global radiation is effectively predicted by a hybrid ARIMA/ANN model. In [16],
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Gaussian processes method is employed to revise NWP results and achieve a more accurate
prediction of the 24 h wind energy. Moreover, a deep hybrid model in [17] is utilized to
predict a series of weather related elements. In [18], the relationship between variables is
captured by auto-encoder, and rainfall is forecasted by the multi-layer perceptron (MLP).
In [19], multi-layer perceptron with spatial–temporal attention is proposed for wind speed
and wind direction in Beijing. In addition, the long short-term memory (LSTM) model is
also effective for weather forecasting [20,21]. Seq2Seq and its variations, which are well
known in the field of natural language processing, can be migrated and applied to solve
weather prediction problems [22].

On the other hand, some deep-learning methods employed the two-dimensional radar
echo maps to achieve a short-term weather forecast. In [8], a short-range forecast based
on radar echo maps is viewed as a spatiotemporal sequence forecasting problems, and
the convolutional LSTM (ConvLSTM) method was proposed to solve it. Furthermore,
the same author proposed the trajectory GRU (TrajGRU) to further improve weather
forecast accuracy [23]. It utilized not only location-invariant structure in ConvLSTM, but
the location-variant recurrent structure to efficiently depict the motion patterns such as
rotation and scaling in radar echo maps. In addition, the memory in memory (MIM)
network [24], the improved predictive recurrent neural network (PredRNN++) [25,26], and
generative adversarial gated (GAN) recurrent unit models [27,28] were also proposed to
handle the limitations in ConvLSTM model and enhance the prediction performance.

Although the accuracies of above machine-/deep-learning methods are high, these
purely data-driven models have the limitations that they ignore the important prior knowl-
edge from NWP and may not fully capture the spatiotemporal dynamics of diverse meteoro-
logical variables [19,22,29]. Besides, the training convergence time with some deep-learning
methods, especially for abundant weather variable forecasts at large amount of weather
stations, is remarkable long. It is well known that decision-tree-based methods, such as
random forest methods, are quite effective to deal with big data, while the training conver-
gence time can be decreased greatly [30,31]. The trees in the forest are definitely different
and consequently provide an “expert collection” that performs better than any single tree.
Among these, Catboost algorithm [32], which is an improved version of gradient-boosting
decision tree (GBDT) and uses a special type of depth-first expansion called oblivious trees,
has put in great performance at many data-mining applications [33–36]. In this paper, a
hybrid model based on Catboost and wavelet packet denoising is proposed to predict
multiple meteorological variables at multiple future steps. Some additional features are
extracted and fused. Moreover, it will combine the advantages of the NWP and machine-
learning method to improve forecasting accuracy, while the training convergence time can
be largely decreased compared with some deep-learning methods. The rest of the paper is
structured as follows. The problem statement and our method are discussed in Section 2,
followed by the experiments and performance analysis. Lastly, we conclude with a brief
summary in Section 4.

2. Materials and Methods
2.1. Problem Statement

In this work, historical meteorological observations from 10 weather stations for more
than three years and RMAPS-based preliminary weather forecast data from NWP [22] are
supplied. They can be defined as follows.

Historical meteorological observation datasets denoted as

O(t) =
[
o1(t), o2(t), . . . oN1(t)

]
∈ RN1 (1)

where the variable oi(t) is one of N1 meteorological features, for t = 1, . . . To. Here, N1 = 9.
Preliminary weather forecast timeseries obtained by NWP as

F(t) =
[

f1(t), f2(t), . . . fN2(t)
]
∈ RN2 (2)
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where the variable fi(t) is one of N2 NWP features, for t = To + 1, . . . To + Tf , Tf is
forecasting step number. In this work, N2 = 29. Additionally, a forecast time period is
required from 3:00 to 15:00 (UTC) of the next day, then Tf = 37.

Ground truth of target meteorological variables Y (t) and their predictions Ỹ (t)

Y(t) =
[
y1(t), y2(t), . . . yN3(t)

]
∈ RN3 (3)

where the variable yi(t) is truth value of N3 meteorological variables, for t = To + 1, . . . To + Tf .
In this work, relative humidity at 2 m (rh2m), wind at 10 m (w10m), and temperature at
2 m (t2m) are target forecasting variables, and therefore, N3 = 3.

2.2. Data Processing
2.2.1. Missing Values

In this work, two kinds of missing values, including local missing (local non-continuous)
and block missing, are included. For local missing, linear interpolation is employed. As for
block missing, the data of those days are deleted directly, and therefore, 40-day data are
deleted from a total of 1188 day dataset.

2.2.2. Additional Spatiotemporal Feathers

Figure 1 shows the historical statistic means of meteorological variation t2m and
w10m. From this figure, compared with other weather stations, t2m means in station ID 7
has obvious differences and w10m means in station ID 7 and 6 follow different trends.
Thus, station ID should be added as a category variable. In this work, the one-hot encoding
method is employed to depict the spatial feature.
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As for the temporal features, the historical variation of target variable t2m is pre-
sented in Figure 2. From this figure, strong periodicity and seasonality can be observed, 
and the temporal features should be considered. If the time features such as month and 
hour are also set by the one-hot encoding method, a large feature space will be occupied. 
Moreover, the temporal continuity such as between December and January will be de-
stroyed if the month feature (1–12) is directly mapped into the interval of 0–1. In this work, 

Figure 1. The 24 h means of meteorological variations from 1 March 2015 to 21 May 2018 for 10 stations: (a) t2m, (b) w10m.

As for the temporal features, the historical variation of target variable t2m is presented
in Figure 2. From this figure, strong periodicity and seasonality can be observed, and the
temporal features should be considered. If the time features such as month and hour are
also set by the one-hot encoding method, a large feature space will be occupied. Moreover,
the temporal continuity such as between December and January will be destroyed if the
month feature (1–12) is directly mapped into the interval of 0–1. In this work, clock
projection is utilized to extract the temporal features. Specifically speaking, the month
feature and the hour feature are transformed to the order of 1–12 on the clock, which can be
seen in Figure 3. The projected horizontal and vertical coordinate values (within 0–1) will
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be deemed as new temporal features. Test results demonstrate that the prediction accuracy
can be significantly improved by the additional spatiotemporal features.
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2.2.3. Feature Selection

In this work, 38 meteorological features are provided for weather forecast in the
historical observed dataset and NWP forecasting dataset. Considering the prediction
accuracy and the training computational consumption, an ensemble selection method
integrating three methods are employed for feature selection, including RFE, correlation
matrix, and tree model. In this work, SVM-based recursive feature elimination (RFE) is
adopted [37]. The correlation matrix is also called the correlation coefficient matrix, and the
map is presented in Figure 4. Moreover, the Catboost model is also used for the ranking
of feature importance. By the ensemble selection model, the less important features are
screened out.
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2.3. Model Architecture

The proposed short-term weather forecasting model is based on wavelet packet
denoising and Catboost. The block diagram of the proposed forecasting model is presented
in Figure 5.
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Inthismodel, thehistoricalmeteorologicalobservationdatasetOTo = [O(1),O(2), . . .O(To)]εRTo×N1

and NWP forecasting dataset FTf =
[

F(1), F(2), . . . F
(

Tf

)]
εRTf×N2 will be firstly dealt
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with above-mentioned data preprocessing, including data cleaning, spatiotemporal features
addition, and feature selection. Then, the wavelet packet denoising method is proposed
and achieved as a “pre-learning task”, which can improve the accuracy and shorten the
convergence time. At last, the Catboost model is utilized for training and weather forecast.

2.3.1. Wavelet Packet Denoising Principle

Signal denoising, especially for sensor noises in historical meteorological observation
datasets, is of great importance. This “pre-learning task” will be verified to effectively
shorten the subsequent training convergence time and enhance forecast accuracy. For noise
reduction in non-stationary signals in meteorological datasets, it is reasonably effective to
remove the noises by the wavelet-based denoising methods due to their multi-resolution
and multi-scale analysis property [38]. Wavelet transforms have been successfully used in
many scientific fields such as image compression, image denoising, and signal processing,
to name only a few. The window size in wavelet transform is fixed, while its shape is
adjustable. Both the time and frequency window can be adjusted. Hence, it has a strong
ability to extract local features of signals and detect singularity in signals [39]. The denoised
signals can be obtained by employing the threshold function to filter the wavelet coefficients
and conduct the wavelet reconstruction [40].

In wavelet-based denoising methods, the wavelet basis function and the threshold
function have great influence on the sparsity of wavelet representation coefficients. In this
work, Daubechies (dbN) basis function is adopted due to its fine regularity. It means that it
is difficult to perceive the smooth error introduced by this wavelet as a sparse basis, and
then, the denoised signal can be much smoother [40]. Moreover, the soft-threshold method
is employed here. It has good continuity and makes a more smooth process to the wavelet
coefficients.

For a signal f (t) ∈ L2(R), the wavelet decomposition coefficients can be obtained as

W f (a, τ) = 〈 f (t), ψa,τ(t)〉 =
1√
a

∫
f (t)ψ

(
t− a

τ

)
dt (4)

where ψa,τ(t) is the mother wavelet; the parameter a indicates the scale index, and τ
represents the time shifting.

In order to extract local features of signals by more fine-grained details and enhance
the time-frequency resolution, the wavelet packet denoising method is utilized in this
paper. The recursive formula of wavelet packet transform is as follows.

W2n(t) = ∑
k

hkWn(2t− k) (5)

W2n+1(t) = ∑
k

gkWn(2t− k) (6)

The signal W1(t) will go across the orthogonal filter combining the high-pass filter
hk and low-pass filter gk [39] and wavelet packet decomposition can divide the signal
into different frequency spans layer-by-layer. The width of the frequency span ∆ f can be
obtained as

∆ f =
fs

2i+1 (7)

where fs is the sampling frequency; i is the decomposition layer. The expected frequency
span can be obtained when layer i is set appropriately. The original signal can be separated
from noise and interference signals when every frequency is wide enough. The recursive
reconstruct formula is

W2(2t) = ∑
k

h2k+1W2n(t− k) + ∑
k

g2k+1W2n+1(t− k) (8)
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W2(2t− 1) = ∑
k

h2kW2n(t− k) + ∑
k

g2kW2n+1(t− k) (9)

It is beneficial that we can choose all the frequency bins or some parts of them and
set the others (noise or random interruption) as zero. When the signal is decomposed into
different frequency bins, it is easy to extract noise by the reconstruction. Figure 6 illustrates
the three-layer wavelet packet decomposition.
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In addition, for the choice of the wavelet packet threshold, the three-layer wavelet
packet and the soft-threshold is utilized. The threshold Thwp is designed to be self-adaptive
with the decomposition layers and takes advantage of the mean and standard variance of
decomposition coefficients, that is

Thwp(p) =
1
M

M

∑
j=1

C3,p(j) +

√√√√ 1
M

M

∑
j=1

[
C3,p(j)− 1

M

M

∑
j=1

C3,p(j)

]2

(10)

C̃3,p(j) =

{
sign

(
C3,p(j)

)
∗
(∣∣C3,p(j)

∣∣− Thwp(p)
)
,

∣∣C3,p(j)
∣∣ ≥ Thwp(p)

0
∣∣C3,p(j)

∣∣ < Thwp(p)
(11)

where Thwp(p) is the wavelet packet threshold, combining with the mean and variance.
C3,p(j), p = 1, 2, . . . , 8 is the wavelet packet transform coefficients, and M is the coefficient
length. When coefficients C3,p(j) are greater than the threshold Thwp(p), set C3,p(j) as zero;
otherwise, set C3,p(j) as sign

(
C3,p(j)

)
∗
(∣∣C3,p(j)

∣∣− Thwp(p)
)
, which makes the C̃3,p(j).

The historical meteorological observation signals are denoised by wavelet packet trans-
form. Figure 7 shows the original observed and denoised curves of 2 m relative humidity.
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2.3.2. Learning Model: Categorical Boosting

Gradient boosting is an effective and powerful machine-learning technology for solv-
ing problems with complex dependencies, noisy data, and heterogeneous characteristics. It
has a theoretical explanation on how iteration combines weak models through gradient
descent in function space [32] and has demonstrated most advanced performance in a
variety of practical tasks, such as ET0 estimation [30], global solar radiation prediction [33],
and web searching [35]. Catboost, proposed by Yandex Company, is a novel gradient
boosting algorithm [32], which makes many improvements to overcome the model overfit-
ting and deal with parallelism. Thus, the layout can be completed in less time. Generally,
high prediction accuracy is the key point; however, good stability and less computational
workload should also be laid emphasis when employing machine-/deep-learning models.
Some models are inherently unstable and will obtain fewer precision estimates when with
new datasets [30].

Catboost can deal with categorical features well and is employed here as a learning
model for short-term weather forecast. It has the following advantages [32]:

Category features: In order to reduce overfitting and utilize the whole dataset for
training, an efficient strategy called target statistics (TS) with minimum information loss
is employed in the Catboost. Specially, for the input example sets D = {(xk, yk)}k=1,...,n,
a plurality of random permutation is performed. Then, the average label values will be
calculated for the sequence with the same category value. Finally, all classification features
will be substituted with the following formula:

x̃j
k =

∑n
j=1

[
xi

j = xi
k

]
·yj + β·P

∑n
j=1

[
xi

j = xi
k

]
+ β

(12)

where the parameter β > 0, namely, the weight of the prior, can dampen the low frequency
category noise. P is a prior value. yk ∈ R is the target, and xk =

(
x1

k , . . . , xM
k
)

is a random
vector of M features.
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Feature combinations: A greedy way is utilized for Catboost when the tree constructs
a new split. No combination is considered for the first split. However, for the subsequent
splits, Catboost contains all the combination and classification features in the current tree of
the dataset with all categorical features. Moreover, all splits selected in the tree are treated
as categories with two values and are similarly utilized in the combination.

Unbiased boosting: In Catboost, the ordered boosting is developed by theoretical
analysis to solve the gradient bias, which is inevitable when the traditional GBDT em-
ploys the TS method to convert categorical features into numerical values. Moreover,
multiple permutations of the training data are employed to enhance the robustness. Dif-
ferent permutations will be utilized for training distinct modals, which can deal with the
overfitting problem.

Fast scorer: Oblivious trees, which are balanced and less inclined to overfitting, are
used as base predictors in Catboost. Moreover, in order to calculate the model predictions,
each leaf index in the Catboost model evaluators is encoded as a binary vector, whose length
is equal to the depth of the tree. Figure 8 shows the structure of the Catboost algorithm.
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3. Performance Analysis and Comparisons

In this section, the performance analysis and comparisons of the proposed weather
forecasting model with other machine-learning and deep-learning methods are illustrated.
Firstly, the evaluation metrics are shown.
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3.1. Statistical Evaluation

The root mean squared error (RMSE) for three objective variables from 10 stations is
calculated as daily evaluation.

RMSEi,ml =

√√√√√∑10
s=1 ∑

To+Tf
t=To+1

(
yi,s(t)− yml

i,s (t)
)2

10·Tf
(13)

where yi,s(t) and yml
i,s (t) are the ground truth and the forecasting value (by the proposed

machine-learning method) of the objective variable i (here, i denotes t2m, rh2m, and w10m)
of station s at time t, respectively. Similarly, RMSEi,NWP can be obtained, which uses the
predicted value F(t) by NWP method.

RMSEi,NWP =

√√√√∑10
s=1 ∑

To+Tf
t=To+1(yi,s(t)− Fi,s(t))

2

10·Tf
(14)

Then, the associated skill score Si is employed to compare the forecasting improvement
with the classic NWP method.

Si =
RMSEi,NWP − RMSEi,ml

RMSEi,NWP
(15)

Si > 0 means that the proposed machine-learning method can obtain lower RMSE
and better prediction accuracy than the NWP method. The higher Si is, the better the
forecasting performance by the proposed method is.

Sday =
St2m + Srh2m + Sw10m

3
(16)

Sday is the average skill score of the three objective variables and is the ultimate
prediction criterion for each day.

3.2. Baselines and Experimental Settings

In this work, the machine-learning method random forest and two deep-learning
methods LSTM and Seq2Seq are implemented as baselines for comparisons. Seq2Seq
method is well known in the field of natural language processing and is effective to solve
timeseries prediction problems.

The tests were performed on a GPU server with GTX 1080Ti GPU, 11GB of video
memory, and a Pytorch programming environment. As mentioned above, 38 meteorolog-
ical features are provided from observed and NWP datasets. The three least correlated
characteristics are removed, and the spatiotemporal feathers are added in the phase of data
preprocessing. The set hyperparameter To = 28 means that the previous 28 h observation
data are selected to modal the recent meteorological dynamics. The data from 1148 days
(during 1 March 2015 to 1 June 2018) are used for the training set, and data from 87 days
(during 3 June 2018 to 29 August 2018) are for the validation set. Since the evaluation
is based on online daily forecasting, the test day index is 1. The main parameters in the
random forest method and Catboost method are the maximum depth and the number of
trees, which are optimized by the grid search method.

The pseudocode are added to describe the whole methodology, as shown in Algorithm 1.
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Algorithm 1. Combining WPD and Catboost Method for Weather Forecasting

Input: Historical Observation Datasets O(t), NWP Datasets F(t), Ground Truth Y(t)
Output: Prrediction Ỹ(t)(t2m, rh2m, w10m)
1:Data Cleaning
2:Ms(t) ← Feature Selection: O(t), F(t)
3:Ti(t) ← Temproal Features: Month, Hour
4:Si(t) ← Spatio Features: Station ID
5:M(t) ← Concat Ms(t), Ti(t), Si(t)
6:Mw(t)← Wavelet Packet Denosing: M(t)
7:Ỹ(t) ← Catboost: Mw(t)
8:End

3.3. Performance Analysis

This work is based on an attended online competition dataset for daily weather fore-
casting. The forecasting daily evaluation score Sday and average score Savg for continuous
five competition days are presented in Table 1, which are based on incremental data re-
leased daily according to real-world forecasting processes. In this table, LSTM, Seq2Seq,
and random forest (“RF” for brevity) are implemented for comparison. “ST” means that
spatiotemporal feathers are added. “FS” denotes that feature selection is employed. “WPD”
indicates that the wavelet packet denoising method is combined.

Table 1. The S performance of different methods on 5 days.

Method Sday1 Sday2 Sday3 Sday4 Sday5 Savg

LSTM + FS 0.0203 0.1112 0.0503 0.1303 0.3143 0.1253
LSTM + FS + ST 0.1000 0.2978 0.1821 0.2596 0.3488 0.2377

RF + FS + ST 0.1146 0.1962 0.3582 0.4270 0.3859 0.2964
RF + FS + ST + WPD 0.1821 0.2358 0.3990 0.4513 0.4553 0.3447

Seq2Seq + FS + ST + WPD 0.2587 0.3793 0.4606 0.5320 0.5102 0.4282
Catboost + ST 0.2933 0.3692 0.4610 0.5136 0.5406 0.4355

Catboost + ST + FS 0.2992 0.3921 0.4654 0.5175 0.5434 0.4435
Catboost + ST + FS + WPD 0.3273 0.4088 0.4908 0.5447 0.5530 0.4649

Catboost + ST + FS + WPD + noNWP 0.183 0.139 0.195 0.197 0.207 0.1842
Catboost + ST + FS + WPD + noOBS 0.016 0.314 0.343 0.396 0.401 0.294

First, comparing “LSTM + FS” with “LSTM + FS + ST”, it can be clearly observed
that the prediction accuracy by adding spatiotemporal features has been remarkably
improved. Similarly, it can be obtained that the feature selection is also effective by
comparing “Catboost + ST + FS” with “Catboost + ST”. The less important features are
screened out by the ensemble selection model, which can reduce redundant information.
In order to verify the importance of wavelet packet denoising, the results of “RF + FS + ST”
and “RF + FS + ST + WPD” as well as “Catboost + ST + FS” and “Catboost + ST + FS +WPD”
could be taken into consideration and comparisons. Obviously, wavelet packet denoising
can greatly promote the prediction scores. Wavelet packet denoising also takes effect as the
“pre-learning” process and can effectively shorten the entire learning convergence time. For
example, after wavelet packet denoising the data, Catboost only needs an approximately
40 epoch convergence time, which is rather short in contrast with the original one, about
100 epoch.

Second, considering the effect of information fusion, the effectiveness of fusing
NWP forecasting can be validated by comparing “Catboost + ST + FS + WPD” with
“Catboost + ST + FS + WPD + noNWP”, where the NWP forecasting is masked by zero values.
Similarly, comparing “Catboost + ST + FS + WPD” with “Catboost + ST + FS + WPD + noOBS”
demonstrates the advantage of modeling recent meteorological dynamics. Moreover,
the Sday > 0 in the “Catboost + ST + FS + WPD + noOBS” indicates that the machine-
learning method can enhance the NWP alone performance. Meanwhile, the Sday > 0 in
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the “Catboost + ST + FS + WPD + noNWP” without NWP information illustrates that the
proposed method has superiority in modeling meteorological data. Catboost successfully
handles categorical features and uses a new schema for calculating leaf values when select-
ing the tree structure, which helps to reduce overfitting. These comparisons clearly exhibit
that conducting information fusion is better, and modeling alone with OBS or NWP is not
good enough. NWP forecasting contains important prior knowledge.

Moreover, the raw RMSE values for temperature, relative humidity, and wind speed
with all the methods are presented in Tables 2–4, respectively. It is also clear that the
proposed “Catboost + ST + FS +WPD” method can also achieve the best RMSE values.

Table 2. The RMSE performances of t2m with different methods.

Method RMSEday1 RMSEday2 RMSEday3 RMSEday4 RMSEday5 RMSEavg

LSTM + FS 4.3167 4.5871 4.8221 5.1009 3.9671 4.5588
LSTM + FS + ST 2.4113 2.5097 2.6214 2.7719 2.6444 2.5917

RF + FS + ST 2.3121 2.3584 1.7002 1.4721 1.5651 1.8816
RF + FS + ST + WPD 2.1167 2.1871 1.6672 1.4323 1.5333 1.7873

Seq2Seq + FS + ST + WPD 1.7189 1.7228 1.2688 1.2554 1.4117 1.4755
Catboost + ST 1.1699 1.7337 1.2561 1.3019 1.1887 1.3300

Catboost + ST + FS 1.1642 1.6993 1.2343 1.2982 1.1832 1.3158
Catboost + ST + FS + WPD 1.0596 1.6738 1.0977 1.1276 1.1253 1.2168

Catboost + ST + FS + WPD + noNWP 2.1002 3.2278 2.5180 3.0988 4.4333 3.0756
Catboost + ST + FS + WPD + noOBS 4.9663 2.8534 2.1721 2.2564 1.5477 2.7592

Table 3. The RMSE performances of rh2m with different methods.

Method RMSEday1 RMSEday2 RMSEday3 RMSEday4 RMSEday5 RMSEavg

LSTM + FS 13.2332 13.8361 13.3123 14.5241 12.1123 13.4036
LSTM + FS + ST 11.7341 8.4723 8.2121 11.0852 9.4516 9.7910

RF + FS + ST 12.1946 12.1678 6.5207 9.0303 8.6171 9.7061
RF + FS + ST + WPD 11.1348 11.4681 6.2913 8.9234 8.4588 9.2553

Seq2Seq + FS + ST + WPD 9.9271 8.5661 5.7026 6.8698 7.3950 7.6921
Catboost + ST 9.4694 8.6883 6.6771 7.3775 7.0220 7.8469

Catboost + ST + FS 9.3367 8.3433 6.6651 7.3379 7.0112 7.7388
Catboost + ST + FS + WPD 9.2295 8.3106 6.4138 7.1386 6.9638 7.6113

Catboost + ST + FS + WPD + noNWP 10.4456 12.3314 8.0278 11.4123 12.9973 11.0429
Catboost + ST + FS + WPD + noOBS 13.4584 9.8877 7.7854 10.5543 8.5771 10.0526

Table 4. The RMSE performances of w10m with different methods.

Method RMSEday1 RMSEday2 RMSEday3 RMSEday4 RMSEday5 RMSEavg

LSTM + FS 2.1244 1.3122 1.4667 1.1883 1.2671 1.47174
LSTM + FS + ST 1.6000 0.9260 0.9670 0.8750 0.8140 1.0364

RF + FS + ST 1.5527 1.0406 0.7638 0.8242 0.8862 1.0135
RF + FS + ST + WPD 1.5488 1.0091 0.7505 0.8009 0.8801 0.99788

Seq2Seq + FS + ST + WPD 1.5357 0.9507 0.7392 0.7340 0.8982 0.97156
Catboost + ST 1.4889 0.9355 0.7311 0.7502 0.8663 0.9544

Catboost + ST + FS 1.4019 0.9031 0.7229 0.7442 0.8547 0.92536
Catboost + ST + FS + WPD 1.3631 0.8883 0.7178 0.7365 0.8114 0.90342

Catboost + ST + FS + WPD + noNWP 1.5439 1.0218 0.9512 0.9338 1.3304 1.15622
Catboost + ST + FS + WPD + noOBS 2.2883 0.9802 0.8856 0.9117 0.8834 1.18984

For cross-validation, the new training set (during 1 March 2015 to 15 August 2017),
validation set (during 16 August 2017 to 30 April 2018), and test set (during 1 May 2018
to 29 August 2018, 120 days) are assigned again (ratio is about 7:2:1). The test results are
shown in Table 5. Sday01−20 is the average S value of the first day to the twentieth day in
the test set. Savg is the average S value of the first day to the one hundred and twentieth
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day in the test set. From this table, the proposed “Catboost + ST + FS +WPD” method can
also achieve the best average S values for the new cross-validation dataset.

Table 5. The statistical average S performances with different methods.

Method ¯
Sday01−20

¯
Sday21−40

¯
Sday41−60

¯
Sday61−80

¯
Sday81−100

¯
Sday101−120

¯
Savg

LSTM + FS 0.0992 0.2273 0.1372 0.1391 0.1335 0.1763 0.1521
LSTM + FS + ST 0.3109 0.2755 0.2859 0.2679 0.1677 0.2056 0.2522

RF + FS + ST 0.3771 0.3902 0.3561 0.2997 0.1984 0.2559 0.3129
RF + FS + ST + WPD 0.4358 0.4376 0.3997 0.3208 0.2110 0.3278 0.3555

Seq2Seq + FS + ST + WPD 0.5119 0.5005 0.4267 0.3329 0.2655 0.3792 0.4028
Catboost + ST 0.5134 0.5137 0.4215 0.3517 0.3287 0.4116 0.4234

Catboost + ST + FS 0.5264 0.5528 0.4293 0.3623 0.3319 0.4479 0.4418
Catboost + ST + FS + WPD 0.5672 0.5837 0.4370 0.3878 0.3536 0.4732 0.4671

Catboost + ST + FS + WPD + noNWP 0.449 0.341 0.269 0.188 0.109 0.165 0.2535
Catboost + ST + FS + WPD + noOBS 0.075 0.465 0.373 0.295 0.237 0.317 0.2937

For demonstrating the effect of varying important hyper-parameters, the proposed
method with different “iterations” (number of trees) is tested, and the results are shown in
Table 6. “Iterations” is an important hyper-parameter in the Catboost method. Catboost500
means the proposed method with “iterations” = 500 is employed. It is verified that hyper-
parameters are also important for prediction performance.

Table 6. The S performances of the proposed method with different “iterations”.

Method Sday1 Sday2 Sday3 Sday4 Sday5 Savg

Catboost500 0.3109 0.3913 0.4755 0.5226 0.5337 0.4396
Catboost1000 0.3188 0.3991 0.4837 0.5316 0.5411 0.4549
Catboost2000 0.3229 0.4025 0.4869 0.5365 0.5469 0.4591
Catboost3000 0.3273 0.4088 0.4908 0.5447 0.553 0.4649
Catboost4000 0.3246 0.4053 0.4889 0.5414 0.5492 0.4619
Catboost5000 0.3238 0.4031 0.488 0.5377 0.5471 0.4599

In addition, apart from the accuracy, it is also vital for model construction to minimize
the complexity of models [30]. To illustrate the superiority of the proposed algorithm
in convergence computing efficiency, a convergence computational time cost experiment
under three levels of datasets was implemented. Table 7 presents the computational time
costs of the proposed method and LSTM, RF, and Seq2seq models for different amounts of
stations. We test three datasets with different levels of data size, including Level 1 (data
from one station), Level 2 (data from five stations), and Level 3 (data from 10 stations).
It can be seen that the average computing time was algorithm specific, and the average
time consumed by the proposed algorithm was much less than that of the LSTM, RF, and
the Seq2seq algorithm, especially for the two deep leaning methods. A more noteworthy
observation is that the computing time costs of LSTM, RF, and the Seq2seq will increase
rapidly as the training data size increases, but it does not change too much for the proposed
method. For the Level 2 and Level 3 datasets (just five and 10 stations), the computational
costs of LSTM and Seq2Seq were 128.7–13,200.8 and 320.1–77,421.1 times the cost of the
proposed method, which possesses a tremendous time cost advantage when predicting
the meteorological elements of hundreds of weather stations in practice. The tree-based
algorithms are generally competent to build decision trees in parallel, which would more or
less decrease the computing time [30]. Therefore, the proposed method conducts apparent
optimization in time complexity, especially when the size of the input meteorological
dataset is large.
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Table 7. Computational costs of the four algorithms at different levels of input data size.

Method Level 1 Dataset
(1 Station)

Level 2 Dataset
(5 Station)

Level 3 Dataset
(10 Station)

RF 39 s 222 s 724 s
LSTM 1791 s 8754 s 37,774 s

Seq2Seq 87,291 s 897,654 s 9,135,680 s
The proposed method 37 s 68 s 118 s

Furthermore, Figure 9a–c illustrates a forecasting instance 2 m temperature, 2 m
relative humidity, and 10 m wind speed curves at one station on a competition day. The
horizontal coordinate values indicate 37 h, and the vertical coordinate values represent the
corresponding unit and the value range of each variable. In each sub-figure, the left blue
line is the observed meteorological value during the previous 28 h, the right blue line is the
ground truth, the brown line is the Seq2Seq prediction, and the red line is the proposed
prediction. It is also clear that the proposed method can achieve higher prediction accuracy.
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Figure 9. A test sample at one station is chosen to visualize the forecasting of 3 target variables in the
future 37 h. (a) 2 m temperature. (b) 2 m relative humidity. (c) 10 m wind speed.
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4. Conclusions

Based on the historical meteorological observation datasets and numerical weather
prediction (NWP) provided by Beijing weather stations, a short-term weather forecasting
model based on wavelet packet denoising and Catboost is put forwarded. Correlation heat
map and tree method are combined for feature selection. Moreover, specific spatiotemporal
features are extracted for the periodicity and spatial differences of weather features. Then
wavelet packet denoising is utilized to provide more effective denoised features, which
processes a part of the “learning” task in advance. Test results have demonstrated that,
compared with the conventional LSTM, random forest, and Seq2Seq methods, the proposed
method incorporating wavelet packet denoising with Catboost can significantly shorten
the convergence time of the learning model and decrease the computational cost, as well as
notably improve the prediction accuracy.

In this paper, some hyper-parameters (such as the soft-threshold Thwp in the wavelet
packet denoising and the number of trees “iterations” in the Catboost) are important for
prediction performance and need to be carefully selected. Future works include making
the effort to automatically tune hyper-parameters (e.g., self-adaptive soft threshold) or try
some ensemble methods. Moreover, the effect of historical observation sequence length and
the fusion strategy of NWP forecast data (e.g., attention mechanism), as well as integrating
some deep-learning model (e.g., transformer structure) in the prediction model can be
further explored to enhance prediction performance.
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