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Abstract: Aerosols can interact with other meteorological variables in the air via aerosol–radiation
or aerosol–cloud interactions (ARIs/ACIs), thus affecting the concentrations of particle pollutants
and ozone. The online-coupled model WRF-Chem was applied to simulate the changes in the PM2.5

(particulate matter less than 2.5 µm in aerodynamic diameter) and ozone concentrations that are
caused by these mechanisms in China by conducting three parallel sensitivity tests. In each case,
availabilities of aerosol–radiation interactions and aerosol–cloud interactions were set differently in
order to distinguish each pathway. Partial correlation coefficients were also analyzed using statistical
tools. As suggested by the results, the ARIs reduced ground air temperature, wind speed, and
planetary boundary height while increasing relative humidity in most places. Consequently, the
ozone concentration in the corresponding region declined by 4%, with a rise in the local annual mean
PM2.5 concentration by approximately 12 µm/m3. The positive feedback of the PM2.5 concentration
via ACIs was also found in some city clusters across China, despite the overall enhancement value
via ACIs being merely around a quarter to half that via ARIs. The change in ozone concentration
via ACIs exhibited different trends. The ozone concentration level increased via ACIs, which can
be attributed to the drier air in the south and the diminished solar radiation that is received in
central and northern China. The correlation coefficient suggests that the suppression in the planetary
boundary layer is the most significant factor for the increase in PM2.5 followed by the rise in moisture
required for hygroscopic growth. Ozone showed a significant correlation with NO2, while oxidation
rates and radiation variance were also shown to be vitally important.

Keywords: air pollution; aerosol meteorology feedback; WRF-Chem; partial correlation

1. Introduction

Ozone–chemistry-related issues have now sparked a heated discussion among en-
vironmental scientists throughout the world [1–4]. As far as China is concerned, the
fast-paced increase of ozone pollution in major cities across the country has become quite
alarming, along with the issue of relatively high PM2.5 concentrations [5,6]. Therefore, the
interplay between aerosols and gas pollutants is quite concerning, given the noteworthy
presence of regional fine particles [7]. The point lies in reducing PM2.5 pollution while
preventing ozone pollution from continuously increasing based on understanding how
pollutants develop and build up with scientific evidence gathered from in situ measure-
ments and numerical simulations. In the course of new developments in these directions,
many articles have been published about how aerosol interacts with ozone pollution from
a regional perspective.

In previous studies, an investigation was conducted into the correlation between
particulate matter and ozone from different angles. A long-time measurement campaign
was conducted in a northern city in China on a long-term basis. According to the results,
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the high level of PM2.5 in winter exerted an inhibitory effect on ozone, while meteorological
variables such as temperature and humidity can cause the regional pollution of PM2.5 and
ozone [8]. The findings made in this study also reveal the conversion rates of particles
and their interactions with ozone. A comparison between different elements unravels the
different mechanisms that are behind the absorption and distribution of the aerosols that
are affecting the severity of ozone pollution. Additionally, other scholars have produced ev-
idence for the different seasonal impacts of ozone pollution through aerosol loading [9–11].
Studies have also revealed [12,13] that HO2 radicals and other precursors are important
in the atmosphere, and their uncertainties should be underlined in quantification and
numerical simulations. Since NOx can serve as the precursor of ozone pollution and can
play a significant role in the level of regional PM2.5 concentrations [14], the mechanism
of the combined pollution on a local scale has triggered further discussions about local
aerosol feedback along with a variety of other variables.

In fact, aerosols are significant to the change in atmospheric radiation budget and
cloud nuclei to further adjust other atmosphere-related variables such as temperature, rela-
tive humidity (RH), the thermodynamics of the planetary boundary (PBL), and so on. As
for the wet-scavenging process of aerosol, it is subjected to the influence of variation in the
air. It has been demonstrated in prior studies that the aforementioned aerosol–radiation in-
teractions (ARIs) and aerosol–cloud interactions (ACIs) could make a substantial difference
to meteorology [15–17]. Therefore, this could lead to a noticeable enhancement of particle
pollution mass concentration in the atmosphere through various mechanisms [18–20]. The
notable positive feedback on the radiation budget in the air, PBL height [21], humidity [22],
characteristics of cloud condensation nuclei, and cloud albedo is contributory to the re-
gional concentration of particles [23]. Some of the studies focus on either a high-pollution
episode in a typical region or an elucidation of a typical pathway for adjusting the particle
mass concentration through meteorological feedback. However, it remains unclear how
effective the relevant variables are in changing ozone due to the feedback. The relative
contribution of these factors remains obscure. Consequently, it is necessary to quantify the
association of PM2.5 and ozone with ARIs and ACIs using appropriate numerical models.
Since the physics and chemistry parts mutually interact through coding, a state-of-the-art
on-line coupled chemistry transport model is considered as an ideal solution for quantify-
ing the impacts of ARIs and ACIs on PM2.5 and ozone concentrations [24–26]. Moreover,
model outputs can isolate the impact of different types of feedback from one another when
sensitivity tests are conducted under the proper settings. The results that are obtained
here may emphasize the significance of joint emission control in critical elements and the
optimization of relevant policies.

The rest of the paper is structured as follows: The configuration and evaluation of the
numerical model applied in the study are introduced in chapter two. Then, the evaluation
of both the meteorological and chemical performance is conducted by comparing simulated
and observed datasets. Chapter three illustrates the spatial distribution of changes in PM2.5
and ozone concentrations and elaborates upon the variables that are relevant to weather
and atmospheric chemistry. This chapter also conducts a partial correlation analysis to
assess the statistical relationship between different variables and quantified relationships.
Due to the limitation on the scope of the paper and the cost of computing resources, there
are some potential drawbacks to the study, which will be explored in the Discussion part
of the paper along with some possible directions for further study.

2. Model Configuration and Evaluation
2.1. Model Setting and Design of Sensitivity Tests

The model WRF-Chem model was applied in the present study. It is an advanced
atmospheric chemistry transport model that includes full aerosol feedback. It offers plenty
of choices in terms of atmospheric physics and chemistry, with different parameterization
schemes being available. The modules are set in the physics and chemistry packages
of the model, where the codes are interconnected. In this way, physical factors such as
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temperature, air humidity, kinetic energy, and radiation that are present in different layers
can interact with the chosen chemistry schemes, thus offering comprehensive feedback
loops in both aerosol–radiation interaction and aerosol–cloud interaction. Therefore, it is
an ideal solution for the feedback simulation [27].

To focus on the region of China, the simulation area is designed to cover the whole
territory of mainland China and the vicinity of the Pacific Ocean, similar to our previous
study [28]. The horizontal resolution of the study area is 36 km for each grid. Since the
atmospheric processes are highly complex within the planetary boundary layer (PBL), lower
air has more vertical layers than upper air, with the total number of vertical layers exceeding
40. January, April, July, and October are the four months that were deliberately chosen to
represent the four seasons. In each simulation, a one-week spin-up was carried out one month
before the study to ensure that the study was able to obtain proper results. The initial and
boundary conditions for the simulation were derived from NCEP FNL (final analysis) data,
which can be freely downloaded from a link on the official site of the WRF. Additionally, the
sea surface temperature (SST) data were updated on a daily basis as a lower boundary in
order to provide inputs so that the model could conduct correct calculations. The chemical
boundary condition was determined by MOZART, as recommended by the WRF-Chem
group; this method has been commonly accepted as a suitable solution for the organization of
the proper data for chemical simulation. In this study, the anthropogenic emissions from the
MEIC emission inventory [29] and the natural emissions from the MEGAN inventory created
by Guenther [30] are treated as the emission inputs.

The following chemistry and physics modules were used in the WRF-Chem model
in this study: The Rapid Radiative Transfer Model for GCMs (RRTMG) [31] was chosen
for simulating both long-wave and short-wave radiation. The Morrison two-moment
scheme was used for cloud microphysics [32], and the Kain–Fritsch scheme was used
for cumulus convective parameterization [33]. The Noah land–surface scheme [34], the
Monin–Obukhov surface scheme [35], and the Yonsei University planetary boundary layer
(PBL) scheme [36] were used for the lower boundary conditions in the study. The chemical
mechanism that was used was the Carbon-Bond Mechanism version Z mechanism in the
Model for Simulating Aerosol Interactions and Chemistry (CBMZ/MOSAIC) using four
sectional aerosol bins, including some aqueous reactions. To represent photochemistry,
the Fast-J photolysis scheme was used [37]. The options above are able to represent
feedback [38–41] and are adequate for the present study.

As mentioned above, the city clusters in China are crucial for exploring complex PM2.5
and ozone pollution. To collect the specific data required for further calculations, five
typical regions distributed across China were selected to represent different parts of China.
The locations of the North China Plain (NCP), Sichuan Basin (SCB), Lianghu Plain (LHP),
Yangtze River Delta (YRD), and Pearl River Delta (PRD) are marked in boxes, as shown
in Figure 1. From the north to the south, they cover different weather characteristics, and
the numbers of ground-based meteorological sites as well as the national environmental
observation sites in China are adequate for further statistical evaluation, as listed in Table 1.
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Figure 1. Model domain and distribution of the city clusters in mainland China. Meteorological and
environmental sites are also displayed.

Table 1. The information of five city clusters chosen for model analysis.

Region Range of Latitude
(Degree N)

Range of
Longitude
(Degree E)

Number of
Ground-Based

Sites

North China Plain (NCP) 38–41 115–119 58
Sichuan Basin (SCB) 28–32 103–107 24
Lianghu Plain (LHP) 27–31 112–115 31
Yangtze River Delta

(YRD) 29.5–32.5 112–122 53

Pearl River Delta (PRD) 21–24 112–115 35

A detailed model configuration and an explanation of the calculation process inside
of the model can be found in the Appendix A.

Three parallel sensitivity tests were performed in the study to quantify the difference
in the ARIs and ACIs in the atmosphere, as shown in Table 2. Because it consists of full
feedback, the first test means that ARIs and ACIs are both considered in the simulation. It
is therefore called BASE. As for the second test, it excludes the ACIs by setting the cloud
droplet number to a constant number in the code of the corresponding cloud microphysics
scheme. With only radiation feedback open, this test is called RAD test. In the third test,
both the ARIs and ACIs are excluded by fixing the cloud droplet number and by turning
off ARIs in the namelist at the same time, thus it is called NON. In this way, the differences
between the first and the second tests can be solely attributed to ACIs, while the differences
between the third and the second tests only result from ARIs. This method has been widely
applied in prior studies exploring the effects of ACIs and ARIs [16–21,23–27].

Table 2. Details of sensitivity tests conducted in the study using WRF-Chem.

Tests Aerosol-Radiation Interactions Aerosol-Cloud Interactions

BASE
√ √

RAD
√

×
NON × ×

2.2. Model Evaluation

Before any further analysis of the model output, it is necessary to thoroughly assess
model performance in the first place. In general, the evaluation results that are shown
for the study are classified into two categories: meteorological evaluation and chemistry
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evaluation. In each category, relevant factors are compared against observational datasets
to present the statistical results.

2.2.1. Evaluation of Meteorology

As for meteorological evaluation, there are several main parameters that should be
calculated in the atmosphere compared to ground measurements. The statistical assessment
involves as many as thousands of meteorological sites within the whole domain. The data
retrieved from the ground measurements are sourced from the National Climate Data
Center (NCDC) and are available to download via the link provided by the authority based
in the U.S. (https://www.ncei.noaa.gov/, accessed on 30 June 2021).

In Table 3, the mean observation values, mean simulation values, correlation coeffi-
cients, and other statistical results, including mean bias, normalized mean bias, root mean
square error, and normalized mean error are presented. As for the correlation coefficients
of temperature and relative humidity (RH), they were determined to be 0.94 and 0.70 at air
that is two meters about the ground, respectively. The normalized mean biases are −5.04%
and 2.71%, respectively. The results are comparable or higher than the levels obtained for
previous studies, indicating the model’s excellent performance in simulating the variables.
The correlation coefficient of the simulated and observed wind speed and precipitation
was 0.54 and 0.73, respectively, with wind speed being over estimated and the precipitation
being underestimated.

Table 3. Statistical analysis of simulated and observed meteorological variables.

Temperature
(°C)

Relative
Humidity

(%)

Wind Speed
(m/s)

Precipitation
(mm)

Mean
Observation 16.07 67.85 2.74 112.43

Mean
Simulation 15.26 69.69 3.43 106.83

Correlation
Coefficient 0.94 0.70 0.54 0.73

Mean Bias −0.81 1.84 0.69 −5.60
Root Mean

Square Error 3.31 15.66 2.64 53.32

Normalized
Mean Bias (%) −5.04 2.71 25.23 −4.98

Normalized
Mean Error (%) 15.29 17.69 67.47 87.93

To further identify the temporal distribution of the model performance, additional
information is provided in Figures S1–S3 in the Supplementary Materials. The tempo-
ral trends of the simulated temperature, relative humidity, and wind speed show good
agreement with the observations in the corresponding regions. Relatively larger relative
humidity biases can be found in the Sichuan Basin and Lianghu Plain regions in the winter.
Wind speed had a tendency to be underestimated in the south during summertime. One
can refer to the diurnal characteristics of the variables in Figures 2 and 3. The diurnal char-
acteristics were calculated based on different regions in different seasons. The simulated
results from the model output are shown, and the results are shown to have captured the
diurnal trends of the variables well. However, biases can be found in the Sichuan Basin and
North China Plain. The spatial distribution of the mean bias for precipitation in each month
is illustrated in Figure S4. Most of the underestimated precipitation sites are concentrated
in central and north China, while overestimates occur in the south and southwest of China
during spring, summer, and autumn. In general, the model captures the features of the
meteorological variables present in the simulation domain well, with the exception of some
relatively larger biases in certain regions.

https://www.ncei.noaa.gov/


Atmosphere 2021, 12, 1585 6 of 23Atmosphere 2021, 12, x FOR PEER REVIEW 6 of 24 
 

 

 

Figure 2. Comparison of diurnal characteristics of the simulated and observed temperature (℃) in 

different regions. 

Figure 2. Comparison of diurnal characteristics of the simulated and observed temperature (°C) in
different regions.



Atmosphere 2021, 12, 1585 7 of 23Atmosphere 2021, 12, x FOR PEER REVIEW 7 of 24 
 

 

 

Figure 3. Comparison of diurnal characteristics of the simulated and observed relative humidity (%) 

in different regions. 

2.2.2. Evaluation of Chemistry 

In addition to meteorological factors, the outputs of the chemical elements from the 

WRF-Chem model were compared as well. The observation dataset was from the China 

National Environmental Monitoring Center (CNEMC). The hourly observational air pol-

lution mass concentration values in μg/m3 are compared with the outputs derived from 

the WRF-Chem model in Figure 4. 

 

Figure 4. Scatter plots of the simulated concentrations of PM2.5 (a) and ozone (b) in comparison with 

the observation. 

Figure 3. Comparison of diurnal characteristics of the simulated and observed relative humidity (%)
in different regions.

2.2.2. Evaluation of Chemistry

In addition to meteorological factors, the outputs of the chemical elements from
the WRF-Chem model were compared as well. The observation dataset was from the
China National Environmental Monitoring Center (CNEMC). The hourly observational
air pollution mass concentration values in µg/m3 are compared with the outputs derived
from the WRF-Chem model in Figure 4.
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Figure 4 shows the simulated concentrations of PM2.5 and ozone compared to the ob-
servations. As suggested by the scatter plot, the level of model performance is satisfactory,
with the correlations and biases being detailed in the Table. The PM2.5 concentrations are
slightly underestimated, while ozone is slightly overestimated by the WRF-Chem model as
a whole. Notably, every single dot in the scatter plot represents an hourly observational
result with a corresponding simulation result in the grid within the domain. For clarifi-
cation, grids are chosen from within five typical regions across mainland China, where
the observational sites of CNEMC are available and are calibrated with quality control. In
general, the scatter plot suggests an underestimated concentration of PM2.5 in panel (a)
and an overestimated ozone concentration in panel (b). The Pearson correlation coefficients
of PM2.5 and ozone are 0.689 and 0.575, both of which are above the 0.01 significance level.
The figure indicates the good performance of the WRF-Chem model in simulating these
two chemical variables.

Given the transportation of chemical elements between different regions, all of the
sites located in mainland China that were available from CNEMC were compared against
the corresponding simulation outputs that were derived from the WRF-Chem model. The
statistical results of CO, NO2, SO2, PM10, PM2.5, and O3 are all listed in Table 4 and are
separated by month. Briefly, the biases of the particulate matters and CO are negative,
while the other variables are positive. There are relatively large biases found in January, a
month when the majority of east China experienced severe pollution. In other months, the
biases are less significant.

Table 4. Statistical analysis of simulated and observed chemical variables.

Month Observation Simulation Correlation Mean Bias Root Mean
Square Error

Normalized
Mean Bias

(%)

Normalized
Mean Error

(%)

CO

1 1.60 1.35 0.42 −0.25 1.03 −15.61 45.66
4 0.98 0.60 0.25 −0.39 0.60 −39.24 46.11
7 0.83 0.52 0.17 −0.31 0.62 −36.97 46.69

10 1.02 0.67 0.33 −0.35 0.62 −34.46 45.05

NO2

1 48.30 51.96 0.61 3.66 28.06 7.58 45.08
4 32.84 32.76 0.60 −0.08 19.49 −0.24 45.12
7 23.71 31.14 0.49 7.43 22.27 31.33 66.84

10 37.31 41.30 0.62 3.99 23.80 10.69 48.34

SO2

1 52.03 60.97 0.42 8.94 63.92 17.19 70.42
4 22.72 24.26 0.31 1.54 24.45 6.78 66.52
7 14.95 20.46 0.20 5.50 21.99 36.78 91.27

10 22.61 33.76 0.34 11.15 33.36 49.29 88.40

PM10

1 129.76 75.39 0.67 −54.37 79.50 −41.90 46.79
4 93.59 41.77 0.52 −51.82 71.16 −55.37 57.53
7 66.11 34.32 0.52 −31.80 45.07 −48.09 52.25

10 93.80 45.56 0.55 −48.24 67.98 −51.43 54.41

PM2.5

1 85.36 66.13 0.66 −19.24 47.94 −22.53 40.19
4 48.47 34.75 0.55 −13.72 26.61 −28.30 39.74
7 37.13 28.29 0.59 −8.84 20.94 −23.81 40.28

10 52.22 37.05 0.56 −15.17 33.80 −29.05 43.22

O3

1 35.10 47.57 0.51 12.47 27.47 35.52 57.37
4 67.73 71.17 0.52 3.44 30.08 5.08 34.92
7 75.13 83.34 0.47 8.21 31.59 10.93 32.00

10 59.06 64.56 0.56 5.49 28.78 9.30 37.02

To summarize, the model can reproduce the meteorology and chemistry in the domain
well even though some biases are present for certain elements during certain periods.
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3. Results

In the previous chapter, the performance of the WRF-Chem model was discussed in
detail. The results are consistent with the conclusion that it performs well in capturing the
meteorological and chemical characteristics. After a series of post-processing coding, the
output files of the WRF-Chem model were examined to explore the reason for changes in
multiple variables on the ground level.

3.1. Changes of Meteorological Variables and Precursors

Because aerosols demonstrate absorbing and scattering characteristics in the air, heavy
aerosol loading has been deemed contributory to reducing the solar radiation that is
received on the surface of the planet. If aerosols are involved in the cloud formation
mechanism as nuclei, then radiation variance also exists. Therefore, a comparison of the
net solar radiation on the surface layer caused by ARIs and ACIs is shown in Figure 5.
It is easy to identify the fundamental differences in the spatial distribution of changes
in the intensity of shortwave radiation due to ARIs or ACIs. If aerosols are irrelevant
to cloud microphysics, then the cloud droplet number across the domain is constant, so
changes in the surface radiation can only result from ARIs, as shown in panel A. The sharp
decline in the annual mean of the solar radiation received on the ground is concentrated in
those densely-populated city clusters across China, within northern and central China in
particular, where a maximum of over 22 W/m2 reductions can be observed within one year.
However, the change caused by ACIs is a separate issue. In central and northern China,
the feedback via ACIs contributes to increasing the shortwave radiation received on the
surface by 0.8–1.6 W/m2. Meanwhile, the reduction of the radiation can be observed in
some parts of the Sichuan Basin and in southern China by up to −1.8 W/m2. The spatial
distribution of changes in radiation due to ACIs shows a clear divide along the south bank
of the Yangtze River, where the north is positive, and the south is negative. It is worth
noting that the extent of changes in radiation that are caused by ACIs is far less significant
than the changes that are caused by ARIs, with a gap that is approximately 10 times larger.
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The alternation of the radiation received at the surface layer via ARIs and ACIs can
make a difference to both ground air temperature and relative humidity. As shown in
Figure 6, the majority of China experienced lower temperatures when ARI or ACI feedback
was considered. However, the extent of temperature change at an annual mean level can
vary due to the different pathways of interaction. The temperature changes can reach up
to −0.3 °C due to ARIs in the Sichuan Basin, but only a maximum reduction of −0.1 °C
can be found in panel B due to ACIs. Panels C and D illustrate the changes in RH that
are caused by ARIs and ACIs, respectively. Moreover, there is an evident rise in RH in
most parts of central and eastern China, with the most significant increase being found in
SCB. Relative humidity is calculated by the water vapor pressure divided by the saturation
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vapor pressure. In fact, saturation vapor pressure is linked with surface temperature. The
warmer the surface temperature is, the greater the vapor pressure. When considering
the surface temperature declines that are caused the aerosol–radiation interactions, the
saturation vapor pressure decreases, and the relative humidity increases. This means that
it is not the amount of water in the air that increases; instead, the air’s capability to hold
the water decreases. Therefore, relative humidity increases when the aerosol–radiation
feedback is turned on. The spatial distribution of the increase in the relative humidity in
most parts of China is consistent with the decrease in temperature, which can be accounted
for by the decline in saturated vapor pressure when it gets colder. These findings are
consistent with the commonly recognized umbrella effect caused by aerosols. The RH
changes caused by ACIs exhibit a similar spatial pattern to the temperature change caused
by ACIs. Notably, southern China tends to be drier when ACIs are considered, while
central and northern China is usually wetter. It is suspected that the different trends can
be made more significant during ozone formation and during aerosol’s other hygroscopic
growth processes. Discussions about spatial distribution characteristics are detailed in the
contents below.
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Changes in the PBL have been discussed in a previous paper [42]. In this study,
the development of PBL is also affected by ARIs and ACIs. Figure 7 shows a reduction
in the annual mean PBL height in China due to ARIs and ACIs. However, the extent
of suppression for PBL is lower via ACI than it is via ARIs. In panel A, a significant
reduction can be found in central China, northern China, and the southwestern basin, with
a maximum reduction of over 50 m in annual average PBL height. For comparison, the
maximum reduction of PBL height due to ACIs is restricted to below 30 m, and PBL height
is reduced within 10 m in most parts of China. To sum up, both ARIs and ACIs reduce PBL
height in most regions, despite the impact of ARIs being more significant than ACIs.
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The change of wind speed at the 10 m level was also evaluated separately according
to different types of feedback. In ARIs, a lower wind speed can be found at this level in
central China and in parts of the Sichuan Basin, with a maximum annual mean reduction
of −0.04 m/s. ACIs can also result in deceleration, but only to the extent of being a quarter
or half of that via ARIs. The phenomenon of decreased wind speed in Figure 8 indicates
the effectiveness of reducing regional transportation or dry deposition. This is consistent
with the results from a previous study [43].
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3.2. Changes of PM2.5 and Ozone Concentration due to ARIs and ACIs

The results of the absolute change in the concentrations of PM2.5 are presented in pan-
els A and B of Figure 9, while the percentages of the relative change are shown in Figure 10.
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The figure shows that northern China and central China as well as the Sichuan Basin
experienced a significant increase of the annual mean concentrations of PM2.5 due to ARIs.
The maximum annual mean enhancement of mass concentration reached over 12 µg/m3,
with an over 10% rise being observed in the scenario without any aerosol–meteorology
feedback. Regarding ACIs, the extent of the positive changes observed in the PM2.5 mass
concentration was relatively lower, with the annual maximum mean value reaching around
4 µg/m3. The relative change in the PM2.5 concentration ranged from approximately 4 to
6% in most parts of mainland China. However, the maximum percentage of change due to
ACIs was found in the Tibet Plateau, where the background is overly clean. In summary,
the figures show the differences between the effectiveness in year-round enhancement
due to ARIs and ACIs. Specifically, the impact of ARIs in the local aggregation of the
PM2.5 concentrations is more significant than the changes seen that were caused by ACIs.
Moreover, the spatial distribution indicates a more significant enhancement where the
PM2.5 concentrations are higher, suggesting a nonlinear relationship. This is consistent
with previous studies [27,28].
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Concerning ozone, there is a profound variance observed in Figures 11 and 12. ARIs
can reduce ozone in the majority of mainland China, where the PM2.5 enhancement feed-
back is relatively high. The maximum declines of over 1 ppbv annually are located in the
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metropolises. This drop is approximately 4% and is mainly observed in very large cities in
regions such as Chengdu, Chongqing, Wuhan, Zhengzhou, and some surrounding satellite
cities. The reduced short-wavelength radiation that is received on the surface yields a
smaller ozone concentration than the ones produced in the corresponding regions. This
trend can be identified in Figure 5. However, when it comes to ozone variation due to
ACIs, most of the changes are positive. The maximum increases are along the seashore due
to the land–sea breeze that transports ozone. Urban and rural differences in the spatial
distribution of ozone do not exist in this panel figure. PM-polluted areas display only a
1–2% increase in ozone pollution. This increase is averaged annually, and it may result
from the combined contribution of increased shortwave radiation and decreased relative
humidity. From the figures that are shown below, we can see a clear divide along the
south bank of the Yangtze River. The northern part receives more shortwave radiation
due to the ACIs, which improve ozone production, while the southern part experiences an
atmosphere that is drier by about −0.2% annually. Lower relative humidity and stronger
solar radiation both enhance ozone pollution.
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3.3. Partial Correlation Coefficient Analysis

Connections between the different factors and the relative contributions of these factors
have yet to be quantified. In order to assess these factors in depth, the partial correlation
coefficient (PCC) of these parameters was calculated by season, particle elements, and
weather conditions. PCC measures the linear dependence of a pair of variables from a set
of variable collections when the influence of the other variables is ruled out. Therefore, it is
suitable for analyzing sophisticated systems such as the one discussed here.

In the following equation, ryx.z represents the cofactor in the determinant of the matrix
of the variables of the empirical correlation coefficients.

ryx.z =
ryx −

(
ryz
)
(rxz)√

1− r2
yz
√

1− r2
xz

(1)

From the equation, the partial correlation coefficient can be calculated. The signifi-
cance of correlation can be examined by Student’s t-test, with certain degrees of freedom
depending on the size of the dataset. In this circumstance, variables are averaged in daily
mean values. Therefore, the degrees of freedom for the test on Student’s t distribution vary
from month to month due to the different number of days in each month. Moreover, the
elements of different particles are separated for presenting in-depth feedback of PCC in
different seasons. The five typical regions, as mentioned above, are also listed on the left
vertical axis of Figure 13. For the elements of fine particles, there are six categories listed,
including black carbon (BC), ammonia (NH4), nitrate (NO3), organic carbon (OC), other
inorganics (OIN), and sulfate (SO4). Meteorological factors include relative humidity (RH),
PBL height, and wind speed. Herein, the colors in different boxes indicate PCC values of
elements and meteorological factors in the corresponding month and region. As mentioned
above, Student’s t-test is performed to ensure the significance of the statistical correlation
between variables by checking the r value. The PCC with green color indicates that it is not
statistically significant for the correlation, while red and blue boxes suggest positive and
negative correlation coefficients with statistical significance.
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carbon, other inorganics, and sulfate) according to RH, PBL height, and wind speed in five city clusters
in China. Positive PCCs are shown in orange and red, while negative PCCs are shown in blue.
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As demonstrated in the figure, the PBL height is negatively correlated with all six
species of PM2.5 in nearly all five regions throughout the year. The season with the most
significant correlation when PBL height is crucial to PM species is winter, followed by
autumn. As for RH, the largest positive correlation coefficient lies in the spring, when
most species such as nitrate and ammonia are positively correlated with RH. The finding
is consistent with the conclusion drawn by Wang Xuan et al., who proposed that the
measured hygroscopic growth of nitrate and ammonia was stronger than sulfate in a
pollution episode in Beijing [44]. Wind speed shows a negative association in summer and
a positive correlation with certain species in autumn, accounting for the chemical transfer
from higher to lower polluted areas, particularly when cold fronts are active during the
transition period between two seasons. For instance, both the ammonia in the Sichuan
Basin and sulfate in the Yangtze River Delta positively correlate with wind speed in autumn.
In other words, the species show an upward trend when the wind blows harder. Given
the prevailing southward wind in autumn, corresponding species can be transferred to the
south of China, which can explain the positive partial correlation coefficient of wind speed
for certain species in autumn.

PCC is also calculated upon comparison with the mass concentration of PM2.5 in dif-
ferent areas. It is worth noting that all of the PCC values that meet the threshold are shown,
and others are marked with crosses in the table. According to the results, wind speed is only
insignificantly correlated with PM enhancement due to feedback in most regions during
most months except for July in PRD. It is assumed that this negative correlation results
from the seasonal movement of the subtropical high in summer. PBL height is negatively
correlated with the particle concentration to the most significant extent, particularly in
January and October, when three out of five regions show a significantly negative corre-
lation with PBL height, the coefficients of which are significant at the 0.01 level. In terms
of aerosol–radiation feedback, shortwave radiation at ground level reduces due to thick
aerosol loading. Consequently, the development of PBL is inhibited, which is consistent
with these negative PCCs in Table 5. In other words, aerosol can lead to shallower PBL
and the local aggregation of aerosols. Relative humidity is another factor changing the
concentration of PM2.5 in some regions through hygroscopic growth and the potential
chemical productions on the surface of aerosols. The PCC of RH is also shown in the
table. It can be seen from this table that the PCCs of RH only show statistical significance
during April in North China Plain and Sichuan Basin. The strong positive correlation in
the specific region and time provides evidence for the significance of hygroscopic growth
in wetter months through aerosol feedback.

Table 5. Statistical analysis of relationships between meteorological variables and PM2.5 concentra-
tions in different months.

January April July October

Wind speed

NCP x x x x
SCB x x x x
YRD x x x x
PRD x x −0.40 x
LHP x x x x

PBL height

NCP −0.45 −0.38 x x
SCB −0.48 x x x
YRD x −0.42 −0.38 −0.55
PRD −0.77 x x −0.54
LHP −0.40 −0.51 −0.40 −0.47

Relative
humidity

NCP x 0.51 x x
SCB x 0.38 x x
YRD x x x x
PRD x x x x
LHP x x x x
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The correlation coefficients of ozone were also calculated for the five representative
regions. The coefficients with statistical significance (p < 0.01) are listed in Table 6. The
coefficients indicate the relationship between the atmospheric variables and the absolute
change in ozone concentration due to ACIs. More variables are factored into the statis-
tical analysis to further verify the potential association between the variables and ozone
pollution, with chemical variables such as NO2 and meteorological variables such as tem-
perature, humidity, PBL height, and shortwave radiation received the surface. Those with
no significance are indicated by a cross in the corresponding box.

Table 6. Statistical analysis of relationships between meteorological variables and ozone concentra-
tions in different regions.

NCP SCB LHP YRD PRD

NO2 x −0.68 −0.76 −0.63 x
PBL Height x x x x x

RH −0.52 x x x x
Temperature 0.44 x x x x
Wind Speed x x x x x

Radiation x x 0.72 0.43 x
SOR x x 0.52 0.40 x
NOR x 0.81 x x x

There is a substantial difference between regions in terms of the significance shown
by correlation coefficients. In NCP, the most significant ones include relative humidity
and temperature, where relatively drier and hotter air can cause heavier ozone pollution
through ACI processes. In the Sichuan Basin, significant coefficients include NO2 and
nitrate oxidation ratio (NOR). Within the two city clusters along the middle and lower
reaches of the Yangtze River, LHP and YRD suffered the most significant impact from NO2
concentration followed by the received radiation and sulfur oxidation ratio (SOR) due to
ACIs, which may be attributed to the involvement of cloud nuclei in cloud microphysics
across these two regions. For PRD, none of the variables has passed the hypothesized
Student’s t-test. Thus, only the cross is shown in the column.

4. Discussion

Based on the previous discussion, a conceptual figure is shown in Figure 14. The
pathways for ARIs and ACIs are illustrated by detailed steps. Some chemical contributors
are not included in the figure owing to the limited size of the figure. Considering ARIs and
ACIs, the reduction of surface wind along with increased relative humidity is contributory
to the enhancement of PM2.5 concentration. However, ozone change varies partly due
to the negative correlation with relative humidity. Other chemical factors are also vitally
important to the ozone concentration, evidence of which is provided in Table 6.

Within the processes of ARIs, the surface can be cooled down due to the scattering
and absorbing characteristics of aerosols. Surface temperature is thus reduced, as indi-
cated in Figures 5a and 6a. Declining air temperature on the surface is conducive to the
increase of local relative humidity (Figure 6c) via the decrease of saturated water vapor
pressure. On the other hand, lower air temperature on the surface can result in temperature
inversion, enhancing the stability of atmosphere within the boundary layer. Therefore, the
development of the planetary boundary layer is suppressed (Figure 7a). On the other hand,
wind speed near the surface (Figure 8a) and the dry deposition velocity of particles are also
reduced, which is similar to the findings from the previous study [43].
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In addition, ACIs can be vital to the change of the meteorological factors. Cooler
surface (Figure 6b), higher relative humidity (Figure 6d), shallower PBL (Figure 7b), and
slower wind (Figure 8b) can also be found in the majority of mainland China, but to a
smaller extent when comparing with the influence by ARIs. The ACI pathways within the
WRF-Chem model have been referred to in previous studies [23,43], which presented cloud
microphysics in the calculation in depth.

As a result, the concentration of PM2.5 is mounting in the corresponding regions
(Figure 9a,b and Figure 10a,b) via both ARIs and ACIs. In terms of ozone, the influences
can be found especially in urban regions in central and eastern China, which can be
attributed to the reduced radiation as well as the changed NO2 mixing ratio (Figure S5)
along with increased relative humidity.

Due to the limits on time and computer resources, some issues are left unsolved.
Previous studies revealed the importance of heterogeneous reactions to the chemical
transport model [45–47], leading to a significant improvement of model performance in
quantifying pollutants. However, in this study, these reactions were not included, resulting
in some uncertainties. In addition, the simulation only covers four months. Since all-
year-round simulation is computationally expensive, it was not considered in the study.
In a case where adequate computing resources, an all-year simulation is recommended
to obtain more accurate results for identifying the influences of feedback. Moreover,
the options in cloud microphysics are also contributory to the uncertainties of the role
of ACIs in the feedback [48–51]. It is thus necessary to conduct further studies with
upgraded sophisticated model configuration for the continued validation of the relevant
scientific mechanisms. It is also recommended that the simulation tools continue to undergo
development in the future In order for them to continue to present reliable temporal and
spatial distribution with smaller biases. This not only refers to a regional atmospheric
chemistry transport model such as the WRF-Chem model but also to global models [52–58],
which are conducive to the elucidation of air pollution issues on different scales. Special
attention should be paid to the long transportation time between polluted regions as well
as the constraints in uncertainties of land–atmosphere interactions [59–61].



Atmosphere 2021, 12, 1585 18 of 23

5. Conclusions

To better understand the intricate impacts of aerosol–meteorology interactions on PM2.5
and ozone concentration, the up-to-date, sophisticated atmospheric chemistry model WRF-
Chem was applied while ensuring that the sensitivity tests were conducted with the proper
settings applied. These tests can help distinguish between the influence of ARIs and that of
ACIs. According to the results, the positive feedback increased PM2.5 concentration through
both ARIs and ACIs. However, the extent of the influence is more significant in ARIs than it
is in ACIs. As for ozone pollution, ARIs can reduce the level by 4%, while ACIs can alleviate
the increase in pollution by roughly 1 ppbv. As for the spatial distribution of the changes in
ozone, it also varies between ARIs and ACIs. Significant ozone reduction via ARIs was found
in the surrounding areas of the inland metropolises, while more significant changes via ACIs
were found along the coastline due to transportation by the land–sea breeze.

The partial correlation coefficients of PM2.5 and ozone concentrations were analyzed
using the variables in those representative city clusters across China, and a discussion
about different seasons and chemical species was detailed. The impact of PBL height plays
the most important role in causing changes to PM2.5 concentration, followed by relative
humidity, which is due to the hygroscopic growth process. The most significant variable
for ozone is NO2 followed by solar radiation density and oxidation rates, which provide
a reference for future investigation into the mechanism of joint control on PM2.5 and
ozone pollution in China, especially considering the feedback of the aerosol–meteorology
interactions.
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Appendix A

Explanation of the Calculation in the WRF-Chem Model Regarding the Meteorological Factors and
Chemical Species

The calculations within WRF-Chem can be classified into two major categories, i.e.,
meteorological parts and chemical species.

Meteorology:
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We used NCAR final analysis data as the input meteorological data. After ungrib and
interpolate processes into the grids of WRF-Chem, the data can be used as the model’s
initial and boundary conditions. The steps for preprocessing section are shown in the
figure below (Figure A1).
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Chemistry:
The chemistry portion is triggered by linking the natural emissions, anthropogenic

emissions, and chemical boundary conditions from Mozart (Figure A2), which can be
downloaded from the WRF-Chem official website by customizing the specific date, time
duration, and region coordinates. The conversion from different scales of emission invento-
ries and chemical boundary conditions must undergo these procedures. Detailed choice of
both anthropogenic and natural emission inventory can be seen in the Chapter 2.1 section.
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In our study, the input emissions were the MEGAN natural emission inventory,
the MEIC emission inventory for China, the MOZART chemical model for the chemical
boundaries, and the NCEP/NCAR final analysis data as the initial meteorological and
boundary conditions.

The programming language and software we used in the study for post-possessing and
visualization were python, NCL (NCAR Command Language), and the Origin software.

Interactions between the meteorological and chemical parts were dealt with in the details of
each of the modules in the state-of-the-art model. The interactions from the cloud microphysics
and aqueous phase chemistry can interact with aerosol microphysics in the corresponding
module, thus modifying the outcome. The explanation can be found in Figure A4.

https://ruc.noaa.gov/wrf/wrf-chem/wrf_tutorial_2015/WRF_CHEM_setup.pdf
https://ruc.noaa.gov/wrf/wrf-chem/wrf_tutorial_2015/WRF_CHEM_setup.pdf


Atmosphere 2021, 12, 1585 21 of 23
Atmosphere 2021, 12, x FOR PEER REVIEW 22 of 24 
 

 

 

Figure A4. Interactions with different modules in the WRF-Chem model in the simulation (Source: 

https://ruc.noaa.gov/wrf/wrf-chem/wrf_tutorial_2015/WRF_CHEM_aerosols.pdf) (accessed on 11 

November 2021). 

Based on the structure of the model, following designs of numerical experiments are 

implemented. When carrying out three sets of parallel sensitivity tests as indicated in the 

manuscript, we conducted the modifications in either the namelist configuration or the 

codes in the corresponding modules of cloud microphysics. The relative contribution of 

the aerosol–radiation interaction (ARIs) and aerosol–cloud interactions (ACIs) was there-

fore determined by comparing the differences of the results. The configuration of the par-

allel sensitivity tests is listed in Table 2 in the main content of the manuscript. 

References 

1. Yang, K.; Kong, L.; Tong, S.; Shen, J.; Chen, L.; Jin, S.; Wang, C.; Sha, F.; Wang, L. Double High-Level Ozone and PM2.5 Co-

Pollution Episodes in Shanghai, China: Pollution Characteristics and Significant Role of Daytime HONO. Atmosphere 2021, 12, 

557. 

2. Shu, L.; Wang, T.; Xie, M.; Li, M.; Zhao, M.; Zhang, M.; Zhao, X. Episode study of fine particle and ozone during the CAPUM-

YRD over Yangtze River Delta of China: Characteristics and source attribution. Atmos. Environ. 2019, 203, 87–101. 

3. Xing, J.; Wang, S.X.; Jang, C.; Zhu, Y.; Hao, J.M. Nonlinear response of ozone to precursor emission changes in China: A mod-

eling study using response surface methodology. Atmos. Chem. Phys. 2011, 11, 5027–5044. 

4. Lu, X.; Hong, J.; Zhang, L.; Cooper, O.R.; Schultz, M.G.; Xu, X.; Wang, T.; Gao, M.; Zhao, Y.; Zhang, Y. Severe Surface Ozone 

Pollution in China: A Global Perspective. Environ. Sci. Technol. Lett. 2018, 5, 487–494. 

5. Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic 

emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. 

6. Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 

air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. 

7. Li, K.; Chen, L.; Ying, F.; White, S.J.; Jang, C.; Wu, X.; Gao, X.; Hong, S.; Shen, J.; Azzi, M.; et al. Meteorological and chemical 

impacts on ozone formation: A case study in Hangzhou, China. Atmos. Res. 2017, 196, 40–52. 

8. Zhao, S.; Wang, L.; QI, M.; Lu, X.; Wang, Y.; Liu, Z.; Liu, Y.; Tan, J.; Zhang, Y.; Wang, Q.; et al. Study on the characteristics and 

mutual influence of PM2.5-O3 complex pollution in Handan. Acta Sicentiae Circumstantiae 2021, 41, 2250–2261. 

9. Benas, N.; Mourtzanou, E.; Kouvarakis, G.; Bais, A.; Mihalopoulos, N.; Vardavas, I. Surface ozone photolysis rate trends in the 

Eastern Mediterranean: Modeling the effects of aerosols and total column ozone based on Terra MODIS data. Atmos. Environ. 

2013, 74, 1–9. 

10. Jia, M.; Zhao, T.; Cheng, X.; Gong, S.; Zhang, X.; Tang, L.; Liu, D.; Wu, X.; Wang, L.; Chen, Y. Inverse Relations of PM2.5 and O3 

in Air Compound Pollution between Cold and Hot Seasons over an Urban Area of East China. Atmosphere 2017, 8, 59. 

11. Zhu, J.; Chen, L.; Liao, H.; Dang, R. Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons. 

Atmosphere 2019, 10, 352. 

12. Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013–2017 trends in summer surface ozone 

in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. 

13. Tan, Z.; Fuchs, H.; Lu, K.; Bohn, B.; Broch, S.; Dong, H.; Gomm, S.; Haeseler, R.; He, L.; Hofzumahaus, A.; et al. Radical chemistry 

at a rural site (Wangdu) in the North China Plain: Observation and model calculations of OH, HO2 and RO2 radicals. Atmos. 

Chem. Phys. 2017, 17, 4453. 

Figure A4. Interactions with different modules in the WRF-Chem model in the simulation (Source:
https://ruc.noaa.gov/wrf/wrf-chem/wrf_tutorial_2015/WRF_CHEM_aerosols.pdf, accessed on 11
November 2021).

Based on the structure of the model, following designs of numerical experiments are
implemented. When carrying out three sets of parallel sensitivity tests as indicated in the
manuscript, we conducted the modifications in either the namelist configuration or the
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