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Abstract: Small-scale farming production systems are integral drivers of global sustainability chal-
lenges and the climate crisis as well as a solution space for the transition to climate compatible
development. However, mainstreaming agricultural emissions into a climate action agenda through
integrative approaches, such as Climate Smart Agriculture (CSA), largely reinforces adaptation–
mitigation dualism and pays inadequate attention to institutions’ linkage on the generation of
externalities, such as Greenhouse Gas (GHG) emissions. This may undermine the effectiveness of
local–global climate risk management initiatives. Literature data and a survey of small-scale farmers’
dairy feeding strategies were used in the simulation of GHG emissions. The effect of price risks
on ecoefficiencies or the amount of GHG emissions per unit of produced milk is framed as a proxy
for institutional feedbacks on GHG emissions and effect at scale. This case study on small-scale
dairy farmers in western Kenya illustrates the effect of local-level and sectoral-level institutional
constraints, such as market risks on decision making, on GHG emissions and the effectiveness of
climate action. The findings suggest that price risks are significant in incentivising the adoption of
CSA technologies. Since institutional interactions influence the choice of individual farmer manage-
ment actions in adaptation planning, they significantly contribute to GHG spillover at scale. This can
be visualised in terms of the nexus between low or non-existent dairy feeding strategies, low herd
productivity, and net higher methane emissions per unit of produced milk in a dairy value chain.
The use of the Sustainable Food Value Chain (SFVC) analytical lens could mediate the identification
of binding constraints, foster organisational and policy coherence, as well as broker the effective
mainstreaming of agricultural emissions into local–global climate change risk management initiatives.
Market risks thus provide a systematic and holistic lens for assessing alternative carbon transitions,
climate financing, adaptation–mitigation dualism, and the related risk of maladaptation, all of which
are integral in the planning and implementation of effective climate action initiatives.

Keywords: agricultural emissions; adaptation–mitigation dualism; carbon transitions; climate smart
agriculture; effectiveness; greenhouse gases; institutions; small-scale farmers; shifting vulnerabilities

1. Introduction

Greenhouse gas (GHG) emissions create common pool problems that transcend geo-
graphical boundaries and political and economic agents [1]. As passive flows, GHGs impact
the occurrence and magnitude of extreme disaster events, i.e., droughts and floods [2,3].
This undermines the realisation of sustainable development objectives across nations [4], as
well as amplifies the vulnerability of individuals and communities to already existing and
new disaster risks [5]. The increased risks and vulnerability are reflected in the increased
cost of mitigating climate-related disasters, such as droughts [6,7], as well increased need
for adaptation among already vulnerable people [8]. However, economic instruments,
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such as carbon taxes [9], have largely failed to achieve target reductions in GHG emis-
sions [10,11]. This suggests the need for innovative alternative transitions [11,12], as well
as effective multilevel environmental governance systems [1]. Some of the transformative
approaches towards effectiveness include addressing adaptation–mitigation dualism [8].
Implicitly, effective transitions largely revolve around risk perception and incentives [12].

As part of a cooperative effort to mitigate global warming and adjust to climate change,
countries document their plans to reduce emissions and/or sequester carbon as Nationally
Determined Contributions (NDCs). This follows the 2015 United Nations Framework
Convention on Climate Change (UNFCCC) climate agreement, herein referred to as the
Paris Climate Agreement (PAAC). In accordance with the PAAC, NDCs communicate
progress made, as well as resource gaps needed to meet the set ambitions [6]. NDCs
signal the global resolve to adjust to emerging climate change-related risks while taking
advantage of embedded opportunities, building better and addressing underlying socio-
economic drivers that predispose humanity to disaster risks [6,13,14]. Such a strategy is
predicated on voluntary collective action to halve current emission levels by 2050 and
stabilise global climate [6]. Intuitively, the achievement of carbon neutral trajectories by
2050 [6] is underpinned by collective action and frameworks that identify as well as address
interlinked Social-ecological System (SES) challenges [9,15].

Among other measures, this encompasses changes in processes, practices, structures,
and institutions at an individual, organisational, and technological level [8,9]. Technological
innovations, institutional and behavioural changes, and responsive social systems influence
effectiveness in carbon capture and storage initiatives [16]. This highlights the importance
of local contexts and aspirations in sustainability initiatives [15,17–19]. Local contexts
increasingly provide opportunities for learning, innovation, and transformation.

Broadening climate action areas has great potential for immediate scaling mitigation
and the closing of GHG emission gaps [5,20–22]. Promoting climate friendly policies at a
community level is especially critical in reducing emission gaps [23]. Land use sectors [7,9],
and food systems in particular, have been identified as critical in carbon transitions and
capturing feedbacks [24]. In particular, Agriculture, Forestry, and Land Use (AFOLU),
which accounts for at least 23% of global emissions [7,25,26], has emerged as a pivotal
sector for intervention. AFOLU is thus expected to play a critical role in NDCs, as well as
the multiple Sustainable Development Goals [27,28]. Though the cumulative contribution
of small-holder farmers on GHG emissions is potentially significant, it is not prioritised in
carbon transition initiatives.

A risk chain can be visualised in terms of shocks, internal and external drivers, their
management, and outcomes [29]. This is relevant to understanding the linkage of man-
agement practices, GHG emissions, and the design of effective mitigation practices [24].
The logic has direct bearing on maladaptive practices in Agriculture, Forestry, and Land
Use (AFOLU), which directly account for about 23% of the annual global emissions. Since
maladaptive practices in AFOLU could exacerbate GHG effect [7], they emerge as a crit-
ical sector in climate action. Maladaptation increases the predisposition of ecosystems,
economic activities, and social groups to secondary risks [30].

Decision making plays a significant role in global initiatives such as GHG emissions
mitigation initiatives [7,9,31]. It is particularly critical in land use-based adaptation plan-
ning in developing countries where small-scale production agriculture is the main economic
and livelihood activity [32]. The potential impact of small-scale farmer production sys-
tems on global resource use, environmental services, food security, and environmental
externalities is particularly significant in sustainability initiatives [30].

Institutional dimensions, such as financing and market power, are critical in the up-
scaling of eco-efficient agricultural value chains and the mainstreaming of agricultural
emissions into a global climate action agenda [33]. This underscores the need to capture
institutional and economic processes and incentive systems for the management of external-
ities [34]. The role of institutions in the integration of adaptation and mitigation pathways,
in particular, requires nuanced attention [35]. A focus on institutional interactions, such as
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price risks, is posited to play a transformative role in global initiatives, such as the green
fund and climate adaptation fund. However, nuanced analysis of institutional interactions
on shifting vulnerabilities and the amplification of GHG effect has not been a focus of most
policy and research discourses.

Agricultural systems have the potential to narrow GHG emission gaps, play a sig-
nificant role in NDCs, as well as address adaptation–mitigation dualism [26]. Exploiting
this potential is invariably through CSA technologies. CSA approaches enhance syner-
gies between productivity, resilience, and mitigation objectives [36]. Formal and informal
institutional arrangements are known to mediate most of the GHG mitigation policy objec-
tives [32]. Paucity of knowledge on the interaction between local level decision making
and adaptation governance at global level [8] however exist. For instance, though some
studies have analysed the role of risk in adoption of adaptation technologies e.g., [37], there
is paucity of knowledge on how risk mediate social costs such as GHG emissions during
adaptation.

Effective local responses [6,7,21], as well as global GHG emission mitigation strate-
gies [38,39], encompass increased policy attention on local-level constraints that hinder
the integration of international decisions into local climate change mitigation. They also
include a focus on the role of incentives and innovative climate financing to scale up
innovations [5,30]. Addressing the risk of maladaptation [5,30,40] is equally an urgent
research and policy problem area [30].

Maladaptation occurs when adaptation action/ investment increases vulnerability
of systems, sectors, or social groups to other risks. The bearing of risks by individuals
and communities who are not party to their production, referred to as shifting vulnerabili-
ties [30] is particularly given low attention. The article assesses and adopt the interplay
between price risks and methane emissions in dairy cattle feeding as an innovative lens for
effective local-global climate action initiatives. An illustration is made through a case study
from western Kenya. The analytical lens could inform policy, research, and practice on the
integration of shifting vulnerabilities and optimization of adaptation-mitigation synergies.

The novelty of this study lies in its ability to integrate the interplay of socio-economic
and environmental dimensions in climate governance. This is one of the existing gaps in
the narrowly focused carbon transition discourses. Further, it addresses intertwined market
and production risk. Integrating the intertwined risk lenses is integral to the operationalisa-
tion of broader adaptation planning frameworks [40]. In essence, the analytical framework
suggested herein has the potential to enhance the design and implementation of alternative
carbon transitions and inclusive climate financing interventions for resource-constrained
small-scale farmers, as well as advance the mainstreaming of agricultural emissions into
global GHG mitigation initiatives. In exploring this relationship, we sought to answer the
following questions:

• Is local decision making at microlevel in smallholder farmer agricultural production
critical to the effectiveness of existing local–global GHG mitigation strategies?

• Do price risks have an influence on environmental footprints, such as methane emissions?

Following the introduction, Section 2 provides the background to the study. Section 3
gives the data collection and analysis methods, while Section 4 provides the results.
Section 5 discusses the findings and concluding remarks.

2. Background of the Study
2.1. Adaptation–Mitigation Dualism

Though external and internal drivers are responsible for the adoption and diffusion
of adaptation and mitigation polices [18,19], there is a lack of a commonly agreed core
goal [41,42]. This tends to wrongly frame adaptation as a local initiative [19], hence low
consideration for spillovers, such as GHG emissions [43,44]. Until recently, policy framing
has considered adaptation as a local disaster reduction response. Accordingly, most climate
financing focuses on mitigation at the expense of adaptation [45]. This underscores the
need to address the simplistic dualism between adaptation and mitigation [8]. Several
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reasons support this position. Foremost is the risk of maladaptation [30,40] and increased
evidence of spillover effect from adaptation across geographical jurisdictions [46]. This
is underpinned by a growing concern that adaptation–mitigation dualism undermines
resilience objectives [8,47].

Given that climate change amplifies the exposure and sensitivity of humans and
ecosystems to harm, it increases the importance of adaptation action [8,47]. Importantly,
climate crisis disproportionately impacts resource-constrained vulnerable segments, such
as small-scale farmers [8]. This observation is critical in developing nations where the
dominant small-scale farming production systems have the potential to deliver about
21–40% of the direct emissions mitigation targets [32]. This partly explains the increasing
focus by developing nations on adaptation–mitigation co-benefits to meet their NDC
ambitions [28]. Specifically, the lagged relationship between GHG emissions and current
and future impacts being evident calls for timely attention on adaptation [8].

Local–extra level institutions are critical in climate action initiatives in general and
adaptation planning [18,19]. In most cases, extra local institutions influence carbon transi-
tion visions or lock-ins [48]. Lock-ins in turn inform and justify the technological, institu-
tional, policy, and behavioural choices [49,50]. The effect of lock-ins is thus multifaceted.
Firstly, they could undermine innovation and bias policy choice efforts on generic yet
locally irrelevant alternatives. Secondly, institutional lock-ins by default may overlook
critical transition pathways that provide opportunity for widespread upscaling of GHG
mitigation. Finally, institutional lock-ins may constrain individual capacity to adopt man-
agement choices that positively impact effectiveness in climate action. The understanding
of institutional–human behaviour interplay [49] is thus critical in overcoming lock-ins and
fostering alternative innovative decarbonisation trajectories [50].

2.2. Risk, Institutions, Micro-Level Decision Making, and Environmental Externalities

Institutions are formal and informal mechanisms that mediate the behaviour of various
agents in an economic system [51]. Institutions influence access to resources and markets,
shape (dis)incentives, as well act as channels for external interventions within which
individual and collective action can be realised [18]. Institutional interplay is thus critical
in the planning and implementation of effective climate interventions [52], more so the
integration and scaling up of CSA pillars [53,54], as well as policy coherence [2]. According
to [2], institutions either incentivise or constrain the primary agents, such as small-scale
farmers and the production of environmental goods and services.

Policy coherence refers to the extent to which a suite of selected policy options and
incentives converge to impact effectiveness [55]. Implicitly, policy coherence mediates
the optimisation of synergies and co-benefits in climate action [45]. Since adaptation is a
decision making process [56], there is need to appreciate the influence of incentive system
on farmer decision making and its impact on environmental spill overs [57]. Key among
this is the effect of institutional fabric on risk [34]. Market prices (risks) are among the
most critical determinants in climate compatible technologies uptake [58–60]. Risk be
critical in livestock production on the account that they are major drivers of environmental
footprints [61].

Risk describes economic, legislative, climatic, and social dynamics that lower profits
or increase expenses [62,63]. Accordingly, exploring the linkage between institutions, risk
and GHG emissions is critical in search for alternative carbon transitions. In agriculture,
the interaction between market risks and environmental spillovers is more often framed in
terms of income and consumption smoothening strategies [64]. In livestock production
for instance, resource poor farmers tend to stock hardy breeds that dependent on locally
available forages other than marketed concentrates [65]. Evidently, resource constraints
have the potential to limit farmer adaptive capacity to adopt alternative technologies that
mitigate pool problem, such as CH4. In ruminant livestock, the relationship is evidenced
by low uptake of technologies that reduce emissions [66].
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2.3. Agricultural Emissions: The Case of the Livestock Subsector

Food systems are the largest drivers of global environmental change [7]. In particular,
the role of livestock in livelihoods, income and nutrition objectives [67], as well as its
centrality in adaptation for communities under changing climate [68] increase its relevance
in food transformation. As a key driver of environmental footprints [69], livestock produce
most of the GHG emissions in AFOLU [68,69]. Ruminant livestock in particular account
for about 44% of human activity related GHG emissions [70,71]. Most of the GHG emis-
sions from livestock come as methane (CH4), a highly potent global warming GHG [72].
Accordingly, ruminant livestock provide opportunities for rapid reduction in CH4 emis-
sions [20,72]. They are also critical analytical lens for innovative scaling of local contexts
into adaptation and mitigation planning [73]. Ruminant cattle in general, and the dairy
sector value chain lends itself to scaling, replication, analytical and conceptual innovation.

2.4. The Case of Resource-Constrained Farmers, Western Kenya

AFOLU related sectors are associated with about 70% of GHG emissions in Kenya.
About 90% of these emissions is attributed to livestock [74]. The GHG emissions are
expected to rise from 73 million tons of carbon dioxide equivalent (Mt CO2-eq) in 2010
to 143 MtCO2-eq in 2030. At less than 0.01% of global emissions, Kenya’s share in global
emission generations is negligible [75]. Nonetheless, Kenya intends to increase the share
of emissions from agriculture by about 5% by 2030. About 1.3 Mt CO2-eq of the 100 Mt
CO2-eq is projected to be generated from the agricultural sector.

The significance of the livestock subsector in Kenya is underscored by the dominance
of small-scale farmers, who account for about 73% of all marketed milk [76]. Agricultural
systems and the livestock subsector are thus critical in the pursuit of Kenya’s NDC am-
bitions [75]. Kenya’s NDCs largely focus on low-carbon policies to pursue national and
agricultural development objectives [77]. Though such policies are consistent with external
coherence and integration principles, they lack a comprehensive cross-sectoral strategy
and overarching goal in managing environmental externalities. This is compounded by a
lack of expertise for planning specific risk assessment at a local level [74].

Implicitly, most policies are characterised by inadequate understanding of the inter-
play between risk lenses in land use and the potential outcomes at local and extra-local
levels [78]. For example, though innovative instruments, i.e., PES, have the potential to
reduce GHG emissions [59], most of such projects and programs on climate change adap-
tation and mitigation are donor-driven with a tendency for duplication [79]. Duplication
tends to undermine coherence and effectiveness [80].

The dairy subsector in Kenya is inefficient and characterised by high production and
price risks. Such risks are amplified by climate change risks [81], as well as institutional
constraints. For instance, the official milk marketing value chain is controlled by five of the
23 milk processors. The five processors represent about 80% of the milk value chain [82].
The oligopolistic market structure tends to compound market and price risks as evidenced
through collusion tendencies (farmgate prices do not shift upwards during drought cycles,
while during the rainfall season the prices often fall), which is in juxtaposition with the law
of supply and demand. Apparently, extreme climatic events significantly increase price
risks, hence the vulnerability of the poor smallholder farmers to financial risks [81]. The
institutional reach in the smallholder dairy sector in Western Kenya is particularly low. For
instance, none of the 23 processors and only a few of the 47 cooling plants are found in the
Western Kenya counties of Kakamega and Bungoma [82].

Though vertical integration could address credit, input, and processing capacity
constraints [65], policy interventions in the dairy subsector have been biased towards
physical infrastructural development [83], i.e., construction of small scale milk collection
and cooling plants. To a large extent, such interventions have failed to address price risks
in the long run. The evident lack of policy coherence drives methane emission risks [81]. It
also amplifies ecological threats to land, soil, water, and biodiversity [83].
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2.5. Effectiveness Lens in Adaptation and Mitigation

Globally, policy response to climate change crisis has mainly been through adaptation
and mitigation strategies [45]. Accordingly, effectiveness has emerged as critical to adapta-
tion and mitigation planning [84]. Though effectiveness could be qualified on the basis of
spatial and temporal metrics, externalities, as well the extent of synergy achieved between
individual and collective action, it generally refers to the ability to achieve expressed
objectives [85]. In policy analysis, effectiveness invariably connote the extent to which any
given policy instrument and availed resources contribute to attainment of a specific policy
goal [86].

The analytical lens on the effectiveness of policy effort focuses both on intended and
unintended effects or implementation deficit as well as policy coherence or the extent to
which vertical and horizontal integration is attained [87]. Intuitively, effectiveness examines
the extent of interplay between local interests and institutions in resolving the fundamental
drivers of the problem [5,30]. The definition of adaptation and mitigation implicitly
provides the metrics for assessing the effectiveness of respective climate policy objectives.
While mitigation focuses on technological, institutional, and behavioural actions that
curtail the magnitude of GHG emissions, adaptation refers to preparedness and responses
to consequences of climate change that take advantage of opportunities therein [88].

Externalities such as GHGs represent social costs that are allocated across time and
geographical boundaries, hence shared responsibility for their mitigation [89]. This under-
scores the common but differentiated principles in global climate policy [13]. Implicitly,
spillover systems and GHG emissions provide lenses for the assessment of effectiveness in
socio-ecological system interplays at local scale and the implementation of development
initiatives that do not compromise the needs of future generations [1–3,7].

2.6. Towards an Innovative Analytical Framework for Effective Local–Global Climate Action

Individual action provides the impetus for effective collective action and efficient
steering of global commons, such as GHG mitigation [90]. Motivating individual action on
mitigation and adaptation could thus be challenging for several reasons. First, mitigation
qualifies as a public good, an attribute that undermines voluntary action among individu-
als [91]. The challenge is prevalent where weak incentives, price risks, and poor markets
prevail [92]. The challenges seem to be anchored on game theory. According to game the-
ory [93], the choices of a rational utility maximising individual conflict with collective-level
objectives. Apparently, individuals tend to prioritise short-term objectives such as profit
over long-term public good objectives, such as the internalisation of GHGs [2].

Fit is reflected in the extent to which policy captures and addresses scope issues,
such as externalities, as well as time-related preferred discount rates [94]. Incentivising
individual action is thus significant in climate action and green growth initiatives [8].
Incentives are particularly critical in the pursuit of development trajectories that curtail
environmental footprints and the decarbonisation of economies [3,9].

A value chain comprises a full set of activities, value links, and feedbacks required to
bring a service or a product, such as milk, from the production point as well as associated
activities such as aggregation, processing, and distribution to the final consumer [33,95].
Such value chain feedbacks are visualised from the perspective of actors’ input–output and
institutional interdependencies [15,33,96]. Notably, horizontal and vertical linkages in a
value chain influence information flow, standards, and market power [33], with a potential
negative impact on voluntary action that internalises GHG emissions. In an oligopolistic
market structure, for instance, price fixing, and collusion feedbacks could adversely impact
sustainability objectives.

Literature suggest that the value chain development principles can be applied to
identify social, economic and sustainability implementation gaps in CSA approaches [36].
To increase the probability of successful implementation and optimise integration of en-
vironmental, social and sustainability policy goals, Sustainable Food Value Chain (SFVC)
suggest a focus on the most constraining factors such as price risks [33]. SFVC lends itself as
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tool for identifying the root causes of performance gaps, as well as envisioning how value
chain actors at scale can synergistically address the binding constraint [33]. The framework
can be adapted to wide socio economic and sustainability challenges. Herein effective
policy is presented as a framework that integrates the interplay between individual action,
production, and market constraints, as well as potential outcomes at scale (Figure 1) Local
and extra local actors are critical drivers in climate action planning [18,97]. In synthesis of
existing literature (Figure 1), risk is framed as an integral attribute indecision making. Risk
influences adoption of CSA technologies and/or maladaptation. In this way, risk disposi-
tion of an individual farmer is critical to effective climate action as it impacts the magnitude
of GHG emissions and their diffusion across geographical, political, and economic spheres,
as well as the adverse impact on ecosystems and third parties. Institutional lock-ins are also
critical drivers in the choice of management choices and carbon transitions. This is in turn
influenced by policy, legal and institutional frameworks. Effectiveness is thus framed as
the extent to which institutional frameworks, local and extra local actors’ impact collective
action and drive synergies between adaptation and mitigation. The influence is seen from
the extent to which the local and extra local actors, as well the institutional framework
(legal, policy) is transformative in addressing adaptation-mitigation dualism.
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3. Methodology
3.1. Study Area

This study was conducted in Bungoma and Kakamega counties. These two counties
in western Kenya are located between longitude 34◦35′ E and latitude 0◦ and 0◦15′ N [98].
Table 1 provides the socio-economic background relevant to this study. Crop agriculture
and livestock are the main livelihood activities among small-scale farmers who dominate
the area [76,98]. Kakamega county covers an area of 3051 km2 with a population of
1,660,651. This translates to a population density of 544.3/km2. Bungoma county covers an
area of 3024 Sq. km with a population of 1,670,570, translating to 552 persons/Sq·km.
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Table 1. Social–economic characteristics for Kakamega and Bungoma Counties, Western Kenya.

Kakamega Bungoma

Social Economic characteristic
Total Population 1,867,579 1,670,570

Households (HH) 433,207 358,796
Area (Size) in Sq. km 3020 3023.9

Pop density (No. of persons)/km2 618 552
HH size (persons per Household 4.3 4.6

% Poverty 50 52
% Ms use 95 72

Source: KNBS Census and Housing Report, 2019.

Rainfall levels, agricultural potential, and productivity in terms of livestock type, crop
varieties, and actual/potential yield levels vary across administrative jurisdictions of the
counties [98]. Generally, the two counties have experienced warming and intensive dry
spells. Agriculture employs 80% of the population and is critical to livelihoods in the
two counties. This is significant because poverty levels in the two countries are above
50% [76]. Poverty is one of the critical drivers of vulnerability to climate change risks and
maladaptive practices in the dairy subsector.

3.2. Field Data and Literature Review

Mixed methods approach consisting of agent survey and methane emission simulation
from various dairy cattle feeding strategies was employed in the study. A cross sectional
survey design was used to collect information through a multistage sampling technique
(Table 2). The sampling frame consisted of a list of farmers from target sub counties
provided by personnel in the department of Agriculture. In Stage 1, Agroecological
Zonation (AEZ) was used as proxy for rainfall amount and dairy feeding strategy adoption.
During the second stage, population density was taken as proxy for land size and adoption
of integrated production systems. Participating farmer households were then selected
through lottery system. The semi structured questionnaire was administered between
March and May 2019. The questionnaire focused on dairy feeding options and institutional
factors influencing dairy feeding strategies.

Table 2. Summary of Study Population Units, Sampling Method, and Data Collection Instruments.

Study Population Unit Sampling
Method Size (N) Data Collection

Instrument

Household Heads Multistage 400 Questionnaire
Feed producers Purposive 6 Interview schedule
Agro-vet shops Purposive 13 Interview schedule
FDG members Purposive 12 Interview schedule

Farmer cooperative
managers Purposive 7 Interview schedule

Advisory organisation
Managers Purposive/census 5 Interview schedule

The information from household surveys was triangulated through Key Informant
Interviews (KIs) and Focus Group Discussions (FDGs). Extensive literature on climate pol-
icy was undertaken from grey literature, i.e., books, as well as peer-reviewed publications.
Focus Group Discussions (FGDs) were also undertaken to elicit information on factors
influencing the choice of dairy feeding strategies.
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3.3. Empirical Models
3.3.1. Gross Margin Analysis

Gross margins of various adaptation measures in terms of dairy cattle feeding strate-
gies were calculated according to Equation (1). Input costs and output prices were obtained
from farmers, feed stockists, and milk marketers.

∏ = R. Q − VC = R. Q − E1X1 − E2S2 − . . . EnSn (1)

where:

∏ = Gross revenue;
R = Price of the raw milk at farmgate;
Q = Quantity of raw milk sold in Litres (L);
VC = Total Variable cost of inputs in milk production;
Si = Amount of concentrate (legume fodder) in the feed ration;
Ei = cost of ith concentrate (legume fodder) in the feed ration.

3.3.2. Methane Emission Simulation

Equation (2) provides the adopted simulation model. The model follows methano-
genesis process described by [99]). Simulation was preferred because it is timeous, saves
resources and allows for integration and utilisation of already existing literature data
base [100,101]. Comparisons of various Ms and supplementation regimes were made
against conventional strategies, namely Napier (Pennisetum species) and Boma rhodes
(Chloris gayana).

Simulated models give a range of scenarios that can be tracked in both directions to
visualise scenarios and project impacts in any socio-ecological system setting [102]. The
non-linear monomolecular models were preferred apriori due to their flexibility across
ration types and feeding levels. According to [99], non-linear monomolecular models
are robust enough to accommodate data sets that do not provide detailed feed values.
Furthermore, non-linear models account better for observations at the extreme CH4 output
and feed intake ratios. Feed value data in the simulation was obtained from [99,103–105].

Methane (Mj/day) = 1.06 (S.E 2.41) + 10.27 (S.E 3.59) dietary forage
proportion + 0.87 (S.E 0.074) DMI

(2)

where:

DMI = Dry matter intake.
S.E = Standard error.

Assumptions in the Simulation

The complex nutritional interactions and enteric fermentation processes and physio-
logical variations with age, environment, and lactation performance of dairy cattle called
for several assumptions and simplifications. The main assumptions and methodological
choices made in the simulation are:

i. Animal breed/type does not significantly influence methane emission levels.
ii. Optimum PH value of 6.3–7.4 is assumed due to its effects on absorptive processes,

fibre degradation, and microbial recycling within the rumen.
iii. Fermentation within the rumen and hind gut are similar.
iv. No errors in analysis of feed stuffs whose values were used in methane simulation.
v. No inherent variation in nutrient composition between samples of the same feed

stuff (i.e., composition does not vary with soil types and weather and the time of
cutting).

vi. No substitution effect of legumes for stover in maize stover–legume-based rations.



Atmosphere 2021, 12, 1507 10 of 20

3.3.3. Estimation of Ecoefficiency

In agriculture, GHG mitigation policy has shifted from absolute emissions to emissions
per unit of product [72]. The policy is reflected through eco-certification initiatives in carbon
markets that provide incentives and influence farmer decision making on their uptake [106].
The ecoefficiency approach biases innovation towards GHG emission mitigation to impact
sustainability objectives [32]. Ecoefficiency is an integrated index for assessing the economic
and environmental feasibilities [106]. Equation (3) is used to calculate ecoefficiencies
according to Masuda [107]. The ecoefficiencies were based on Intergovernmental Panel
on climate change (IPCC) default emission factors for livestock management [108]. The
default global warming potential of 1 for CO2 and 34 for CH4 [88] were assumed.

Eco− efficiency =
Net Farm Income

Global Warming Potential
(3)

The decision to supplement and the levels of supplementation thereof reflect the
interaction between institutions, management options and risk attitude. The break-even
price for dairy farmers during the survey was Kes 25 (100 Kes = 1$). The break-even price
provided guidance on the evaluation of market risk on ecoefficiency. The mean price for
the lower band (Kes 20 and 15) and the upper band (Kes 30 and 45) provided the baseline
scenarios. In fitting the data, 18 L/cow was adjudged as carbon neutral point. Three level
of dairy productivity viz; the lower production point as 0–9 L; medium level of 9–18 L and
the upper point of 18–27 L and 27–36 L.

4. Results
4.1. Dairy Feeding Adaptation Strategies

FGDs and key informant and farmer interviews revealed that Ms and deferred har-
vesting of Napier grass (Pennisetum pauperum) are the most preferred dairy cattle feeding
risk management strategies. The risk management strategy was practiced by about 70% of
the respondents (Table 3). Less than 15% and 3% of the farmers used hay and silage, respec-
tively. Further, silage making as an adaptation opportunity, especially during peak and
above normal rainfall periods, is poorly adopted. About 85% of the sampled households
attributed this to a lack of technical knowhow and information. As a result, surplus fodder
available during above normal/peak rainfall periods is wasted. The use of hay legumes
was practiced by less than 1% of the farmers, who cited limited land sizes and a lack of
technical information.

Table 3. Nutritional interventions practiced by farmers, Kakamega and Bungoma Counties, Kenya.

% Awareness % Adopted

Nutritional
intervention KAK BGM KAK BGM OAW (%) OA (%)

Molasses 25 21 15 12 23 13.5
Minerals 48 45 27.5 16.3 46.5 16.3

Legume fodder 5 7 1 1 6 1
Potato vines 25 42 13.5 33.5 33.5 24.4

Grain residues 40 23 25 3 31.5 14
Silage 30 28 3 2 29 2.5
Hay 76 42 13 9 59 11
Ms 95 90 87 83 92.5 85

Napier (Deferred) 85 75 75 65 80 70
Source: Authors field data analysis. OAW; Overall awareness, OA; Overall adopted, KAK, Kakamega; BGM,
Bungoma.

Low milk producing dairy cattle breeds were evident in 65% of households in the
Kakamega and 75% in the Bungoma respectively. The observation explains the low uptake
of feed conservation strategies among farmers. The results from methane simulation
suggest that delayed harvesting and utilisation of napier increases methane emission risk



Atmosphere 2021, 12, 1507 11 of 20

by up to 30% (Table 3). Agroforestry encompasses the joint production of trees and/or
legumes with livestock in the same agricultural production unit [109]. Though fodder
legumes and agro-forestry systems have potential to mitigate CH4 emissions, about 5% of
the sampled households had adopted the system. Further, at least 85% of the respondents
used Ms feeding strategies without any form of supplementation. As a result, most of the
sampled households using Ms reported about 30% of the milk production potential from
their dairy herds during droughts.

Table 4 provides the simulated CH4 emission levels from different dairy feeding
strategies in the study area. Ms had a mean of 0. 813 CO2-eq against 0. 608 CO2-eq for
Napier and 0.611 CO2-eq for legume fodder and grain supplemented strategies. Though
the highest CH4 mitigation effect in the dairy feeding strategies from external inputs such
as CSC are evident, the effect on CH4 is not significantly different (p ≤ 0.05) from farm
grown legume fodder such as Luceana and Sesbania. In effect, farm produced legume fodder
including dairy-agroforestry integrated systems could be as effective in the mitigation of
CH4 emissions from ruminants. However, the adoption of legume fodders is extremely
low at about 1% of the surveyed households (Table 3). About 84% of the farmers attributed
the low uptake of agroforestry to competition between food crops and fodder production
objectives, as well as the high market risks. Vertically integrated cooperatives could provide
a window of opportunity to address the market risks.

Table 4. Simulated methane emission levels (upper and lower limit) in CO2-eq 10−3 from maize-based rations.

Ratio of Stover to Supplement/Feed DM (g kg−1) Level

Ration type DM (g kg−1) 1.0 0.9 0.8 0.7 0.6 0.5 Mean

Whole Stover (930) 887.7
432.8

857.8
407.7

827.9
382.5

798.3
357.3

768.4
332.2

738.5
307.0

813.1
369.9

Stover (top 890) 874.8
422.3

846.3
397.8

817.7
374

789.1
349.9

760.6
325.3

732.0
301.6

803.4
361.8

Napier silage (468) 617.2
207.1

617
206.0

615.1
203.0

613.7
202.0

612.3
200.6

611
199.6

614.4
189.7

Napier fresh (175) 615.9
201.7

615.4
201.3

613.4
201.3

611.0
199.6

608.6
197.5

606.2
196.2

608.3
199.6

Desmodium (210) Na 615.4
203.3

612
200.6

610.0
199.9

608.6
197.2

605.2
196.2

610.2
188.7

Leucaena (240) Na 615.4
203.3

613.7
201.6

611.7
199.9

608.6
198.2

607.2
196.5

611.3
199.9

Sesbania (230) Na 615.4
203.3

613.4
201.6

611.3
199.9

608.9
198.2

607.2
196.5

611.2
199.9

Calliandra (220) Na 615.7
203.7

613.4
201.6

610.0
198.3

609.3
198.2

606.9
196.2

611
199.6

Potato vines (100) 616.42
208.4

615.4
203.3

612.7
200.9

610.3
198.9

607.6
196.9

605.2
194.5

611.3
200.5

Mean (MBSWM) Na 615.7
203.7

608.8
197.5

606.3
195.8

604.9
194.5

601.8
191.8

607.5
196.7

Mean for grain residue
mixture (MBSWG) Na 616.8

204.3
613.0
201.3

612.0
201.0

611.3
199.6

609.3
198.2

612.5
200.9

Mean MBSM with
molasses (20% DM) Na 615.4

203.3
613.0
201.6

611.0
199.6

608.6
197.9

606.6
195.8

610.9
199.6

Mean MBSMG Na 616.1
203.7

613.0
201.3

611.7
199.9

610.0
198.9

607.9
197.2

611.7
200.2

Source: Author’s calculation based on literature data and field validation, 2019. Na—ration not nutritionally feasible based on various
considerations such as antinutritive factors (i.e., tannin) content that renders the ration nutritionally impractical. SEM—Standard Error of
Means, MBSWM—overall for Ms, legumes, and Napier, MBSM—MS with molasses, MBSWG—MS with maize grain (Simulated methane
emissions in the numerator and denominator of each ration represent Upper and lower emissions respectively.
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4.2. Weather Variability and Price Risks in Dairy Feeding Strategies

Table 5 provides variance of prices for various feeding strategies. The price variance
for locally available dairy feed resources is significantly lower relative to external resources,
such as cotton seed cake (p ≤ 0.05). The highest price variance was observed in dairy
feeding strategies that have highest positive impact on CH4 mitigation while the lowest
variance is in the local resource such as Ms (which also have the highest methane emission
potential). This could explain popularity of Ms as a risk management strategy among
the sampled households. It can be inferred that price risks play a significant role in
maladaptive practices and predictors of shifting vulnerabilities. The effect of output price
on gross margins(profit) at different supplementation levels is provided in Supplementary
File S1 (SP1). Increased supplementation using external inputs increases leads to negative
gross margins in most of the informal marketing channels. This is an indicator of financial
risks.

Table 5. Interplay of weather variability and price risks in dairy feeding strategies.

Feeding Strategies Sum Mean Variance

Ms 25.43 3.18 7.51
Ms + L 57.92 7.24 34.55

Ms + Cs + M 61.87 7.73 40.51
NaP 103.96 12.99 129.36

Nap + L 43.53 5.44 16.56
Nap + csc + M 85.59 10.70 84.93

Ms + Nap 43.13 5.39 16.15
Ms + Nap + csc 126.19 15.77 194.71

Ms + Nap + Csc + M 143.54 17.94 254.54
Source: Author’s calculation based on field survey data among resource constrained farmers, 2019. Nap = Napier.

Weather variability and supplementation are thus intertwined and impact market
risks in dairy farming. The mean production price for Ms is Kes 3.2 against 17.9 for external
input supplemented strategy. The variance in price is significant across all the feeding
strategies. The highest variance is noted in external input supplemented strategies. This
contrasts with very low variance hence low market and price risks in the locally available
feed resources.

4.3. Ecoefficiency

Externalities provide a case study where scope mismatches, sustainability, coherence,
integration, and sectoral focus in climate adaptation policy could converge. Table 6 pro-
vides the effect of various dairy feeding strategies on ecoefficiency. Coping strategies
represented by maize stover (Ms) at 113.43 ± 6.79 give the lowest ecoefficiency, while feed-
ing strategies that utilise external resources, but which are highly vulnerable to price shocks
at 693.37 ± 276.78, produce the highest ecoefficiencies. Similarly, resource integration, i.e.,
dairy–legume fodder, has a significant effect on ecoefficiencies (p = 0.05) for the analysed
feeding strategies. From the findings, external inputs, such as cotton seed cake (Csc), play
a significant role in dairy productivity and the management of GHG emission footprints,
yet are less adopted among farmers. The low adoption of external inputs is attributed to
high financial risks. Implicitly, price risks should be the focus, especially in the design of
market instruments and adaptation financing targeting agricultural production systems.
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Table 6. Comparison of ecoefficiency between various dairy feeding strategies.

Feeding Strategies Mean Eco. Eff.

Ms 113.4 ± 6.8
Ms + L 277.4 ± 37.8

Ms + Cs + M 296.7 ± 44.3
NaP 501.5 ± 140.9

Nap + L 206.7 ± 18.1
Nap + csc + M 412.2 ± 92.6

Ms + Nap 204.7 ± 17.7
Ms + Nap + csc 609.6 ± 211.8

Ms + Nap + Csc + Nap 693.4 ± 276.8
Source: Authors’ calculation from field data, 2019; Significant at p ≤ 0.05.

5. Discussion

There is overwhelming evidence that GHG emissions are responsible for global warm-
ing risks; hence, they are a driver of the increased vulnerability of humanity and ecosystems
to suffer harm [28,88]. The mainstreaming of agricultural emissions into the global cli-
mate agenda has thus emerged as one of the alternative carbon transition pathways [7,26].
Equally, there is an increasing need to address the dualistic framing of adaptation and miti-
gation [8]. Approaches such as CSA are significant in this direction, as well as enhancing
adaptation–mitigation synergies and mitigation co-benefits [28,35]. CSA operationalises
the triple bottom line objectives on adaptation, mitigation, and sustainability. In essence,
CSA frameworks could decrease vulnerability to climate-related risks, improve capacity
to respond to shocks, as well as lower emission intensities [98]. Agriculture is one of the
sectors with potential for an immediate and large-scale reduction in emissions [23]. Since
emission intensities are indicators of mitigation in agriculture [90], they are adopted as
a strategic vision in the mainstreaming of agricultural emissions into the climate action
agenda [81]. Agriculture has thus emerged as one of the sectors with potential for an
immediate and large-scale reduction in emissions [23].

CSA presupposes the integration of climate change into sustainable agriculture plan-
ning and implementation at a local scale [110]. Though consensus on the need for sus-
tainable practices and technologies, such as agroforestry and crop livestock integration,
abounds as CSA approaches [81,111], several limitations remain unresolved. CSA, as well
as existing analytical lenses such as telecoupling, tends to discount the importance of GHG
spillover systems [1]. For instance, under CSA approaches, investment in adaptation is
generally not linked to concomitant resilience goals, such as the mitigation of GHG emis-
sions [81]. Further, a focus on specific elements, such as productivity, may fail to capture
critical socio-economic and ecological linkages and feedbacks therein [15]. In turn, this
could undermine policy effort, as well as meaningful transformation in a food system [112].

Though the Paris Agreement climate targets assume a strong implementation mech-
anism and the revitalisation of global partnership advocated for under the Sustainable
Development Goals [13], to cascade GHG emission reduction targets regionally, nation-
ally, and eventually locally, such a vision could be undermined by free riding and weak
incentives for individual action [92]. A focus on the interplay between local interests, insti-
tutional frameworks, and fundamental drivers of the problem is thus fundamental [5,30].
Institutional lock-ins are particularly significant as they tend to undermine inclusive and
effective carbon transition pathways. The failure to focus on the underlying cause of vulner-
abilities further undermines resilience building [40]. For instance, though most developing
nations, such as Kenya, have increased the contribution of agriculture emissions in their
NDC ambitions, the proportion of agricultural emissions in the submitted ambitions fails
to reflect the magnitude of agriculture sectors’ role in GHG emissions and mitigation.

Trajectories of vulnerability over time reflect an interplay of institutional context and
individual decision making, as well as risk perception [113]. Implicitly there is need to
focus on policy and market conditions that (dis)incentivise and influence the choices made
by economic agents and how this impact the flow of GHGs in a spillover system [2]. In turn,
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it impacts cost-effectiveness in planning [45]. The findings underscore the need for holistic
frameworks. Integration is especially critical in the maximisation of GHG mitigation
benefits from AFOLU sectors [88,114]. This study thus contributes on filling knowledge
gaps, notably the role of small-scale farmer practices in environmental governance [34].

Though, evaluation of risk in agricultural production is widespread, there is paucity
of published literature on its role in GHG emissions. Attempts to use resilience lens
to mediate convergence between adaptation and mitigation, however, fail to address
underlying root causes of vulnerability [8,40]. Resilience approaches fail to account for
resource constraint- risk nexus in vulnerability dynamics [8,47]. The linkage of resource
constraints, maladaptation and increased methane emissions in the study area underscores
the centrality of market risks. The findings underscore [46], observation that adaptation
action could potentially to spill beyond geographical and economic boundaries.

Crop-livestock integration is one of the strategies for internalizing environmental
externalities. For instance, some studies suggest agroforestry could provide several envi-
ronmental co-benefits [67]. Integrated livestock-agroforestry management practices which
encompass the combination of trees and/or legumes with livestock have the potential
to mitigate GHG, capture and store carbon from the atmosphere. However, uptake of
integrated systems is dependent on the ability of institutions to meaningful tackle existing
bottlenecks (or institution fit), such as market access and price risk [65]. In the study, mar-
ket risks tend to undermine supplementation as well the uptake of legume fodders. The
negligible supplementation interventions in Ms dairy cattle feeding among poor farmers
suggest that market risks and financing interventions are critical in agriculturally based
carbon transitions.

Though Western Kenya is an idiosyncratic typology in global climate policy agenda,
it provides invaluable insights on common environmental and sustainability challenges
across scale and how they impact effectiveness of GHG mitigation initiatives. Further it
illustrates the linkages of market risks on GHG emissions and/or aggravation of shifting
vulnerabilities among resource constrained farmers. In essence the institutional-GHG-
market risk nexus suggested herein demonstrates the multifaceted challenges in adaptation
and mitigation discourses. It further underscores the centrality of contextual factors as
suggested by [19], the indivisibility, as well as the need for concurrent use of socio-economic
and environmental triple bottom line principles in carbon transitions.

The strength of this study lies in the integration of the triple sustainability bottom-line
and market risks to visualise GHG emission levels that informs transformative discourses
on climate change. use of literature data to estimate emission risks, may result into
biased emission extremes (either low or high). Quantification of real-world emission levels
would go a long way in overcoming the limitation. Agent-based scenario modelling holds
considerable promise towards quantification of actual methane emission risks.

6. Conclusions

Effective tackling of global climate crisis largely depends on positioning agriculture
and food systems as alternative carbon transition patways, climate financing, as well as
enhancing adaptation-mitigation synergies. Concomittant to food system transformation
is the need for integration of GHG emissions into climate action agenda. The article
has framed the increasing GHG effect, as a collective challenge. Small-scale farming
production systems are expected to provide urgently needed solution space for transition
to alternative carbon transitions and the transformation process. Implicitly, adoption
of CSA technologies by a critical mass of small-scale farmers could significantly reduce
GHG emission gaps herein framed as effectiveness. Livestock subsector is considered as
priority agricultural subsector due to its significant role in adaptation, livelihoods and GHG
emissions. The first objective in the study thus investigated whether local decision making
on dairy feeding strategies has effect on GHG emissions at scale. Uptake of dairy feeding
technologies is visaualised through adoption theory [115]. In tandem with Koundouri
et al. [63], risk including market risks were posited to and were found to play a critical
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role in the adoption of the dairy feeding technologies. According to simulation results
on emethane emissions, dairy-agroforestry integration staretegies were as effective as
externally sourced inputs in reducing GHG emissions by upto 30%. However, uptake
of agroforestry/legume foddder alternatives among scale farmers in the study area is
extremely low. The high market risks accounted for low adoption of agroforestry/fodder
legume technologies. Evidently adoption of CSA technologies as a decision making process
impact GHG emission levels and effectiveness of local-global initiatives. The use of Ms
without and/or suboptimal supplementation, used herein further illustrates the risk of
maladaptation. Maladaptation, as well as low adoption of alternative carbon pathways
not only undermine local-global initiatives on GHG mitigation, but also deepens GHG
emissions and future global warming risks. An association between adoption of CSA
(i.e., dairy feed supplementation and dairy-agroforestry integration) and market risks
thus established reveal the association between micro-level decision making, risk, GHG
emission, as well as suggest global interconnectivity. Maladaptive responses in the case
study further highlight the growing need to debunk framing of adaptation as a local
issue [19,46], as well the urgency to address maladaptive practices in small-holder farmer
production systems [116].

Some studies [117] suggest the need to deliberately direct adaptation finance towards
resource constrained farm households. The study has highlighted the effect of resource
constraints on uptake of CSA technologies. In particular, it underscores market risks
as binding constraints in the supplementation of dairy cattle feeding strategies. The
study recommends use of SFVC as an analytical lens to visualise the institutional gaps in
carbon transitions, facilitate institutional coherence and re-engineer institutions towards
innovation, specifically the inclusion and integration of small-scale farmers into climate
finance initiatives. Together the suggested framework addresses transformation gaps in
resilience building as suggested by [8,40]. This could foster adoption of CSA technologies by
a critical mass of small-scale farmers and positively impact effectiveness of carbon neutral
transitions. The finding provides an innovative analytical lens for effective adaptation
planning and the positioning of food systems as alternative carbon transition pathways. In
conclusion, cogent climate action policies at scale need to focus on decision making-price
risk- resource constraint nexus and feedbacks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12111507/s1. File S1: Effect of output price variations on risk management at different
levels of basal diets on Gross Margin.
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