
atmosphere

Article

An Object-Based Method for Tracking Convective Storms in
Convection Allowing Models

Fan Han * and Xuguang Wang *

����������
�������

Citation: Han, F.; Wang, X. An

Object-Based Method for Tracking

Convective Storms in Convection

Allowing Models. Atmosphere 2021,

12, 1535. https://doi.org/10.3390/

atmos12111535

Academic Editors: Yunheng Wang

and Avelino F. Arellano

Received: 2 November 2021

Accepted: 19 November 2021

Published: 21 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Meteorology, University of Oklahoma, 120 David L. Boren Blvd., Norman, OK 73072, USA
* Correspondence: fanhan@ou.edu (F.H.); xuguang.wang@ou.edu (X.W.)

Abstract: The steady-state assumption commonly used in object-based tracking algorithms may
be insufficient to determine the right track when a convective storm goes through a complicated
evolution. Such an issue is exacerbated by the relatively coarse output frequency of current convection
allowing model (CAM) forecasts (e.g., hourly), giving rise to many spatially well resolved but
temporally not well resolved storms that steady-state assumption could not account for. To reliably
track simulated storms in CAM outputs, this study proposed an object-based method with two
new features. First, the method explicitly estimated the probability of each probable track based on
either its immediate past and future motion or a reliable “first-guess motion” derived from storm
climatology or near-storm environmental variables. Second, object size was incorporated into the
method to help identify temporally not well resolved storms and minimize false tracks derived for
them. Parameters of the new features were independently derived from a storm evolution analysis
using 2-min Multi-Radar Multi-Sensor (MRMS) data and hourly CAM forecasts produced by the
University of Oklahoma (OU) Multiscale data Assimilation and Predictability Laboratory (MAP)
from May 2019. The performance of the new method was demonstrated with hourly MRMS and
CAM forecast examples from May 2018. A systematic evaluation of four severe weather events
indicated 99% accuracy achieved for over 600 hourly MRMS tracks derived with the proposed
tracking method.

Keywords: convective storm tracking; convection allowing models; severe weather

1. Introduction

Storm tracking techniques were originally designed to track observed storms in radar-
based observations [1–3]. Recent decades have witnessed rapid convection allowing model
(CAM) developments [4–7]. CAM’s ability to realistically simulate convective storms has
motivated the adaptation of observation-based storm tracking techniques to track CAM-
simulated storms [8]. A reliable CAM-based storm tracking technique is essential for the
accurate characterization of simulated convective storm evolutions including key attributes
such as convection initiation (CI), storm motion, duration, and max-size during the lifetime
of a simulated storm. It provides a framework to systematically evaluate crucial aspects of
CAM-simulated storms. Such a framework advances our understanding of the strengths
and limitations of CAM forecasts so that they can be more appropriately utilized for severe
weather forecasting.

The object-based method, which involves the identification of objects to represent
storms present in a spatial variable at time t, is one of the most widely used methods for
convective storm tracking and CAM forecast verification [9]. Assuming minimal changes in
certain characteristics such as motion, size, intensity and/or changes in size and intensity,
the object-based tracking of a storm from t to t + ∆t is generally a “predict and match”
process [2,10,11]. Specifically, the storm object ot is first extrapolated to t + ∆t based
on its status at t (i.e., location, size, intensity) and/or attributes from t − ∆t to t (e.g.,
motion, changes in intensity/size). Then, the object(s) present at t + ∆t with attributes most
comparable to the extrapolated object is associated with ot.

Atmosphere 2021, 12, 1535. https://doi.org/10.3390/atmos12111535 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0002-8046-6948
https://doi.org/10.3390/atmos12111535
https://doi.org/10.3390/atmos12111535
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12111535
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12111535?type=check_update&version=2


Atmosphere 2021, 12, 1535 2 of 21

Although this extrapolation-based approach showed promise, it is unclear to what
extent an object’s status at t and attributes from t − ∆t to t can be reliably used to predict
its counterpart at t + ∆t. If too much confidence is given to a poorly predicted object,
the derived track associating ot with some object(s) at t + ∆t may be false. False tracks
derived from t to t + ∆t may lead to more unreliable tracks from t + ∆t to t + 2∆t and so
on. Although this caveat has been noted by many studies for tracking both observed and
CAM-simulated storms [10,12,13], we have not found any existing object-based tracking
method that quantified or at least studied the uncertainty associated with the attributes
used for extrapolation.

The extrapolation-based approach is especially ill-suited for handling current CAM
forecasts because it cannot accurately track spatially well resolved but “short-lived” storms
(i.e., seen on less than three contiguous time frames) without a high-quality “first-guess
motion”. It is not a serious concern if the number of such storms is limited. However, the
output frequencies of current CAM forecasts are generally much lower compared to their
spatial resolution (e.g., ∆t = 1 h versus ∆x = 1∼3 km [14]), giving rise to a considerable
number of such storms. The abundance of these storms greatly increases the likelihood of
random, false connections among them and would inevitably affect the tracking reliability
of nearby, long-lived storms, posing a serious challenge to the overall tracking quality
of CAM-simulated storms [15]. We are not aware of any existing CAM-based tracking
methods that address this challenge associated with hourly CAM outputs.

To overcome the above limitations and improve the accuracy of CAM-based convective
storm tracking, this paper proposes a new object-based method with two new features.
First, uncertainties associated with attributes used in object extrapolation were explicitly
quantified to guide the derivation of tracks. Second, object size was incorporated to help
identify objects not well resolved by the given temporal resolution; tracks associated
with objects smaller than certain threshold size must undergo additional quality control
steps before being accepted. Parameters used in the new features were derived from a
resolution-dependent study of generic storm evolution properties using 2-min Multi-Radar
Multi-Sensor (MRMS [16]) data and hourly CAM forecasts produced by the University of
Oklahoma (OU) Multiscale data Assimilation and Predictability Laboratory (MAP) from
May 2019.

The structure of the paper is as follows. Section 2 presents the independent, resolution-
dependent study of convective storm evolution using 2-min, 1 km MRMS observations
and hourly, 3 km CAM forecasts produced by OU MAP during May 2019. The new object-
based tracking algorithm with parameters derived from the study is proposed in Section 3.
Section 4 demonstrates the performance of the new tracking algorithm with examples of
complex storm evolutions in hourly MRMS observations and MAP forecasts during May
2018 and systematic evaluations of 608 hourly MRMS tracks, and 123 distinct CIs derived
with the new method. Section 5 summarizes the study.

2. Generic Evolution Properties of Convective Storms

The goal of this section is to derive baseline parameters for (a) describing generic
evolution properties for storms well resolved by data of given spatial (∆x) and temporal
(∆t) resolution and (b) distinguishing them from storms not well resolved by ∆t. As an
applicable example for CAM-based storm tracking, we set ∆x = 3 km and ∆t = hourly,
the resolution of MAP forecasts used in this study. To ensure the accuracy and general
applicability of the baseline parameters, we utilized the publicly available 2-min MRMS
data (https://www.nssl.noaa.gov/projects/mrms/, accessed on 1 May 2019) spanning a
month (May 2019). The adaptability of baseline parameters for tracking CAM-simulated
storms was explored using hourly MAP forecasts from the same period.

2.1. Data and Method

The data for identifying observed objects and ∆t tracks is 2-min, 0.01◦ × 0.01◦ (~1 km
× 1 km) MRMS composite reflectivity observations over the continental U.S. (CONUS)

https://www.nssl.noaa.gov/projects/mrms/
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during May 2019. The data for identifying simulated objects is hourly, 3 km × 3 km CAM
simulated reflectivity forecasts produced by OU MAP over the same domain during the
2019 NOAA Hazardous Weather Testbed (HWT) Spring Forecasting Experiment (SFE). For
a detailed description of the OU MAP forecast configuration, please refer to the 2019 HWT
SFE program overview and operations plan (https://hwt.nssl.noaa.gov/sfe/2019/docs/
HWT_SFE2019_operations_plan.pdf, accessed on 1 August 2019).

To match the spatial resolution of CAM forecasts used in this study, MRMS data
was remapped to a 3 km × 3 km grid. Before object identification, a median filter of size
9 km × 3 km was applied to both data to filter high-frequency noise [17,18].

Objects were identified using a fixed threshold, 35 dBZ. This is based on subjective
evaluations of objects identified with a series of thresholds (e.g., 35, 40 and 45 dBZ): 35 dBZ
performs the best for identifying individual storms in their entirety, while higher thresholds
produce increasing numbers of objects describing only part of a storm, especially in the
case of mesoscale convective systems.

Identified MRMS objects were tracked every 2 min by a simple method: each object at
t was associated with the nearest object(s) at t + 2 min measured by the Hausdorff distance
(H [19]). Hausdorff distance is a composite distance measure between two sets of points
rather than two single points (e.g., centroids). A small H between two objects not only
indicates spatial proximity but also implies similar sizes and shapes. To minimize the
effects of less well-resolved features on tracking reliability, (a) we only tracked objects with
area ≥10 pts on the 3 km grid which is equivalent to a minimum storm size of ~10 km
in diameter, and (b) the overlap ratio for each track T(ot, ot +2 min) derived by the simple
method must be greater than 0.5 for the track to be valid. Overlap ratio, R(ot, ot +2 min),
is defined as the ratio between A(ot ∩ ot +2 min), the overlap area of ot and ot + δt, and
min{A (ot), A (ot +2 min)}, the smaller object’s area within the track.

If multiple objects, i.e., o1
t , o2

t , and o3
t , connect to the same object ot +2 min, we cal-

culate the Hausdorff distance for all competing one-to-one tracks, i.e., H
(
o1

t , ot +2 min
)
,

H
(
o2

t , ot +2 min
)
, H

(
o3

t , ot +2 min
)
, as well as the alternative many-to-one track describing

the merging of o1
t , o2

t and o3
t into ot+2min, H

({
o1

t , o2
t , o3

t
}

, ot +2 min
)
. Curly brackets of ob-

jects (
{

o1
t , o2

t , o3
t
}

) denotes that the objects listed inside the brackets are treated as one
object. The track with the smallest H is the resulting track. One-to-many tracks are derived
similarly. A one-to-many track simulates the situation where one object at t splits as several
objects at t + 2 min.

After 2-min tracks were derived for all consecutive time frames, ∆t tracks were
obtained by (a) combining all contiguous 2-min tracks within each t~t + ∆t period into
a track sequence and (b) reducing each track sequence to a ∆t track containing only the
starting object(s) at t and ending object(s) at t + ∆t. Because the 2-min track sequence may
contain both one-to-many and many-to-one tracks, the derived ∆t track may be many-to-
many (the association of multiple objects at t to multiple objects at t + ∆t). A many-to-many
∆t track typically describes the co-development of storms that have gone through rather
complex deformations and interactions (merging and splitting) on the 2-min level.

To demonstrate the hourly tracks identified by this approach, Figures 1 and 2 show
20-min snapshots of MRMS composite reflectivity for a small region of ongoing convection
during 18–19 z and 19–20 z of 1 May 2019. Colored objects represent storms associated with
identified hourly tracks while gray objects represent storms not well resolved by hourly data.
Three hourly tracks were identified during 18–19 z (orange, blue, pink in Figure 1) and four
were identified during 19–20 z (green, orange, magenta, blue in Figure 2). The orange-colored
track in Figure 2 is the continued track of the same-colored storm in Figure 1 while the
blue- and pink-colored tracks in Figure 1 continued as one track (blue) in Figure 2. The
green- and magenta-colored tracks of Figure 2 are storms newly formed after 18 z.

https://hwt.nssl.noaa.gov/sfe/2019/docs/HWT_SFE2019_operations_plan.pdf
https://hwt.nssl.noaa.gov/sfe/2019/docs/HWT_SFE2019_operations_plan.pdf
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Figure 1. (a1–a4) 20-minute snapshots of MRMS composite reflectivity and (b1–b4) objects identi-

fied from 18 z to 19 z, 1 May 2019. Same-colored objects in column b imply tracks identified for 18–
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Figure 1. (a1–a4) 20-min snapshots of MRMS composite reflectivity and (b1–b4) objects identified
from 18 z to 19 z, 1 May 2019. Same-colored objects in column b imply tracks identified for 18–19 z
and gray objects represent systems that initiate and/or dissipate during 18–19 z.
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Figure 2. (a1–a4) 20-minute snapshots of MRMS composite reflectivity and (b1–b4) objects identi-
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Figure 2. (a1–a4) 20-min snapshots of MRMS composite reflectivity and (b1–b4) objects identified
from 19 z to 20 z, 1 May 2019. Same-colored objects in column b imply tracks identified for 19–20 z
and gray objects represent systems that initiate and/or dissipate during 19–20 z.
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2.2. Track-Based Attributes and Their Properties

To study generic properties of convective storm evolution on the target resolution ∆t,
track direction (θ) and speed (h) were estimated for all identified ∆t tracks: θ and h were
estimated per track and saved separately for each object associated with the track. For
example, the direction and speed of a many-to-one track T

({
o1

t , o2
t
}

, ot+∆t
)

was derived
using the centroid locations of

{
o1

t , o2
t
}

and ot+∆t; the estimates were saved as the future
(or current) track direction (θf) and speed (hf) for o1

t and o2
t and past (or previous) track

direction (θp) and speed (hp) for ot+∆t. For an object ot associated with both a future track
(Tt→t+∆t) and a past track (Tt−∆t→t), changes in track direction (∆θ) and speed (∆h) were
also estimated. Specifically, ∆θ(ot) = θf(ot)− θp(ot) and ∆h(ot) = hf(ot)− hp(ot).

Table 1 listed all the attributes we estimated for the hourly tracks identified in
Figures 1 and 2, including track direction, speed for all hourly tracks and changes in
track direction and speed from 18–19 z to 19–20 z if the tracks identified in Figure 1 were
continued in Figure 2. Track direction ranges between 0◦ and 360◦ following standard
meteorological convection (e.g., the direction for storms moving west-to-east and south-
to-north is 270◦ and 180◦, respectively). The track direction of 238.23◦ and 240.45◦ was
estimated for the cell along the orange-colored track from 18–19 z and 19–20 z, respectively,
reflecting an average storm moving direction of WSW with minimal changes in direction
(i.e., ∆θ = 2.22◦). Changes in direction and speed were also estimated for the blue-colored
track of Figure 2, with values slightly different for the two blue objects of Figure 2 h because
they were associated with different tracks (blue and pink) from the past hour (Figure 1).
Although listed in the table, the motion (θ and h) as well as changes in motion (∆θ and ∆h)
for the blue-colored track of Figure 2 were not used for further analyses because they reflect
the attributes of a typical slow-moving storm (4.17 km h−1) with an overlap ratio of 0.894.
As discussed in [2], slow-moving storms may make apparently large changes in direction.
Object-based motion derived from a slow-moving storm mostly reflects the structural
changes within the storm rather than the translational motion of the storm. For this reason,
slow-moving tracks, identified by an overlap ratio of 0.7 and larger, were excluded from
the statistical analyses of track attributes for the remainder of the subsection.

Table 1. Track attributes for identified hourly tracks in Figure 1 (18–19 z) and Figure 2 (19–20 z)
including track direction (θ ), speed (h) and changes in track direction and speed (∆θ and ∆h ) from
18–19 z to 19–20 z of 1 May 2019.

18–19 z θ [◦] h [km h−1] 19–20 z θ [◦] h [km h−1] ∆θ [◦] ∆h [km h−1]

Orange 238.23 26.79 Orange 240.45 40.38 2.22 13.59

Blue 207.31 32.1
Blue 358.94 4.17

151.63 −27.93

Pink 214.42 36.48 144.52 −32.67

Green 263.6 19.17 N/A N/A

Magenta 271.34 15.48 N/A N/A

The statistical properties of track direction and speed were studied with histograms
of θ and h. Figure 3 shows the histograms of θ and h for a total of 8336 sample objects
with valid future hourly tracks derived from the 2-min MRMS data of May 2019. The
sample mean moving direction of 246◦ and speed of 51 km/h as well as ranges of values
were close to those estimated by [15] using similar object-based methods and a different
observation dataset and tracking method. Samples with seemingly extreme values of h (i.e.,
h > 120 km h−1) were subjectively examined and found to be storms that have undergone
large structural deformation in addition to translation within the 1-hour period.
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Figure 3. Histogram of (a) track direction (θ) and (b) track speed (h) for a total of 8336 sample objects with valid hourly
future tracks. Sample mean, one standard deviation range and sample size are listed on top of the histograms. The blue
curves are (a) normal and (b) lognormal distribution probability density functions (PDFs) we designed to fit the histograms.

To describe the statistical behaviors of θ and h, we fitted two probability density
functions (PDFs, blue curves), θ ∼ Nθ

(
µθ,σ2

θ

)
and ln(h) ∼ N

(
µh,σ2

h
)
, to the histograms

of Figure 3 based on their shapes. Standard deviation parameters σθ and eσh were designed
to be slightly larger than histogram-derived ones to account for geographical, diurnal and
object-size-based variability of sample mean θ and h (see Figures S1 and S2). The slightly
larger values of σθ and eσh were depicted in Figure 3 with blue shaded ranges, the one-
standard-deviation distribution ranges ([µθ − σθ,µθ + σθ] and [eµh /eσh , eµheσh ]) that is
slightly wider than the corresponding histogram intervals shown by dotted hatchings.
Because the two PDFs quantitatively described the general behavior of hourly storm motion
for convective storms well resolved in hourly, 3 km observations, they can be utilized to (a)
provide a “first-guess motion” to initialize the tracking of a storm object and (b) quantify
the generic likelihood of any track derived within data of the same resolution.

Similarly, the generic hour-to-hour variation of moving direction and speed were
studied with ∆θ and ∆h for a total of 6531 sample objects with a valid future and past track.
Figure 4 shows the histograms of ∆θ and ∆h with two main findings: (a) the histograms of
∆θ and ∆h were both symmetric and centered around 0, indicating there was no preferred
direction in the changes of track direction and speed from the past hour to the current
hour, and (b) the distributions of ∆θ and ∆h were more concentrated about the mean than
the distributions of θ and h, suggesting extrapolation was more reliable than “first-guess”
and should be used for predicting the motion of a storm if its immediate past/future
motion was known. Similarly, we fitted two PDFs to the histograms of Figure 4 (blue
curves, Gaussian) which were used to quantify the extrapolation-based likelihood of any
track derived within data of the same resolution. Considering the relatively small motion
variation between contiguous tracks, we can also devise a criterion stipulating how much
motion deviation from its immediate past or future track is allowed should a derived track
be real.

Other track-based attributes we studied include average storm intensity and size
along the track and changes of storm intensity and size from the past track to the future
track of the same object. These attributes were not used in the proposed tracking method
because they were associated with very large sample/subsample uncertainties, providing
little guidance for generic storm tracking on the target resolution.
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2.3. Object Attributes to Infer Resolvability

As discussed in Section 2.2, an evaluation of how well a derived track has maintained
steady motion can be used to infer whether the derived track is real, i.e., the objects within
the track in fact continued from t to t + ∆t. With this attribute serving as a quality-control
criterion, the number of false tracks connecting well-resolved storms to nearby, temporally
not well resolved storms can be effectively reduced.

However, the above criterion cannot be used to reduce tracks connecting two tem-
porally not well resolved storms, i.e., objects with no hourly tracks associated with them.
To better identify these objects and limit the number of false tracks connecting them, we
divided the identified MRMS objects from May 2019 into two groups, (a) objects with at
least one derived hourly track (past and/or future) and (b) objects with no hourly tracks.
Several object-based attributes were studied for the two groups and Figure 5 displayed the
histograms of one object-based attribute, object size (

√
A), for the two groups of objects. It

was apparent that the smaller the object, the less likely there existed an hourly track with
the object, suggesting a parameter based on object size can be used to infer the likelihood
of an object’s temporal resolvability and minimize tracks connecting temporally not well
resolved objects.
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Figure 5. Object size histograms of (orange) temporally well-resolved and (blue) not well-resolved
objects that appear on the hourly time frames of the 2-min MRMS composite reflectivity data from
May 2019. An object is identified as temporally well resolved if it is associated with at least one future
or past hourly track.
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2.4. Adaptability of Baseline Parameters for Tracking CAM-Simulated Storm

Sections 2.3 and 2.4 derived baseline parameters for reliably tracking observed con-
vective storms in hourly MRMS data. Since CAM-simulated storms may have intrinsically
different motion climatology, MRMS sample mean motion (from Figure 3) may not be
appropriate to be used for tracking CAM-simulated storms. So, how well can MRMS-
based parameters be adapted to reliably track simulated convective storms in hourly
CAM forecasts?

Figure 6a,b shows an example of MRMS storms and the corresponding CAM-simulated
storms at the analysis time of a MAP forecast. Most MRMS storms were well simulated by
the MAP forecast shown in this case. Subjective evaluation of short-range 10-min MAP
forecasts suggested that storms well simulated at analysis time were able to maintain
observed motions for at least 1–2 h. Given the high-quality initial simulation of storms in
MAP forecasts, we can match well-simulated storms to observed ones (see Figure 6c,d)
and safely assume the observed motion, which can be derived using 2-min data, for each
matched storm in Figure 6d. With these motions, the relationship between simulated storm
motion and predictors like near-storm variables (such as wind, temperature) and storm
attributes (such as size, location) can be explored. Because these predictors were available
at all forecast hours, the relationship we learnt for a small number of well-simulated storms
can be used to predict motion for any storm present in our CAM forecasts and construct a
CAM-specific storm motion climatology.
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Figure 6. (a) MRMS composite reflectivity and (b) simulated reflectivity at the analysis time of a
CAM forecast produced by OU MAP; (c,d) identified objects for observed and simulated storms from
(a,b). Distance-matched observed and simulated objects in (c,d) are displayed with the same colors.
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Using the above strategy, we constructed and trained a multilayer perceptron model
(MLP [20]) to learn the relationship between simulated storm motion and several predictors
including near storm 500 hPa wind fields, storm size, location and intensity. Our data
includes 425 well-simulated storm objects at the analysis time of 26 MAP forecasts produced
during May 2019. After training the model with 80% of the data, we achieved an 85%
accuracy (estimated with mean absolute error) on the remaining 20% test data. As will
be detailed in Section 3, the trained MLP was used instead of the sample mean motion of
Figure 3 to produce the generic PDFs used as “first-guess motions” for tracking simulated
storm objects.

In addition to the 500 hPa wind fields, we also considered other potentially useful
MLP predictors such as 0–6 km storm motion, 0–6 km vertical shear of horizontal wind,
700 hPa vertical velocity and 1–6 km updraft helicity. However, the correlations between
these model variables and object-based storm motion were relatively low; incorporating
them into the MLP model led to training data overfitting and reduced prediction accuracy.

Other MRMS-based parameters such as motion variation statistics and object size
were directly adapted for CAM-based tracking. As will be introduced in Section 3, the
algorithm initializes with and depends primarily on “first-guess motions”. The constraint
of other parameters on the derivation of storm tracks were secondary.

3. Materials and Methods

This section presents the new object-based storm tracking algorithm. The output of
the algorithm is a track-object network serving as an abstract representation of the temporal
evolutions and interactions of all storms resolvable by the given data during a specified
period. Once the track-object network is constructed, a new space-time object describing
the evolution of each distinct storm from initiation to dissipation can be identified.

Resolution-dependent parameters to be used in the proposed algorithm were derived
from Section 2 and can be applied to any data with the same resolution (i.e., hourly and
3 km). To demonstrate the general applicability of the algorithm, we use hourly MRMS
observations and MAP forecasts from May 2018, a period different from the one used
to derive baseline parameters, to illustrate and evaluate the proposed algorithm. MAP
forecasts produced in May 2018 used the same configuration as the ones produced in May
2019 [21].

Data preprocessing and object identification were the same as in Section 2. Assuming
each identified object describes one physically well-defined storm, the object-based tracking
problem from t to t + ∆t is defined as to derive the tracks between object(s) identified at
t to object(s) identified at t + ∆t that most accurately describe the physical evolutions of
storms. There are four types of tracks we could derive:

• A one-to-one track T0(ot, ot + ∆t) is the association of an object at t to another object at
t + ∆t. This is the most common type of track we derive, describing the independent
evolution of a storm from t to t + ∆t;

• A many-to-one track T
({

o1
t , o2

t , . . .
}

, ot + ∆t
)

is the association of multiple objects at t
to one object at t + ∆t. It describes the merging of several storms at t into one storm at
t + ∆t;

• A one-to-many track T
(
ot,

{
o1

t + ∆t, o2
t + ∆t, . . .

})
is the association of one object at t to

multiple objects at t + ∆t. It describes the splitting of a storm at t into several storms
at t + ∆t;

• A many-to-many track T
({

o1
t , o2

t , . . .
}

,
{

o1
t + ∆t, o2

t + ∆t, . . .
})

is the association of mul-
tiple objects at t to multiple objects at t + ∆t. It describes the group tracking of several
storms at t to several storms at t + ∆t. Because our goal is to separately track the
evolutions of individual storms, this type of track is not considered in our solution.

Here T0 is used to describe one-to-one tracks while T describes tracks in general, in-
cluding one-to-one and composite (i.e., many-to-one or one-to-many) tracks. For simplicity,
we will use one-to-one tracks to define most quantities encountered in the algorithm, but
they can be straightforwardly extended for composite tracks.
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Our general tracking strategy is extrapolation. However, instead of extrapolating in
the forward direction only, we start with the forward extrapolation from t0 (the earliest time
of the data) to tn (the latest time of the data). Once it finishes, we extrapolate backwards
from tn to t0 (e.g., hindcast) and update the tracking solution. The procedure is repeated
multiple times until the tracking solution converges (i.e., the solution changes little from the
last iteration to the current). The iterative design generally improves the tracking accuracy
following the 2nd iteration, because each probable track T(ot, ot + ∆t) can be more reliably
determined with not only the past track of ot from t− ∆t to t, but also the future track of
ot+∆t from t + ∆t to t + 2∆t.

As the iterative design suggests, the likelihood of a probable one-to-one track T0(ot, ot + ∆t)
can be estimated by two conditional probabilities, P (ot + ∆t|ot) and P(ot|ot + ∆t). Specifi-
cally, P(ot + ∆t|ot) is the conditional probability that T0 (ot, ot + ∆t) exists given (the past
motion of) ot and it is estimated by

P (ot + ∆t|ot) = Pθ (ot + ∆t|ot)·Ph (ot + ∆t|ot), (1)

Here Pθ (ot + ∆t|ot) and Ph (ot + ∆t|ot) are the probabilities of the direction and speed
of T0(ot, ot+∆t) conditioned on the past direction and speed of ot. Similarly, P (ot|ot + ∆t) is
the conditional probability of T0 (ot, ot + ∆t) that exists given (the future motion of) ot + ∆t
and it is estimated by

P (ot|ot + ∆t) = Pθ(ot|ot + ∆t)·Ph (ot|ot + ∆t), (2)

with Pθ (ot + ∆t|ot) and Ph (ot + ∆t|ot) denoting the probabilities of the direction and speed
of T0 (ot, ot + ∆t) conditioned on the future direction and speed of ot+∆t.

The past motion of ot (future motion of ot + ∆t) which the above probabilities are
conditioned on is estimated using either (a) the past track of ot (future track of ot + ∆t) with
extrapolation-based PDFs (derived from Figure 4) if the track exists, or (b) a “first-guess
motion” with generic PDFs (in the case of MRMS observations, derived from Figure 3) or
with mean motion predicted by MLP (in the case of CAM forecasts, detailed in Section 2.4).
The two sets of PDFs as well as other parameters used in the tracking algorithm are listed
in Table 2.

Table 2. The parameters used for hourly tracking. θp/f and hp/f denote the direction and speed of
the given past or future motion. Ares and hmax are parameters of the likelihood criterion applied in
steps 2 and 6 of the proposed tracking.

Parameters Values

θ ∼ Nθ (µθ, σθ) (Generic PDF) µθ = 250◦ or MPL-based; σθ = 60◦

ln (h) ∼ Nh (µh, σh) (Generic PDF) eµh = 45 km h−1 or MLP-based; eσh = 1.8

θ ∼ Nθ

(
θp/f, σθ

)
(Extrapolation-based PDF) σθ = 30◦

h ∼ Nh

(
hp/f, σh

)
(Extrapolation-based PDF) σh = 30 km h−1

Ares 100 pts

hmax 120 km h−1

Given the past (or future) motion, the conditional probability of a one-to-one track
T0 (ot, ot + ∆t) was estimated by first determining the speed and direction of the track itself
and then identifying their probabilities Pθ and Ph on the PDFs the track was conditioned on.
With the two conditional probabilities, P (ot + ∆t|ot) and P (ot|ot + ∆t), we can thoroughly
analyze the likelihood of each T0 (ot, ot + ∆t) from both sides and derive our solution,
the set of most likely tracks from t to t + ∆t, following a specific order guided by the
conditional probabilities. The hierarchy of decision-making starts with a set of “base tracks”
determined first. A T0 (ot, ot + ∆t) track is identified as a base track if and only if it is the
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highest probability track among all probable T0s of ot and ot + ∆t, describing the most likely
one-to-one tracking solution. The second tier T0s to be decided are ones that are most likely
according to one of the two conditional probabilities of each T0. All other one-to-one tracks
are then decided according to their relationships with the base tracks and accepted second
tier tracks.

During the multi-tiered decision-making process, the decision to accept or reject each
one-to-one track T0 (ot, ot + ∆t) is made upon diagnosing its relation to all the tracks that
have already been accepted from t to t + ∆t. Figure 7 schematically demonstrated all three
scenarios regarding whether to accept a new T0 (shown as a dashed red line). The already
accepted tracks are shown as solid red lines. In Figure 7a, the new track is accepted because
it is independent of the already accepted track. In the case of Figure 7b, the new track
is rejected because it conflicts with already accepted tracks: accepting this track would
lead to its combination with the two already accepted tracks into a many-to-many track,
a type of track not allowed in our solution. Figure 7c shows the final type of decision-
making scenario in which a composite track will be identified if the new track is accepted.
In this situation, the new track shares the same object with one of the already accepted
tracks and we need to conduct a quantitative evaluation to help make the decision. The
evaluation examines whether combining the new track with the already accepted track into
a many-to-one track would improve the probability (P) of the track. A detailed description
of the quantitative evaluation will be presented in Step 4a of the algorithm (below). If the
probability is improved, the new track will be accepted and incorporated into the already
accepted track as a composite track.
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Figure 7. Schematic illustrations of whether to accept or reject a new T0 (shown as red dashed line) in three different
scenarios (see text): (a) the new track is independent of the already accepted track, (b) the new track conflicts with already
accepted tracks, and (c) the new track shares an object with the already accepted track the already accepted tracks are shown
as red solid lines. Circles marked by black and blue outlines represent objects at t and t + ∆t, respectively.

To avoid false connections associated with temporally not well resolved storms, each
track derived during the process is further evaluated with a likelihood criterion based on
(a) the sizes of objects within the track or (b) whether steady motion is well maintained.
The likelihood criterion was implemented in Step 2 (for one-to-one tracks) and Step 6 (for
composite tracks) of the algorithm (below). If the track is derived by first-guess motions
only, the criterion evaluates the sizes of objects within the tracks: both sides of the track
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must include at least one object whose size is greater than Ares = 100 pts (equivalent to
~30 km in diameter, from Figure 5) to pass the criterion. If the track is derived by past
and/or future motions, the criterion evaluates whether steady motion is well maintained:
changes in the moving direction between the current track and its immediate previous (or
future) track must be smaller than ∆θmax = 30◦ to pass the criterion. For slow-moving
storms with large structural deformations, translation rather than centroid-based motion
estimates are used for steady motion evaluation. Specifically, we attempt to translate ot of
T using the past moving direction(s) of ot until the translated object trans(ot) maximally
overlaps with ot+∆t as indicated by the overlap ratio R (trans (ot) ∩ ot + ∆t). The procedure
is done similarly to ot + ∆t with the future moving direction(s) of ot + ∆t. The maximum
overlap ratios of T0 (ot, ot + ∆t) derived by past and/or future motion must be greater than
0.5 to pass the criterion.

The step-by-step description of the algorithm is as follows. To facilitate the under-
standing of the algorithm, we also provided an MRMS example featuring the hourly
development of three closely spaced storms in Figure 8 and the step-by-step break-down
of the algorithm in deriving the hourly tracks in Figure 9. The example will be discussed
further after the algorithm description.
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Figure 8. (a,b) MRMS composite reflectivity and (c,d) identified objects for 22 z and 23 z, 1 May 2018. Blue (gray) shaded
objects in (c,d) are objects larger (smaller) than Athres = 100 pts. The actual evolutions of the black contoured objects in
((c), 22 z) to the blue contoured objects in ((d), 23 z) is schematically shown in (e) by the red lines.
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Figure 9. (a) Schematic illustration of the six steps to identify hourly tracks for the example of Figure 7, (b) workflow of the
algorithm and (c) descriptions of selected symbols in (a).

Step 1: Estimate conditional probabilities, P(ot+∆t|ot) and P(ot|ot+∆t), for each proba-
ble T0(ot, ot+∆t).

Step 2: To avoid false tracks connecting temporally not well resolved storms, each
probable T0 is further evaluated using the likelihood criterion defined above.

Step 3: Derive base tracks. A base track T0(ot, ot+∆t) satisfies the following three
conditions: (a) it is the most likely track among all one-to-one tracks of ot according to
P(·|ot ), (b) it is the most likely track among all one-to-one tracks of ot+∆t according to
P(·|ot+∆t ) and (c) it satisfies the likelihood criterion of step 2.

Step 4 contains two independent and recursive steps: 4a and 4b, which decide the
acceptance or rejection of each probable but undecided T0 in the order determined by the
past motion- and future motion-based probabilities in 4a and 4b, respectively.

Step 4a (recursive): For every object at t that is not already associated with a track
from step 3 and 4a, select the most likely and not yet rejected T0 based on P(·|ot ). For each
of the selected T0s, accept it if it is not related to any existing tracks derived from step 3
and 4a and reject it if it conflicts with certain existing tracks derived from step 3 and 4a. If
the T0 shares the same object (i.e., ot+∆t) to an existing track, decide whether to accept it by
an evaluation of whether track likelihood improves if the two are combined. For example,
the decision on whether to accept a new track T0(o1

t , ot+∆t
)
, given an already accepted

track T0(o0
t , ot+∆t

)
is made after the evaluation of whether o0

t and o1
t merge, i ot+∆t is the

more likely scenario than o0
t evolving into ot+∆t. The track T0(o1

t , ot+∆t
)

is accepted if
and only if (a) the probability (P) of the composite track T

({
o0

t , o1
t
}

, ot+∆t
)

conditioned on
ot+∆t is larger than P

(
o0

t
∣∣ot+∆t

)
and (b) the probability of T

({
o0

t , o1
t
}

, ot+∆t
)

conditioned
on o0

t is larger than P
(
ot+∆t

∣∣o0
t
)
. If accepted, the track is incorporated into the existed

track as a composite track. If rejected, search for the next most likely and not yet rejected
T0 of ot according to P(·|ot ) and repeat 4a until we’ve accepted at least one T0 (or have
rejected them all) for every object at t. The track derived from 4a is either one-to-one or
many-to-one.

Step 4b (recursive): For every object at t + ∆t that is not already associated with a
track from step 3 and 4b, select the most likely and not yet rejected T0 based on P(∆|ot+∆t )
and decide whether to accept it based on its relationship with already accepted tracks
(from step 3 and 4b via similar decision-making flow as 4a). If the most likely T0 of ot+∆t
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is rejected, search for the next most likely and not yet rejected T0 of o′t+∆t according to
P(·|ot+∆t ) and repeat 4b until we have accepted at least one T0 (or have rejected them all)
for every object at t + ∆t. The track derived from 4b is either one-to-one or one-to-many.

Step 5 (recursive): Examine and resolve conflicting tracks of 4a and 4b. Track(s)
from 4a conflict with track(s) from 4b if they share some, but not all objects. The conflict
must be resolved because accepting both may lead to an ambiguous tracking of many to
many. To resolve the conflict, we estimate the probabilities of the conflicting 4a and 4b
tracks conditioned on all the objects involved and derive two object area weighted average
probabilities, one for all the involved 4a tracks and the other for all the involved 4b tracks.
The set of tracks with higher (lower) average probability is accepted (rejected). For each
rejected track, we remove the non-base part of the track and repeat step 4 until the object
associated with the removed track is reassigned with a new T0. This step is also recursive:
it finishes when tracks from 4a and 4b has no conflicts. The track derived from step 5 may
be one-to-one, one-to-many, or many-to-one.

Step 6: The same as step 2 but applied to tracks identified in step 5. Tracks that fail the
likelihood criterion are deleted.

Figure 9a shows the step-by-step derivations leading to the final tracking results for
the Figure 8 case during the first round of extrapolation. The tracks identified by the
proposed algorithm indicate that the bottom cell at 22 z continued as cell, the middle line
storm split into two cell storms, while the top cell dissipated, which were consistent with
the actual evolutions of the storms shown in Figure 8e except the top one. The track for
the top cell was correctly derived in step 5 but deleted in step 6 because it was derived by
first-guess motions only and the object sizes within the track were too small to satisfy the
likelihood criterion we designed. Since there was no future track existed to re-evaluate the
validity of the deleted track as the storm dissipated shortly after 23 z, this track would not
be identified even after multiple rounds of extrapolation. In other words, it is by design of
our algorithm to not identify tracks associated with such short-lived (<2∆t) storms because
they are not well-resolved by ∆t.

After we apply the tracking algorithm to all consecutive time frames of a selected case,
a space-time network of track-connected objects is derived. This track-object network serves
as an abstract representation of convective storm evolutions and interactions well-resolved
by the given data. Because the track-object network resolves storm interactions such as
merging and splitting, a separate identification for each storm trajectory is not always
straightforward without rules stipulating what constitutes a distinct storm trajectory and
how storm interactions would be handled as a result.

Here we formally present the rules for the identification of distinct storm trajectories
from the track-object network. Each separately identified storm trajectory, which we will
refer to as object trajectory (OT) hereafter, is a track-connected object time series describing
the complete and distinct evolution of a storm from initiation to dissipation. There are
different ways to identify OTs depending on how one specifies the distinctness of a storm
trajectory. As an example of OT identification focusing on the distinctness of convection
initiation (CI), here we consider a storm trajectory to be distinct if and only if its CI is
unique. In other words, the number of OTs we identify should be the same as the number of
resolvable individual CI objects that exist. What does this mean for storms that underwent
merging and splitting? (a) For N individually evolving storms that later merged, N OTs
would be identified, each with a unique initial portion and a shared portion after the merge.
(b) For a storm that later split, all of its split storms would be collectively identified as one
OT as before the split, unless (c) one of the split storms later merges with another distinct
storm. In the special case of (c), the split storm will be treated as a new storm starting
at the split time, as was similarly done in [15]. Figure 10 shows a schematic track-object
network with all three scenarios included. Under the proposed rules, 3 OTs (e.g., blue
shades, green shades, black contours) would be identified in Figure 10, each representing a
storm trajectory with a unique CI marked by solid triangles.
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Figure 10. Schematic illustration of a track-object network and all the OTs to be identified. The initial
object (or CI) for each identified OT is marked with a black solid triangle. Three OTs are identified
from this network as marked by green shades, blue shades and black outlines.

4. Results and Discussion

Figure 11 demonstrates the proposed tracking method with a complex storm evolution
example from May 2018. Panel a and c of Figure 11 shows hourly snapshots of composite
reflectivity from MRMS and simulated reflectivity from 0–5 h MAP forecast during 00–05 z,
11 May 2018; the objects and hourly OTs identified during the period are shown in panel
b and d. Identified objects are illustrated by color-shaded regions with contours and
blue (gray) color denotes storms larger (smaller) than Ares. The track-object network is
demonstrated by the piece-wise linear curves with each linear segment representing one
hourly track. At each hourly time frame, the evolution of each well-resolved storm is
displayed in detail including the current storm location (blue dot), past-hour location and
track (gray dots and lines) and future locations and tracks until dissipation (black dots and
lines). Storm merging is illustrated by two or more linear segments arriving at the same
point (e.g., in Figure 11(b3,d6)). A black circle around the blue dot indicates that the object
is the unique CI object of a distinct OT. In this example, we identified four observed CIs (at
03 z and 05 z) and two forecast CIs (at 02 z and 05 z).

MRMS reflectivity snapshots of Figure 11a indicate a convectively active region with
an upscale-growing mesoscale convective system (MCS) moving towards the east and new
cells emerged from the south and west that quickly merged with the MCS. Simulated storm
evolution by 0–5 h MAP forecast in Figure 11c shared key characteristics with the observed
system including the general moving direction and speed of the MCS, the merging of
the MCS with smaller cells to its south, and subsequent emergence of new cells from the
west of the MCS. What’s different in the forecast is the strength of cells to the southwest
of MCS and the timings and locations of the new CIs. The OT-based demonstration in
Figure 11b,d suggests that the proposed tracking method can reliably identify these key
evolution characteristics in both data. In particular, the tracking method correctly displayed
the distinct evolution patterns of the two cells to the southwest of the MCS from 00 z to 02 z.
The two cells were smaller than Ares in both data, suggesting they were likely too small to
be temporally well resolved. Subsequent evolution patterns confirm that the observed ones
did dissipate shortly after initiation, but the forecast ones grew and later merged with the
MCS at 05 z, both of which were accurately described by the derived tracks. Recognizing
such subtle differences may be key to the diagnosis of subsequent forecast degradation;
automating such a time-consuming task with a reliable tracking method is vital for the
systematic evaluation of CAM forecasts.
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Figure 11. (a1–a6) MRMS composite reflectivity, (b1–b6) MRMS objects and hourly OTs identified,
and (c1–c6) 0–5 h MAP forecast simulated reflectivity and (d1–d6) forecast objects and hourly OTs
during 00–05 z, 11 May 2018. CI objects of distinct hourly OTs are marked by black circles. Objects
larger (smaller) than Athres are colored with blue (gray) shades.

To quantitatively evaluate the performance of the proposed tracking algorithm, four
severe weather events of May 2018 (May 01–04, from 12 z to 12 z, according to the SPC
severe weather event archive) were selected. These events offer 608 hourly MRMS tracks
derived with the proposed method to be evaluated against validation tracks independently
obtained using 2-min MRMS data and the method of Section 2. As discussed before, ∆t
tracks derived with the method of Section 2 may be many-to-many if storm evolution within
the ∆t period was complex on the 2 min level (i.e., both merging and splitting occurred). In
situations where the validation track associated with an object is many-to-many, we conduct
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manual checks to determine the correctness of the derived track since many-to-many
tracks are excluded from the solution of our tracking method. Approximately 70% of the
608 derived tracks were objectively evaluated and the remaining 30% underwent manual
checks. To the authors’ knowledge, this is the first time an independent, objective evaluation
has been conducted for algorithm-derived storm tracks. It is made possible since the
proposed method allows explicit tracking of storm merging and splitting. The evaluation
results were given in Table 3. The 99% overall accuracy rates suggest the algorithm
performs reasonably well. The algorithm was especially robust in complex cases where
individual storms were located very close to each other compared to their spatial extents
and moving speeds but maintained relatively consistent motions (see Figure S3). Upon
examining the 1% erroneous tracks, we found that they were derived mostly in situations
where storms underwent (at current step, t→ t + ∆t ) or had undergone (previous step,
t− ∆t→ t ) complex deformations such as splitting and merging with another storm soon
thereafter, cell forms nearby that quickly merged with an existing storm and large shape
deformation. In these situations, the derived tracks were less reliable mainly because the
object-based estimates of storm motion were less accurate.

Table 3. Sample size (number # of identified tracks), number # of incorrect tracks and accuracy rate
for the selected four severe weather cases of May 2018. The verification period for each case is from
12 z to 12 z the next day.

Case Sample Size (# Incorrect) Accuracy Rate

May 01 108 (1) 99.1%
May 02 201 (0) 100%
May 03 211 (5) 97.6%
May 04 88 (1) 98.9%

All 608 (6) 99%

As discussed in Section 3, a unique feature of the proposed tracking technique is
its ability to identify distinct CIs, the initial object of each identified OT. Object-based CI
identification is an active research area with many CAM-based applications [15,22,23].
However, the accuracy of existing methodologies was rarely evaluated. To systemically
evaluate the accuracy of CIs identified by the proposed method, we examined the tracks
associated with all algorithm-identified CIs in the following two aspects: (a) whether the
object was a CI (i.e., it was not associated with a past validation track) and (b) whether the
future track associated with the CI object was consistent with validation. The special case
for which an identified CI is not a new cell, but a split of an existing storm was manually
evaluated; it was considered correct if the continued track(s) of the existing storm via its
other split(s) were accurately identified by the algorithm, as was similarly done in [15].

The CI evaluation results for the four severe weather events are presented in Table 4.
The overall accuracy rate of CI identification is 95.9% for a total of 123 algorithm-identified
CIs. If the identified CIs missed by 1 h are considered accurate, the overall CI identification
accuracy rate reaches 98.4%. These numbers suggest that the algorithm performs reasonably
well in terms of accurate CI identification.

Table 4. Sample size (number # of identified CI objects), number # of CI missed by 1 h and number
of incorrect CIs for the selected 4 severe weather cases of May 2018. The verification period for each
case is from 12 z to 12 z the next day.

Case # CI Missed by 1 h # Incorrect

May 01 24 1 0
May 02 43 0 0
May 03 36 0 1
May 04 20 2 1

All 123 3 2
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5. Conclusions

An object-based method to reliably track convective storms depends on the complexity
of storm evolution patterns and the temporal resolution (∆t) of the data relative to the
spatial and temporal scales of the storm. The steady-state assumption commonly used in
object-based storm tracking algorithms may be ill-suited if the storm underwent complex
evolution or, in the case of CAM-based tracking, the output frequency of the data is too
coarse to resolve a considerable amount of spatially well resolved storms.

To overcome the above limitations and more reliably track simulated convective
storms in CAM outputs of temporal resolution ∆t, this study proposed an object-based
method with two new features. First, the method explicitly estimated the probability of
each probable track, which is conditioned either on its immediate past and future motion
or a “first guess motion” if the immediate past or future motion does not exist. This
probability approach was realized by parameters of an independent analysis of storm
evolution with ∆t tracks derived from the 2-min MRMS data and hourly MAP forecasts
from May 2019. Second, a likelihood criterion evaluating whether a derived track Tt→t+∆t
is real was designed. The purpose of the criterion is to better identify storms that were
newly formed and/or dissipating and minimize false tracks derived for these storms. The
design of the likelihood criterion was motivated by two main findings from the 2-min
MRMS study: (a) the past and future track motions of the same storm are highly consistent,
and (b) there is a noticeable size difference between storms that had continued from t to
t + ∆t and ones that dissipated and/or were newly formed between t and t + ∆t.

After tracking completes for all contiguous time steps of a selected case, a track-object
network will be derived and serve as an abstract description of all the storm evolutions and
interactions resolvable by the given data. Object trajectory (OT), the diagnostic product
identified from the track-object network, was formally introduced. Each OT is a track-
connected object time series that characterizes the space-time structure of an individual
storm with a unique CI. Examples of identified OTs in real cases showed the capability of
this diagnostic to highlight newly initiated storms and simplify the display of complex
storm evolutions so subtle differences between the evolution patterns of observation and
CAM forecast can be easily spotted.

The new tracking method was applied to hourly MRMS observations and MAP
forecasts from May 2018. Its performance for tracking convective storms was demonstrated
using complex storm evolution examples and systematic evaluations of four severe weather
events with more than 600 derived tracks and over 100 identified CIs. The evaluations
indicate 99% and 95.9% accuracy rates were achieved for hourly MRMS tracks and CIs
derived by the proposed method.

Future research will focus on the adaptability of MRMS-based parameters to track
simulated convective storms in other CAM-based systems and the design of OT-based
methods for evaluating different aspects of simulated storm evolutions in CAM forecasts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12111535/s1: Figure S1: Histograms of track direction (θ) for objects located at different
regions of CONUS: (a) Northern Plains (north of 37◦ N and west of 108◦ W), (b) Southern Plains
(south of 37◦ N and west of 108◦ W), (c) Northeast (north of 37◦ N and east of 108◦ W) and (d)
Southeast (south of 37◦ N and east of 108◦ W); (e–h) for objects present at different time periods of a
day and (i–l) for objects in different size groups. Sample mean, one standard deviation range and
sample size are listed on top of the histograms. The PDFs plotted on top of the histograms (blue
curve) are the same as in Figure 3a, Figure S2: As in Figure S1, but for track speed (h). The PDFs
plotted on top of the histograms (blue curve) are the same as in Figure 3b, Figure S3: (panel a) Hourly
snapshots of MRMS composite reflectivity and (panel b) objects identified during 01–05 z 02 May
2018, with identified OTs overlaid.
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