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Abstract: Spatial and temporal variability in precipitation has been dramatically changed due to
climate variability and climate change over the global domain. Increasing in extreme precipitation
events are pronounced in various regions, including monsoon Asia (MA) in recent decades. The
present study evaluated precipitation variability in light of intensity, duration, and frequency with
several extreme precipitation climate change indices developed by the Expert Team on Climate
Change Detection Indices (ETCCDI) over the MA region. This study uses an improved version
(APHRO_V1901) of the Asian Precipitation Highly Resolved Observation Data Integration Towards
Evaluation of extreme events (APHRODITE-2) gridded rainfall product. Results showed that the
spatial variability of the extreme precipitation climate change indices is reflected in the annual mean
rainfall distribution in MA. Maximum one-day precipitation (R × 1) and precipitation contributed
from extremes (R95) depict a peak in decadal mean rainfall values over topography regions. A
significant positive trend in R × 1 (with a slope of 0.3 mm/yr) and precipitation greater than the 95th
percentile (R95: with a slope of 0.5 mm/yr) are predominantly observed in decadal trends in regional
average extreme precipitation climate change indices over MA. Maritime continental countries exhibit
an inclined trend in R10, whereas central Asian arid regions show a decreasing tendency in continuous
dry days (CDD). The positive trend in R95 is observed over central India, the monsoon region in China,
countries that reside over the equator and some parts of Japan, and the Philippines. When comparing
the influence of surface temperature (T) and total column water vapor (TCW) on precipitation
climate change indices, TCW seems to be a crucial attributor to climate change indices meridional
variability. The mutual correlation analysis depicts that precipitation contributed from extremes (R95)
strongly correlates in terms of temporal variability with all extreme precipitation indices. Among
various global circulation patterns, the prevalent conditions of sea surface temperature (SST) over the
equatorial Pacific Ocean have a significant influence on decadal variability in extreme precipitation
climate change indices. R10 and R95 possess a relatively significant correlation (0.86 and 0.91) with
the Southern Oscillation Index. The maximum number of consecutive dry days (CDD) shows an
increasing trend with a positive phase of the North Atlantic Oscillation Index.

Keywords: climate change indices; extreme precipitation; APHRODITE; monsoon Asia

1. Introduction

Climate change and its socio-economic impacts are the most concerning and chal-
lenging issues for several international and national organizations in the global domain.
The sustained impact of climate change has modulated biodiversity and the ecosystem at
multiple scales on Earth [1]. A comprehensive understanding of climate variability and
reliable future projections are essential to adapt climate change and mitigation challenges.
However, the complex interaction between human-induced climate change and natural
variability imposes constraints for evaluating climate variability [2]. The direct and indirect
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effect of the changing climate and its consequences on the global domain, continental scale,
and regional scale is still a subject of open discussion. The profound signal of climate
change and variability is clearly evidenced by an increase in the number of extreme precip-
itation events, flash floods, droughts, and heatwaves in recent decades [3–5]. Of particular
concern, the increase in extreme precipitation events is reasonably associated with an
increase in mean global temperature. The increase in mean global temperature enhances
water vapor holding capacity in the atmosphere and results in variations in precipitation
over short time intervals [6].

In general, extreme precipitation events are caused by various atmospheric phenom-
ena such as mesoscale convective systems, atmospheric rivers, cloud bursts, and cyclones.
The excess moisture availability in the atmosphere in addition to surface temperature
conditions and geographical attributes such as topography are responsible for extreme pre-
cipitation events. Extreme precipitation events cause significant damages to society and loss
of properties [7]. As flash floods are strongly associated with unexpected heavy deluges,
they also often lead to vector-borne diseases. Moreover, climate change is greatly reflected
in the extreme precipitation rather than mean precipitation over the global domain [6].
Hence, numerous researchers pay attention to better understand the trends/variability
of extreme precipitation events in the wake of climate change. Several previous studies
investigated the decadal changes in precipitation patterns and possible associated driving
mechanisms [8–11]. The observed change in precipitation patterns is closely associated
with several aspects: the state of the large-scale circulation patterns, surface temperature
conditions, higher total column water vapor, and advected water vapor flux.

Several earlier researchers developed their criteria in terms of “indices” to predict
regional precipitating systems. For instance, some of the well-known monsoon indices used
to indicate the South Asian monsoon based on the intensity of the wind at two vertical levels
(850 hPa and 200 hPa), over the Indian subcontinent such as the Webster–Yang Monsoon
Index, Indian Monsoon Index, and Extended Indian Monsoon Rainfall, respectively. To
understand the nature of the precipitation variability in the light of intensity, duration, and
frequency, the Expert Team on Climate Change Detection Indices (ETCCDI), under the
guidance of the World Meteorological Organization (WMO), developed 27 climate change
indices for precipitation and temperature and the details are discussed in [12]. These
indices have been proven to be a proxy for quantifying the changes in precipitation and
temperature patterns and used for monsoon Asia [13]. These indices also possess potential
applications prominently for addressing the impact of climate change on precipitation
and temperature.

It is clearly evidenced from earlier studies that rainfall and temperature witnessed
significant changes, often in the extreme ends on global, continental, and regional scales.
However, rainfall does not follow similar trends like other parameters, and instead depicts
positive/negative trends over different regions in the global domain [14]. Moreover, the
impact of climate change on rainfall trends is compared to be insignificant with other
parameters such as temperature, as reported in [15]. Though the observed trends are either
significant or insignificant, they significantly impact the precipitation relevant aspects such
as freshwater availability, soil moisture conditions, groundwater discharge, etc. Therefore,
further quantification of the precipitation variability in terms of intensity, duration, and
persistence certainly enhances our understanding of how climate change impacts extreme
precipitation events. Thus, such attempts help to design and develop climate change
adaptation systems.

As monsoon Asia is concerned, several studies investigated the possible changes
in extreme precipitation and temperature patterns [16–26]. The aforementioned studies
focused on detecting the trends in climate change indices mostly over large land regions
such as India, China, and central Asia. A clear transition in wet day frequency and number
of continuous wet days are observed over a large part of central India during the two study
periods [22]. Their study also highlights the predominant remote influence of equatorial
Indian SST on precipitation indices. Kumar et al. (2020) [22] detected decadal trends in
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precipitation and temperature and also projected trends in temperature under the RCP 8.5
scenario using CanESM2 data. Mixed trends in precipitation amount from extremes (R95)
and projected increase in warm nights are observed over a varying fraction of locations
in India. Over China and central Asia, previous studies [20,23] investigated the trends
in extreme precipitation and temperature indices using surface-based observations, grid-
ded datasets, and evaluated the gridded dataset, Global Precipitation Climatology Centre
(GPCC) with surface observations. The increasing trends in precipitation-based climate
change indices and decrease in continuous dry days are the important findings from these
studies. Comparing the gridded datasets with station average values highlighted the po-
tential use of the GPCC dataset in extreme precipitation analysis while considering extreme
precipitation analysis over the global domain. Further, [21,25] evaluated extreme precipi-
tation variability on a global scale using observations (Daily Precipitation Observations
for Climate prediction—DAPACLIP) and model approaches (CMIP6 and CMIP5). They
showed different climatological features such as tropical storm paths, orographic effects,
and monsoon processes. They suggested that how interpolation errors and gauge density
can influence the representation of extreme precipitation events. The improvements in
CMIP6 models are reflected while simulating extreme precipitation more strongly, reducing
the dry biases over tropical and subtropical rain band regions.

Most of the previous studies are region-specific and hardly discussed the influence of
large-scale circulation patterns on extreme precipitation climate change indices over MA.
The major constraint to conduct such trend analysis on a continental scale is the lack of
publicly accessible high-resolution datasets. The detected trends are possibly connected
with the state of large-scale circulation patterns and the influence of such large-scale
patterns (such as ENSO) not only extends specific regions but also spreads to continental
scale. Therefore, a detailed study on the possible link between regional trends under the
influence of large-scale climate patterns is worth attempting. Moreover, numerous studies
emphasized that climate change remarkably altered the precipitation patterns over other
MA regions rather than the SE region, China, and India [27]. In addition, other relevant
possible aspects, such as the influence of total column water vapor in the atmosphere and
surface temperature conditions on extreme precipitation climate change indices variability,
are not yet addressed over the MA region. Thus, the novelty of the present research is to
quantify the regional variability and recent trends of extreme precipitation climate change
indices in the past two decades and the dominant remote influence of large-scale circulation
patterns on different extreme precipitation climate change indices. We also aim to evaluate
quantitatively the influence of meridional variability of surface temperature (T) and total
column water vapor (TCW) on precipitation climate change indices. Further understanding
of extreme precipitation variability over MA and possible controlling factors such as large-
scale circulation patterns, and TCW certainly supports the development of mitigation
challenges and further improves the prediction skill of extreme precipitation events.

Although climate change and its profound consequences have been witnessed for
several decades, the impact of climate change has intensified in the last two decades as
reported in [20,21,28]. For instance, the top ten warmest years since 1880, record greenhouse
gas emissions, acceleration of global sea level, decline in sea ice, and increased number of
high-impact weather events have been observed in the last two decades. Previous studies
also emphasized significant changes in precipitation patterns during the last two decades
over MA [29,30]. Therefore, the present study aims to investigate the possible changes in
precipitation extremes and associated teleconnections over the MA domain in the past two
decades (1998–2015).

2. Materials and Methods
2.1. Study Region

The MA region is known for its diversity in different rainfall regimes and geographi-
cal features. The study region is extended between longitude (60◦ E–150◦ E) and latitude
(15◦ S–55◦ N). Various synoptic-scale monsoon circulation phenomena bring annual rain-
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fall over different geographical regions in MA (Figure 1). For instance, the Indian subcon-
tinent receives a significant rainfall fraction during the southwest monsoon season [31].
Japan receives rainfall during the Baiu season and due to the number of frontal systems [32].
Meanwhile, the Philippines gets annual rainfall from two distinct seasons [32]. Countries
that reside over the equatorial belt receive a significant amount of rainfall from convective
systems. In addition to such large-scale monsoonal circulation in MA regions, local geo-
graphical features such as topography also play a significant role in enhancing rain-bearing
mechanisms. Such a kind of orography effect on precipitating systems is seen along the
Western Ghats of India, the Arakan Mountains in Myanmar, and the Japanese Alps in
Japan. Apart from its diversity in geographical features, coastal regions are vulnerable to
tropical cyclone activities. For example, the southeastern belt of Indian Territory, the entire
coastal belt of Philippines, and Japan.
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Figure 1. Spatial distribution of mean annual rainfall (1998–2015) over monsoon Asia (MA).

The diverse geography, coupled with complex topography, results in inhomogeneous
rainfall distribution over MA. Several distinct climate zones, such as tropical core convec-
tive zones to cold subtropical regions, possess contrasting rainfall regimes in MA. The
chaotic nature of land–ocean interactions over MA further makes rainfall patterns much
complex [33].

2.2. APHRODITE Datasets
2.2.1. Rainfall

Asian Precipitation Highly Resolved Observational Data Integration Towards Evalua-
tion of Extremes (APHRODITE-2) is an open data source available to the public domain
for various research applications. APHRODITE-1 primarily focused on water resource
management, improving model outputs, and reference datasets to validate model/satellite
outputs/estimates. APHRODITE-2 is a daily gridded rain gauge dataset available for
18 years from 1998 to 2015 with a spatial resolution of a quarter degree over the mon-
soon Asia region. Data source and generation methodology are discussed in Yatagai et al.
(2012) [34]. The advantages of APHRODITE data in various hydro/meteorological appli-
cations have been evaluated by several earlier researchers [35,36]. Observations inferred
that APHRODITE is able to represent temporal variability, probability of detection, and
frequency of extreme precipitation events as observed by rain gauge measurements over
different regions in MA. However, the lack of adequate surface rain gauge measurements
over high altitude regions makes APHRODITE datasets less reliable. The latest version of
APHRODITE assures an improvement over topography regions with the latest climatology
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developed by APHRODITE-2. The APHRODITE-2 team made several reasonable efforts,
such as refining the quality control procedure to control false measurements, end of the
day (EOD) correction to avoid any inconsistency in data accumulation time, and station
value conservation to improve the representation of extreme rainfall measurements over
individual grids in the V1901 product [32,37]. Extreme rainfall evaluation under the global
climate change scenario is a crucial aspect of the APHRODITE-2 program. Hence, this
study has considered an improved version of the APHRODITE-2 dataset (APHRO_V1901)
to evaluate extreme precipitation events over the Monsoon Asian region. The dataset was
acquired from [38] for 1998–2015.

2.2.2. Temperature

APHRODITE also provides daily mean temperature measurements with a resolution
of a quarter degree over the MA region for the period of 1961–2015. The latest version
(V1808) of the temperature product is available with significant improvements such as the
introduction of the topographic effect in spatial interpolation, improvement in interpolation
algorithm, and climatology representation. Additional datasets are added over south-Asian
countries such as India, Bhutan, Myanmar, and Thailand. The details of this dataset and
methodology are discussed in Yasutomi et al. (2011) [39].

2.3. MAIAC Water Vapor

MODerate resolution Imaging Spectrometer (MODIS) water vapor products have been
extensively used for regional and global analysis [40–42]. MODIS is a multispectral sensor
onboard the North America Space Administration’s (NASA’s) Terra and Aqua satellites
since 2000 and 2002, respectively. Terra and Aqua operate sun-synchronously, and Terra
crosses the equator at 10:30 local time (LT) while Aqua crosses the equator at 13:30 LT.
This multispectral sensor provides 36 bands, 3 resolutions (250, 500, and 1000 m), and
near-daily observations with a broad swath (2330 km). The MODIS Collection 6.1 provides
a new water vapor product (MCD19A2) derived from Multi-Angle Implementation for
Atmospheric Correction (MAIAC). The algorithm uses three spectral channels (MODIS
B17 (890–920 nm), B18 (931–941 nm), and B19 (915–965 nm)) to retrieve the total water
transmittance and estimate the CWV using Look Up Tables (LUT) procedures. The global
validation of this product shows a high agreement between MAIAC/AERONET CWV
retrieval (correlation > 0.95) and the expected error lower than 15% [43]. A detailed
description of the MAIAC CWV algorithm is found in [44]. This study used the MCD19A2
product (2002–2015) to calculate the long-term monthly average of total column water
vapor over the MA region. The product is available at Level-1 and Atmosphere Archive &
Distribution System (LAADS) Distributed Active Archive Center (DAAC) [45]. The daily
Aqua MODIS products were extracted from MCD19A2 HDF files, and cloud-free retrievals
were filtered using the quality assurance layer from SDS “AOD_QA”. By using high-quality
retrievals, we computed the monthly average water vapor between 2002 and 2015.

2.4. Extreme Precipitation Climate Change Indices

ETCCDI defined 27 different climate change indices based on daily precipitation
amounts and temperature to detect and monitor climate change [12]. Among eleven
precipitation-based climate change indices, we have acquired seven climate change indices
to investigate the nature of precipitation variability in light of intensity, duration, and
frequency based on a high-quality daily gridded precipitation available in the MA region.
The intensity/duration/frequency of extreme precipitation events are represented by the
R × 1, R × 5, R95, SDII/CWD, and CDD/R10 indices. The basic criteria for selecting these
seven out of 10 indices is drawn from the definition of the indices. For example, R10, R20,
or RN represent the number of precipitation events with 10 mm, 20 mm, or N mm. The
detailed definitions and units of climate change indices are described in Table 1.
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Table 1. Definition, estimation methodology of precipitation climate change indices and their
units [12].

Details of Estimation Methodology of Precipitation Climate Change Indices and Units

Rx1day: Monthly maximum 1-day precipitation: Let RRij be the daily precipitation amount on
day i in period j. The maximum 1-day value for period j are: Rx1dayj = max (RRij), units = mm.

Rx5day: Monthly maximum consecutive 5-day precipitation: Let RRkj be the precipitation
amount for the 5-day interval ending k, period j. Then maximum 5-day values for period j are:

Rx5dayj = max (RRkj), units = mm.

SDII: Simple precipitation intensity index: Let RRwj be the daily precipitation amount on wet
days, w (RR ≥ 1 mm) in period j. If W represents the number of wet days in j, then:

SDIIj =
∑W

w=1 RRwj
W , units = mm/day.

R10mm: Annual count of days when PRCP ≥ 10 mm: Let RRij be the daily precipitation amount
on day i in period j. Count the number of days where: RRij ≥ 10 mm. units = days.

CDD: Maximum length of dry spell, maximum number of consecutive days with RR < 1 mm: Let
RRij be the daily precipitation amount on day i in period j. Count the largest number of

consecutive days where: RRij < 1 mm units = days.

CWD: Maximum length of wet spell, maximum number of consecutive days with RR ≥ 1 mm:
Let RRij be the daily precipitation amount on day i in period j. Count the largest number of

consecutive days where: RRij ≥ 1 mm units = days.

R95pTOT: Annual total PRCP when RR > 95p. Let RRwj be the daily precipitation amount on a
wet day w (RR ≥ 1.0 mm) in period i and let RRwn95 be the 95th percentile of precipitation on wet

days in the 1961–1990 period. If W represents the number of wet days in the period, then:
R95PJ = ∑W

w=1 RRwj where RRwj > RRwn95. Units = mm.

2.5. Global Teleconnections and Regional Scale Monsoon Indices

As evidenced by earlier literature, the spatiotemporal variability of rainfall in the MA
region has a prominent association with large-scale circulations [46]. Often, the nature
of climate change and variability is reflected by the strengthening/weakening of such
large-scale circulations. As an example, the recent weakening of monsoonal circulation
over the Indian subcontinent [23]. Thus, the influence of large-scale circulation patterns
on precipitation climate change indices reveals the possible linkage between precipitation
patterns and teleconnections. We have considered nine such circulation patterns, namely
Arctic Oscillation (AO), Atlantic Multi-decadal Oscillation (AMO), Dipole Mode Index
(DMI), El-Niño Modoki Index (EMI), East-Central Tropical Pacific SST (Nino 3.4), Pacific
Decadal Oscillation (PDO), Southern Oscillation Index (SOI), Multivariate ENSO Index
(MEI V2), North Atlantic Oscillation (NAO), and Madden Julian Oscillation (MJO). The
detailed description and estimation of most of these indices can be found by [47]. DMI
and EMI data can be obtained on the JAMSTEC website [48]. The MJO amplitude and
Real-time Multivariate MJO Index (RMM1 and RMM2) can be found in [49].

In addition to the circulation patterns, several regional level monsoon indices are
also considered in this study. The indices include the Indian Summer Monsoon Index
(ISMI), Western North Pacific Monsoon Index (WNPMI), Webster and Yang Monsoon
Index (WYMI), South Asian Summer Monsoon index (SASMI), and East Asian Summer
Monsoon Index (EASMI). ISMI, WNPMI, and WYMI are accessible in [50] whereas SASMI
and EASMI indices are found in [51].
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2.6. Study Methods
2.6.1. Trend Analysis

This study used a nonparametric-based Mann–Kendall (MK) test to estimate the
trends in climate change indices. The test compares relative magnitudes rather than the
data values. The robustness of the MK test was highlighted in previous studies [52]. The
MK test possesses several advantages such as being insensitive to outliers and missing
data in time series. Estimated Z-scores are used to represent the magnitude of trends. The
positive Z value infers a positive trend and vice versa.

2.6.2. Correlation Analysis

Assessment of global teleconnections impact and regional monsoon indices with
extreme precipitation indices is performed with the help of Spearman’s correlation analy-
sis. Spearman’s correlation is estimated between two parameters with their variance and
means [31,32,53]. The correlation measurements range from −1 to +1. Correlation of +1
indicates a perfect linear equation that describes the relationship between two parame-
ters, correspondingly, −1 indicates an opposite relationship between two parameters. A
correlation of zero represents no linear relationship between two parameters.

3. Results
3.1. Regional Characteristics of Climate Change Indices

The spatiotemporal variability of monsoonal rainfall dramatically influences the econ-
omy and societal life of the MA region. Historically, many studies investigated the nature
of MA rainfall variability and associated attributes such as aerosols, Eurasian ice, volcanic
eruptions, and SST anomalies, etc. [54–57]. Although the nature of rainfall variability has
been perturbed by all means with possible factors as mentioned, the signature is much pro-
nounced at extreme sides rather than the mean variability of rainfall in recent decades [6].
This section further presents the spatial variability of precipitation in the light of extreme
precipitation indices. The spatial variability of annual mean rainfall is complex in nature
over MA as shown in Figure 1. Figure 2 illustrates the decadal mean spatial variability of
climate change indices along with histograms. Histograms represent the bin-wise distri-
bution of precipitation indices over MA. Histogram analysis gives information regarding
the maximum occurrence of extreme precipitation climate change indices measurements
on the regional level. The mean spatial variability of quantitative precipitation climate
change indices such as R × 1, R × 5, R95, and SDII are presented in the left panel of
Figure 2. The CDD, CWD, and R10 are shown in the right panel of Figure 2. Maximum
one-day precipitation (R × 1) replicates similar spatial distribution to annual mean rainfall
variability over MA (Figure 1). Wet regions such as the Western Ghats, the northeast in the
Indian subcontinent, western coastal belts for the Myanmar region, central forest range in
Papua New Guinea, a northwestern island of the Philippines, and some southern parts of
Japan are observed to be hot spots for one-day extreme precipitation (R × 1) events.

The regions with a relatively large magnitude of one-day maximum precipitation
(R × 1) events mostly belong to coastal and rich topography regions. The intensity of
R × 1 relatively seems to be higher over the regions that come under the influence of the
orography effect, as concluded in previous studies [58,59]. Therefore, it is supposed that
geographical features such as orography over wet regions in MA seem to play a significant
role in enhancing the severity of maximum one-day precipitation (R × 1) and consequently
lead to more flash floods [52,60].
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It is possible that the annual mean rainfall is strongly associated with maximum one-
day precipitation (R × 1) and the amount of precipitation form extremes (R95), especially
over coastal regions such as the Western Ghats, India. The dual effect of maximum mean
R × 1 and R95 measurements over coastal regions results in relatively higher mean values
in SDII. Though central India depicts maximum values in R × 1, the lower SDII over central
India is attributed to less precipitation contributed from extreme precipitation events (R95).
Spatial variability of the 5-day maximum precipitation (R × 5) seems to be scattered over
the Indian subcontinent and maritime continent. Rain-fed regions over China and Japan
depict relatively higher 5-day precipitation. The dominant fraction of the study region
shows SDII with magnitudes of ~7–13 mm except coastal regions that are vulnerable to
heavy precipitation with SDII index greater than 13 mm. Such higher mean values in
SDII over specific regions are contributed from R × 1, R95, CWD, and R10. Considering
the diverse nature of geographical features in the MA region, the mean spatial variability
of extreme precipitation climate change indices reflected the contrasting characteristics
of annual mean rainfall over MA. For instance, R × 1, R95, and R10 replicate similar
distributions to annual mean rainfall variability. Such a significant correlation between
precipitation climate change indices and annual mean rainfall is also observed in earlier
studies [19,58].

Climate change indices such as CDD show dry days with a longer interval (about
3 to 6 months) over rain deficient and desert regions such as the north Asian region. It is
noteworthy to mention that the histogram of CDD shows the maximum number of grids
having 30–40 days as a dry period, which resembles the MJO seasonal cycle. Similarly, the
histogram of CWD depicts a maximum occurrence of CWD over 5–10 day intervals, which
implies that the dominant nature of 5–7 days oscillations of summer monsoon rainfall
over MA. The maximum mean values (about 2–3 months) of CWD are observed over
topography-rich regions and exposure to mass air movements. It is interesting to note that
the regions that show maximum/minimum CDD/CWD or vice versa are not the same. The
spatial variability of the number of precipitation events with 10 mm (R10) rainfall quietly
replicates the spatial variability of annual mean rainfall. Frequent intensive convective
activities result in the maximum number of R10 precipitation events over the maritime
continental region. Moreover, recent simulations carried out over the maritime continent
suggest an amplified projection in precipitation climate change indices over the maritime
continent [61].

Nevertheless, China and Japan present higher SDII values with low CDD and CWD
implies a smaller number of wet days with higher annual rainfall. Yu et al. (2020) [20] also
concluded the similar increasing trends in SDII over the China region. Although various
MA sub-regions experienced contrasting trends in precipitation climate change indices,
R × 1, R95, and SDII share common sub-regions with similar tendencies.

The spatial variability in annual mean precipitation and extreme precipitation climate
change indices inferred spatial heterogeneity in the mean and extreme precipitation dis-
tribution over the MA region, as observed in Figures 1 and 2. Further understanding of
the trends in precipitation climate change indices reveals possible changes in precipitation
patterns due to recent intensified climate change over different regions for the past two
decades in MA.

Figure 3 narrates recent decadal trends in precipitation climate change indices over
the MA. Semi-arid regions such as the southeast and northwest and central India show an
increasing trend in R × 1. The wettest region (Western Ghats of India) depicts a decreasing
trend in R × 1 over some isolated grids. Equatorial tropical countries within the maritime
continent show intensified daily maximum one-day precipitation (R × 1). The annual
maximum 5-day continuous precipitation does not furnish a clear indication in trends
over MA. Precipitation contributions from extremes (R95) and conditional annual mean
precipitation (SDII) show similar spatial patterns in recent trends. The major discrepancy is
that China’s monsoonal wet regions observed an increasing trend in precipitation amount
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contributed from extremes (R95). Overall, the maximum number of grids shows an
increasing trend in R × 1 and R95 over MA.
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The number of consecutive dry days (CDD) exhibits a declining trend dominantly
over southern MA countries. The Indian subcontinent also shows a change in CDD towards
a decreasing trend in magnitude. The arid regions such as Pakistan, Afghanistan, Thar,
and the Gobi Desert depict a decline in a long dry spell. Duration of continuous rainfall
(CWD) is prolonged over Western Ghats, India, and the maritime continental region except
for Papua New Guinea. SAARC countries such as Bangladesh, Nepal, and some parts of
Myanmar, Thailand, and Vietnam recorded declining trends in CWD in recent decades. The
spatial distribution of trends in the number of events with 10 mm (R10) precipitation is quite
analogous to CWD for the MA region, excluding WG, India, Pakistan, and Afghanistan,
where CWD does not show significant trends.

Although various MA sub-regions experienced contrasting trends in precipitation
climate change indices, R × 1, R95, and SDII share common sub-regions with similar ten-
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dencies. Though the intensity of precipitation extremes (R × 1, R95) shows an increasing
trend over MA sub-regions, the duration (CWD) and frequency (R10) of extremes are
relatively larger over continental countries. Previous literature also highlighted similar
trends over tropical countries [16,26]. The decreasing trends in CDD reported over arid
regions such as the Gobi Desert and Pakistan, Afghanistan and northwest India are at-
tributed to increasing precipitation activity due to global warming [62]. Similarly, countries
located around the head Bay of Bengal in the South-East region resemble similar decreasing
trends dominantly in R × 1, R95, CWD, and R10. Interestingly, such decreasing trends
in relative wet indices indicate a drying signal over such regions. Delayed and changing
distribution patterns of precipitation over such regions are major factors for observed
drought conditions [63].

The regional trends in climate change indices indicate contrasting features in the
past two decades over the MA region. Maritime continental countries exhibit compara-
tively similar trends in climate change indices such as R95, R10, and SDII whereas large
landmasses such as India, China, and adjacent countries depicted similar trends in R95.
Though the spatial distribution in trends implies possible changes in regional scale extreme
precipitation indices, common and distinct features in trends on a regional scale, the areal
mean tendencies in climate change indices further could account for the vulnerability of the
MA region to extreme precipitation variability in terms of different precipitation climate
change indices. The areal average trends in extreme precipitation climate change indices
are shown in Figure 4. Extreme precipitation-based indices such as R × 1 and R95 set
an increasing tendency with slopes of 0.3 mm and 0.5 mm per year during the past two
decades. Consecutive dry days (CDD) and the number of rainy days greater than 10 mm
(R10) present a decreasing tendency during the study period (1998–2015). Though the
increase in CWD is seen over the MA region, the slope is relatively less compared to CDD.

Atmosphere 2021, 12, x FOR PEER REVIEW 11 of 21 
 

 

(R10) precipitation is quite analogous to CWD for the MA region, excluding WG, India, 
Pakistan, and Afghanistan, where CWD does not show significant trends. 

Although various MA sub-regions experienced contrasting trends in precipitation 
climate change indices, R × 1, R95, and SDII share common sub-regions with similar 
tendencies. Though the intensity of precipitation extremes (R × 1, R95) shows an increas-
ing trend over MA sub-regions, the duration (CWD) and frequency (R10) of extremes are 
relatively larger over continental countries. Previous literature also highlighted similar 
trends over tropical countries [16,26]. The decreasing trends in CDD reported over arid 
regions such as the Gobi Desert and Pakistan, Afghanistan and northwest India are at-
tributed to increasing precipitation activity due to global warming [62]. Similarly, coun-
tries located around the head Bay of Bengal in the South-East region resemble similar de-
creasing trends dominantly in R × 1, R95, CWD, and R10. Interestingly, such decreasing 
trends in relative wet indices indicate a drying signal over such regions. Delayed and 
changing distribution patterns of precipitation over such regions are major factors for ob-
served drought conditions [63]. 

The regional trends in climate change indices indicate contrasting features in the past 
two decades over the MA region. Maritime continental countries exhibit comparatively 
similar trends in climate change indices such as R95, R10, and SDII whereas large land-
masses such as India, China, and adjacent countries depicted similar trends in R95. 
Though the spatial distribution in trends implies possible changes in regional scale ex-
treme precipitation indices, common and distinct features in trends on a regional scale, 
the areal mean tendencies in climate change indices further could account for the vulner-
ability of the MA region to extreme precipitation variability in terms of different precipi-
tation climate change indices. The areal average trends in extreme precipitation climate 
change indices are shown in Figure 4. Extreme precipitation-based indices such as R × 1 
and R95 set an increasing tendency with slopes of 0.3 mm and 0.5 mm per year during the 
past two decades. Consecutive dry days (CDD) and the number of rainy days greater than 
10 mm (R10) present a decreasing tendency during the study period (1998–2015). Though 
the increase in CWD is seen over the MA region, the slope is relatively less compared to 
CDD. 

 
Figure 4. Area averaged time series in extreme precipitation climate change indices. The black line indicates the area
average time series of climate change indices. Dotted and solid red lines represent a three-year running average and linear
fit in climate change indices. The significant trends are shown with corresponding p-values.



Atmosphere 2021, 12, 1492 12 of 20

Based on regional average trends, extreme precipitation indices elucidate increasing
trends during the last couple of decades. The ETCCDI defined precipitation climate change
indices are largely associated with each other. For example, the increase in CWD can
influence the SDII index over a region. Therefore, Table 2 illustrates the mutual correlation
between precipitation climate change indices to further account for how observed variation
in each climate change index is got reflected in other indices’ variability. The negative
correlation of the CDD index with all other indices is attributable to an opposite trend
in both indices. Though such a contrasting signature is detected until 2010, CDD shows
a similar trend to other indices later 2010 (Figure 4). Thus, it may be concluded that the
duration of the rainfall active spell has been decreasing later than 2010. The increase
in R95 and decrease in CWD indicate extreme precipitation events of a short duration
nature. Precipitation contributed from extremes (R95) depicts a significant correlation with
the maximum number of other indices. The highest correlation is reflected between the
number of rainy days greater than 10 mm (R10) and R95. R10 and SDII also follow similar
variations as other indices with correlation magnitudes exceeding 0.5. R × 1 is exempted
from such a large association with other indices and exhibits a reasonable correlation with
R95 and SDII.

Table 2. Mutual correlation coefficients between precipitation climate change indices. * is 0.05
significance, and ** is the 0.01 significance level.

CDD CWD R × 1 R10 R × 5 R95 SDII

CDD 1
CWD −0.3 1
R × 1 −0.22 0.1 1
R10 −0.44 * 0.83 ** 0.18 1

R × 5 0.26 −0.07 0.006 −0.16 1
R95 −0.45 * 0.72 ** 0.54 ** 0.89 ** −0.18 1
SDII −0.4 0.46 * 0.76 ** 0.53 * −0.03 0.74 ** 1

3.2. Teleconnections of Climate Change Indices with Temperature and Total Column Water Vapor

Spatial variability of climate change indices and temporal trends imply contrasting
features concerning different regions, notably tropical to subtropical regions over MA
(Figures 2 and 3). The manifestation of such variability in climate change indices, even in
mean rainfall, is primarily associated with changes in mean T (◦C) measurements and the
availability of TCW (g/kg) in the atmosphere [64]. Both the parameters interact with each
other and have a significant attribution to changes in precipitation patterns. Numerous
reports highlighted how regional and large-scale changes in T and TCW could influence
the nature of rainfall systems from sub-daily scale to seasonal scale [65]. Figure 5 shows
the meridional mean variability of climate change indices overland against T and TCW
variability. When comparing the significant influence of T and TCW on precipitation
climate change indices, TCW availability in the atmosphere seems to be a crucial attributor
for the variability of climate change indices. Maximum one-day precipitation, R × 1 follows
a similar variability, as seen in the case of T. The gradual decline in T later 25◦ N may
be attributed to the Himalayan region’s cold surface conditions. The maximum one-day
precipitation (R × 1) and SDII show similar variability to T up to 30◦ N. Though the
temperatures measurements are increased later to 30◦ N, the lack of enough moisture
availability later 30◦ N, and arid conditions (Figure 1) over central Asia may be responsible
for a decrease in mean extreme precipitation measurements over MA. The peak values
in R × 1, SDII, and T around 15–25◦ N signify the role of surface temperature conditions
on R × 1, the maximum occurrence of R × 1, and fractional contribution of R × 1 to SDII.
Excluding R × 1 and SDII, the other indices reflect a similar variability, as observed in
TCW. R95, CDD, CWD, and R10 mm climate change indices are closely associated with
TCW variability.



Atmosphere 2021, 12, 1492 13 of 20

Atmosphere 2021, 12, x FOR PEER REVIEW 13 of 21 
 

 

1, SDII, and T around 15–25° N signify the role of surface temperature conditions on R × 
1, the maximum occurrence of R × 1, and fractional contribution of R × 1 to SDII. Excluding 
R × 1 and SDII, the other indices reflect a similar variability, as observed in TCW. R95, 
CDD, CWD, and R10 mm climate change indices are closely associated with TCW varia-
bility. 

 
Figure 5. The variation in extreme precipitation climate change indices and surface temperature (T 
°C) and TCW (g/kg) over MA. For each sub-figure, the left Y-axis scale represents the scale for pre-
cipitation climate change indices and the right Y-axis scale represents the scale for T and TCW. 

For example, the opposite nature in variability, increasing/decreasing in mean values 
of CDD and TCW around 10° N which implies the length of CDD is negatively influenced 
by the availability of TCW. A similar variability of R95, CWD, SDII, and R10 is also ob-
served with maximum correlation R95 with other indices as shown in Table 2. The pre-
dominant influence of TCW on quantitative indices such as CDD, CWD, and R10 mm 
leaves a riddle for future scope. The relative availability of TCW in the atmosphere and 
surface temperature (T⁰C) depicts an apparent intra-annual variability throughout the 
year (Figure 6). In general, the summer months (JJAS) exhibit a maximum peak in mean 
precipitation. Though such intra-annual variability drastically varies over different cli-
mate zones over the study period, the comparative analysis of inter-annual variability of 
climate change indices with TCW and T further depicts the connectivity of TCW, T with 
climate change indices on a monthly scale as demonstrated in Figure 6. 
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For example, the opposite nature in variability, increasing/decreasing in mean values
of CDD and TCW around 10◦ N which implies the length of CDD is negatively influenced
by the availability of TCW. A similar variability of R95, CWD, SDII, and R10 is also
observed with maximum correlation R95 with other indices as shown in Table 2. The
predominant influence of TCW on quantitative indices such as CDD, CWD, and R10 mm
leaves a riddle for future scope. The relative availability of TCW in the atmosphere and
surface temperature (T ◦C) depicts an apparent intra-annual variability throughout the
year (Figure 6). In general, the summer months (JJAS) exhibit a maximum peak in mean
precipitation. Though such intra-annual variability drastically varies over different climate
zones over the study period, the comparative analysis of inter-annual variability of climate
change indices with TCW and T further depicts the connectivity of TCW, T with climate
change indices on a monthly scale as demonstrated in Figure 6.
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The monthly variation in TCW is reflected in various climate change indices such as
R95, SDII, and R10, as maximum TCW values are observed in the wet season (JJAS) in
Figure 6. The surface temperature depicts a smooth transition from one month to next
month, and similar variability is also observed in R1. However, total water vapor does
not show any significant transition like temperature. For example, the increases in mean
values of TCW from Dec to Jan are clearly reflected in an increase in SDII, R95, and R10.
Such type of variability is also depicted in Figure 5.

Comparing latitudinal variability of TCW and T with precipitation climate change
indices highlighted the possible quantitative linkages between climate change indices
variability and TCW, T. Excluding R × 1 and SDII, other climate change indices such R95,
CDD, CWD, and R10 are closely associated with TCW variability. Such a strong association
of climate change indices with TCW was also found in [66]. Though R × 1 possesses similar
variability to T, the mutual association seems to be weakened over latitudes greater than
35◦ north.

3.3. Global Teleconnections and Climate Change Indices

MA region receives a maximum fraction of annual rainfall from gigantic circulation
patterns due to seasonal oscillation of the Inter-Tropical Convergence Zone (ITCZ). It is
well established that such monsoon circulation systems are often remotely influenced by
the state of the many global teleconnections such as AMO, PDO, SOI, NAO, and MJO. The
relative attribution to spatiotemporal rainfall variability by such global teleconnections
could be a contrast in nature. Several large-scale circulation patterns and regional level
monsoon indices possibly linked to monsoon rainfall variability over MA are considered
to reveal the nature of synoptical scale forcing on variability of climate change indices.

The source of the rainfall-bearing systems over the MA region is associated with the
global mean wind circulation patterns, sea surface temperature variation, and land surface
conditions. However, the local geographical features such as orography and water bodies
can modify the dynamical and thermos-dynamical effects of rainfall source mechanisms
over selected regions such as the Western Ghats in MA.

To examine the possible influence of global teleconnections on decadal variability
of extreme precipitation climate change indices the correlation analysis between climate
change indices and global teleconnections, regional monsoon indices are considered. A
total number of 18 various global and regional scale winds, seas surface temperature,
and land temperature-based teleconnections are linearly correlated with climate change
indices. However, we have only included teleconnections and regional monsoon indices
with a minimum correlation of 0.4 in Table 3. Further, the spatial correlation maps are
also shown in Figure S1, which shows positive correlation-region pairs with SOI, such as
India CWD, southern China region–CDD, Malaysia region–R95, and negative over desert
regions of MA.

Among various teleconnections and monsoon indices, the SST conditions over the
equatorial Pacific Ocean are strongly correlated with the temporal variability of climate
change indices through ENSO-related indices such as SOI, MEI V2, and Nino 3.4 measures.
Four out of seven climate change indices (CWD, R10, R95, and SDII) are significantly
correlated with SOI. Though the correlation is computed with a lag period, such significant
correlations between climate change indices and SOI were also observed in southeastern
countries [29]. Indices such as R10 and R95 set a relatively significant correlation with the
SOI index (Figure 7). The highest correlation of SOI with R95 indicates the dominant role of
SST conditions over the western Pacific for supplying abundant moisture supply over MA.

Such significant features are also observed with other ENSO-related indices such as
Nino 3.4, with significant negative correlation magnitudes with CWD, R10, and R95. Other
ENSO-related indices such as MEI V2 also imply an apparent negative correlation with all
the climate change indices except CDD. As the increase in MEI V2 values signifies strong
El-Niño conditions, the magnitude of climate change indices is expected to decline, which is
apparent from the negative correlations observed with MEI V2. The significant differences
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in pressure anomalies during different SST conditions over the equatorial Pacific influence
the circulation patterns, such as Hadley and Walker cells over MA. The normal/La-Nina
conditions favor warmer SST over the western Pacific and influence surface temperature
conditions over MA. Moreover, the lower-level anticyclone flow, upper-level cyclonic
flow, and west–east gradients in updrafts also favor large-scale convection over MA. The
increase in observed global mean temperature that enhances water vapor holding capacity
in the atmosphere and the strong southwesterly flow due to low-level anticyclone west
Pacific along with favorable surface temperature conditions cause extreme precipitation
events over MA. However, annual maximum daily precipitation R × 1 depicts a relatively
stronger positive correlation with DMI. IOD seems to be a relatively valid attributor than
the ENSO for annual R × 1.

Table 3. Spearman correlation coefficients between precipitation climate change indices and various
global teleconnection indices and regional level monsoon indices over monsoon Asia. * is the
0.05 significance level, and ** is the 0.01 significance level. DMI—Dipole Mode Index, EMI—El-Niño
Modoki Index, Nino 3.4—East-Central Tropical Pacific SST, PDO—Pacific Decadal Oscillation, SOI—
Southern Oscillation Index, MEI V2—Multivariate ENSO Index, NAO—North Atlantic Oscillation,
MJO—Madden and Julian Oscillation (MJO), WYMI—Webster and Yang Monsoon Index, and
EASMI—East Asian Summer Monsoon Index.

CDD CWD R × 1 R10 R × 5 R95 SDII

DMI −0.18 0.22 0.37 0.28 −0.18 0.25 0.33
EASMI 0.45 * −0.11 −0.09 −0.19 0.04 −0.28 −0.46 *

EMI 0.18 −0.44 −0.11 −0.51 * −0.32 −0.52 * −0.20
GMLOT −0.32 −0.29 0.23 −0.47 * −0.05 −0.27 0.17
MEV2 0.10 −0.58 * −0.44 −0.80 ** −0.01 −0.87 ** −0.59 **

MJO_AMP 0.14 −0.18 −0.09 −0.24 −0.49 * −0.33 −0.43
NAO 0.45 * −0.29 0.10 −0.15 −0.04 −0.06 −0.02

NINO 3.4 0.02 −0.38 * −0.28 −0.68 ** −0.14 −0.72 ** −0.40
PDO 0.19 −0.48 * −0.37 −0.69 ** 0.01 −0.75 ** −0.46 *
SOI −0.32 0.65 ** 0.37 0.86 ** −0.09 0.91 ** 0.62 **

WYMI 0.44 −0.19 −0.43 0.04 0.14 −0.08 −0.55 **
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Earlier literature infers that the positive phase of IOD increases convective available
potential energy over MA, which in turn often causes local convections. In addition
to the remote influence of equatorial SST, the decadal oscillations of climatology SST
over the Pacific Ocean (PDO) also show a strong association with precipitation climate
change indices (R10, CWD, and R95) over MA. Similarly, consecutive dry days (CDD and
R10 perform a comparatively positive/negative correlation with NAO). Several earlier
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studies support such significant climate impact of NAO and PDO on the spatial pattern of
precipitation in the South-east monsoon region and sub-regions in MA [67–69]. Though the
period of PDO is longer than ENSO, the cold/warm phase of PDO can alter the influence
of the ENSO on climate over MA. Since the cold phase of PDO indicates an increase in
climatologically mean SST over the eastern Pacific, it may shift the circulation pattern
towards the eastern Pacific. As such, the shift does not favor a good monsoon over MA,
PDO exhibits a negative correlation with CDD, R95, and R10. Though the impact of NAO
on MA climate is not clear, the NAO is the chief source of connecting bridge for wave trains
generated over North Atlantic and across Pacific and ends at east Pacific by Rossby waves.

One possible attributor may be that during El-Niño conditions, the impact of NAO
may intensify and can cause dryness over MA. Both AO and AMO depict a weak correla-
tion with precipitation climate change indices. The weakening of meridional gradient in
tropospheric temperature is a possible factor for the observed weak correlation of AMO
and precipitation indices. Considering MJO amplitude and the first two principal compo-
nents (RMM1 and RMM2), the second component MJO RMM2 shows similar inter-annual
variability like R × 1. The dominant Indian Ocean phenomenon of sea surface temperature
contrast (DMI) also appears reasonably to influence the maximum one-day precipitation
(R × 1) over the study region. The regional level monsoon indices such as EASMI, EMI,
ISMI, SASMI, WNPMI, and WYMI are poorly associated with climate change indices except
for CDD, which shows a valid correlation (0.5) with the EASMI monsoon index.

4. Summary and Conclusions

The present study analyzed the recently available improved version of APHRODITE
precipitation (APHRO_V1901) and temperature (APHRO_V1808) datasets to evaluate the
recently observed trends in precipitation climate change indices. The trends are represented
by several precipitation amounts based climate change indices (annual daily maximum
one-day precipitation (R × 1), annual maximum consecutive five-day precipitation (R × 5),
annual precipitation contributed from 95 percentile (R95), and Simple Daily Intensity
Index (SDII) and quantity-based climate change indices (consecutive dry days (CDD),
consecutive wet days (CWD), and the number of rainy days greater than 10 mm (R10).
The observed spatial variability and trends in climate change indices are discussed with
different geographical features and precipitation regimes over the study region. The
influence of large-scale circulation patterns on precipitation climate change indices is
investigated and explored the possible influence of large-scale circulation patterns on
precipitation climate change indices over MA. The possible role of spatial variability of
total column water vapor and surface temperature on precipitation climate change indices
are revealed over MA. The present study has some limitations such as simple statistical
approaches like correlation coefficient is used to evaluate the link between large-scale
connection and precipitation climate change indices. Advanced statistical tools such
as Principal Component Analysis (PCA) or Empirical Orthogonal Functions (EOF) may
provide more insights into the connection between extreme climate change indices and
large-scale teleconnections. Another drawback from the current analysis is the validity of
observed trends in recent decades. The observed trends are not applicable to long-term
climate change. The major findings from the present study are as follows:

1. The mean spatial variability of precipitation climate change indices reflected the
contrasting characteristics of annual mean rainfall over MA. The intense nature of
maximum one-day precipitation (R × 1) events and precipitation contributed from
extremes, R95 dominantly shows a higher annual mean over coastal regions in MA.
Countries within the maritime continent show the maximum number of precipitation
events with a magnitude greater than 10 mm (R10).

2. Decreasing trends in CDD are reported over arid regions such as the Gobi Desert and
Pakistan, Afghanistan, and northwest India. A similar resemblance of decreasing
trends in R × 1, R95, CWD, and R10 are observed in countries located around the
head Bay of Bengal in the Southeast region. The wet indices (R × 1, R95, and CWD)
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with observed decreasing trends indicate a drying signal over such regions. On the
contrary, the number of consecutive dry days depicts a declining trend over arid
regions such as the Gobi Desert, Pakistan, and Afghanistan, which may indicate
enhancement in precipitation activity over such regions.

3. On comparing areal average tendency in trends, it is observed that recent trends in
R × 1 and R95 set an increasing tendency with slopes of 0.3 mm/yr and 0.5 mm/yr.
Such positive trending nature in wet indices over coastal regions may impact the
frequency the floods over coastal regions.

4. The decadal co-variability of extreme precipitation climate change indices is relatively
reflected in R95 when compared with other indices. The availability of total column
water vapor over different latitudes is closely associated with variability of R95, SDII,
and R10 climate change indices, whereas surface temperature seems to play a key
role in maximum one-day extreme precipitation (R × 1) variability.

5. The prevailing conditions of the SST over the equatorial Pacific Ocean are strongly
correlated with the variability of extreme precipitation climate change indices through
relative phases of SOI, MEI V2, and Nino 3.4 indices. Extreme precipitation indices
such as R95, SDII, CWD, and R10 are strongly correlated with ENSO indices. The
combined effect of ENSO and PDO can influence the extreme precipitation variability
over MA.

To understand and further extend the potential application of precipitation climate
change indices, precipitation climate change indices can be accessed to evaluate the link
between floods, droughts, and climate change indices. With the observed results and earlier
literature, large-scale circulation patterns certainly have remarkable associations with pre-
cipitation climate change indices trends. Further quantification of the large-scale circulation
pattern’s influence on climate change indices becomes difficult due to the intricate inter-
action between large-scale circulation patterns and precipitation variability. For example,
the combined influence of the ENSO and PDO with different individual phases certainly
improves our understanding of the impact of global warming on MA extreme precipitation
events through modulation in circulation patterns. The interaction of large-scale circulation
patterns is not limited to individual attribution but also a mutual interplay. Thus, further
detailed investigation of large-scale circulation patterns with climate change indices from
an adequate ensemble perception would provide more insights. A modeling framework
and an extended study are required to know the feedback mechanism between remote
influences on these indices of precipitation. Though the variability of TCW and T with
climate change indices is objectively presented, the regional level assessment with in-depth
details may further offer a significant TCW and T role on climate change indices variability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/atmos12111492/s1, Figure S1: Spatial patterns of Spearman correlation coefficients with
Southern Oscillation Index Where (a) R × 1, (b) R95, (c) CDD, and (d) CWD.
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