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Abstract: The concentration series of PM2.5 (particulate matter ≤ 2.5 µm) is nonlinear, nonstationary,
and noisy, making it difficult to predict accurately. This paper presents a new PM2.5 concentration
prediction method based on a hybrid model of complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) and bi-directional long short-term memory (BiLSTM). The new
method was applied to predict the same kind of particulate pollutant PM10 and heterogeneous gas
pollutant O3, proving that the prediction method has strong generalization ability. First, CEEMDAN
was used to decompose PM2.5 concentrations at different frequencies. Then, the fuzzy entropy (FE)
value of each decomposed wave was calculated, and the near waves were combined by K-means
clustering to generate the input sequence. Finally, the combined sequences were put into the BiLSTM
model with multiple hidden layers for training. We predicted the PM2.5 concentrations of Seoul
Station 116 by the hour, with values of the root mean square error (RMSE), the mean absolute error
(MAE), and the symmetric mean absolute percentage error (SMAPE) as low as 2.74, 1.90, and 13.59%,
respectively, and an R2 value as high as 96.34%. The “CEEMDAN-FE” decomposition-merging
technology proposed in this paper can effectively reduce the instability and high volatility of the
original data, overcome data noise, and significantly improve the model’s performance in predicting
the real-time concentrations of PM2.5.
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1. Introduction

With the acceleration of industrialization and urbanization, the discharge of pollutants,
such as exhaust gas, wastewater, and waste, has greatly increased. In addition, air pollution
has become an issue of close concern to all countries. The main causes of serious atmo-
spheric pollution are aerosols (PM2.5, PM10, etc.) and gases (O3, etc.). When PM particles
exceed the standard, the atmosphere is in a turbid state. When the O3 concentration exceeds
the standard, it causes pollution, such as ash and photochemical smog [1]. In addition,
PM2.5 blocks the transmission of solar radiation, causing air convection to stagnate, which
is not conducive to the diffusion of air pollutants. Rising PM2.5 concentrations can greatly
reduce visibility, affect people’s normal travel and traffic order, and easily cause large-scale
car accidents [2]. Therefore, the accurate predictions of real-time PM2.5, PM10, and O3 are
of great practical significance to the governments of various countries for implementing air
pollution improvement policies, protecting human health, and ensuring normal production
and life activities.

At present, the methods of predicting PM2.5 mainly include the numerical model
method [3], the statistical modeling method [4], the machine learning method [5], and the
deep learning method [6]. The numerical model method is mainly based on the aerody-
namic theory and the physical and chemical change process, and it uses mathematical
methods to establish the dilution and diffusion model of the air pollution concentration to
dynamically predict the air quality and the concentration changes of the main pollutants.
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Most experts and scholars conduct research on the latter three methods considering factors
that may affect PM2.5 concentration and establish a single or combined model based on
historical PM2.5 concentrations to predict the concentrations of PM2.5 or other pollutants.
To a certain extent, it can make up for the uncertainty of a single numerical model predic-
tion. In terms of statistical modeling, commonly used models include the autoregressive
moving average model (ARMA) [7], the autoregressive integrated moving average model
(ARIMA) [8], and multiple linear regression (MLR) [9]. As PM2.5 concentration is affected
by many factors, showing instability and nonlinearity, the statistical modeling methods
mentioned above are not accurate in processing nonlinear time series data. Scholars have
further studied machine learning methods for PM2.5. The common applications of concen-
tration prediction are support vector machines (SVM) [10], random forest, and BP neural
networks. In recent years, as deep learning has achieved significant results in different
fields, more and more scholars have begun to use deep learning models to predict PM2.5
concentrations. The common ones are the recurrent neural network (RNN) [11], long short-
term memory (LSTM) [12], and gated recurrent unit (GRU) [13] models. Hybrid models
are often more robust than single models, and most of the models studied today are hybrid
models. Xiao F et al. established a weighted long short-term memory neural network
extended model (WLSTME) model to predict PM2.5 concentrations, and proved that the
prediction accuracy and reliability of WLSTME are higher than the space–time support
vector regression model (STSVR), the long short-term memory neural network extended
model (LSTME), and the geographically weighted regression (GWR) [14]. Al-Qaness MAA
et al. proposed an improved version of the adaptive neuro-fuzzy inference system (ANFIS)
for forecasting the air quality index in Wuhan City [15].

Many scholars have considered adding data decomposition technology to decompose
the original data column in order to highlight the time series characteristics of the data and
enhance the data characteristics. Singh S. et al. [16] proposed the combination of wavelet
decomposition (WD) and ARIMA, Liu S. et al. [17] proposed the combination of WD and
least squares support vector regression (LSSVR), and Zheng H. et al. [18] proposed the
EMD-LSTM algorithm. These combined models prove that decomposition technology can
effectively improve prediction accuracy. Niu M. F. et al. [19] proposed a hybrid model of
ensemble empirical mode decomposition (EEMD) and LSSVR, which effectively suppresses
modal aliasing caused by traditional decomposition methods when decomposing time
series. Weng K. et al. [20] introduced the TPE-XGBoost model and the LASSO–LARS model
to high-frequency data and low-frequency data, respectively. The researchers combined
air quality factors and meteorological factors to reflect the change trend of decomposition
characteristics and predicted the PM2.5 concentrations. Sun W. et al. [21] used fast ensemble
empirical model decomposition (FEEMD) to decompose the original PM2.5 concentration
sequence, reorganized the decomposed sequence based on the sample entropy, and then
used a general regression neural network (GRNN) and an extreme learning machine (ELM)
to predict the recombination sequence, respectively.

At present, no scholar has used complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN)-fuzzy entropy (FE) decomposition-merging technol-
ogy for PM2.5 concentration prediction. In this paper, we propose using CEEMDAN to
decompose the original concentration sequence to reduce data noise and enhance the
periodicity of data changes. Then, according to the FE value, K-means clustering combines
the decomposition waves with similar entropy values to further reduce the amount of cal-
culation. Finally, the recombined sequence is input into the bi-directional long short-term
memory (BiLSTM) model for prediction. The proposed CEEMDAN-FE-BiLSTM hybrid
model predicts the PM2.5 concentration of Seoul Station 116 included on the Kaggle website
hour by hour and compares it with the prediction effects of other models.
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2. Research Methods
2.1. CEEMDAN

CEEMDAN [22] was developed based on the EMD algorithm. EMD [23] is an adaptive
orthogonal basis time–frequency signal processing method for unknown nonlinear signals.
It decomposes the signal into eigenmode components (IMF) with different frequencies.
Due to the existence of data noise, traditional EMD decomposition has the phenomenon of
modal aliasing. Wu Z. H. [24] proposed an EEMD, which adds zero mean to the original
signal every time the signal is decomposed. White noise with fixed variance can effectively
improve the modal aliasing phenomenon, but the added Gaussian white noise is difficult
to eliminate, and there is a problem of reconstruction error. Based on EEMD, Torres et al.
proposed CEEMDAN, adaptively adding and eliminating white noise. This model not only
effectively overcomes modal aliasing, but also reduces reconstruction errors, iterations,
and calculation costs.

Assuming that the original time series is X(t), the steps of CEEMDAN’s decomposition
are as follows:

(1) We add n times the Gaussian white noise X(t) of the same length to the original
time series data, where i = 1, 2, · · · , n, and ξ0 are adaptive coefficients. The first modal
component IMF1 is obtained through EMD decomposition; m-many IMF1 are obtained by
m-many experiments and the average value of IMF1 is obtained. The process is shown in
Equations (1) and (2):

X(t) + ξ0ni(t) = IMFi
1(t) + ri

1(t) (1)

IMF1 =
1
m

m

∑
i=1

IMFi
1(t) (2)

(2) IMF1 is removed from the original sequence X(t). The remaining time series is
marked as r1(t). The adaptive signal E1(ni(t)) is calculated by EMD and added to the
remaining time series r1(t). Then, at each new round of EMD decomposition, we repeat m
times the average value to obtain IMF2. The process is shown in Equations (3)–(5):

r1(t) = X(t)− IMF1 (3)

r1(t) + ξ1E1(ni(t)) = IMF2
i(t) + r2

i(t) (4)

IMF2 =
1
m

m

∑
i=1

IMFi
2(t) (5)

(3) For the kth component (k = 2, 3, . . . , n), similar to Step (2), we obtain the kth
component IMFk. The process is shown in Equations (3)–(5).

rk−1(t) = X(t)− IMFk−1 (6)

rk−1(t) + ξ1Ek−1(ni(t)) = IMFk
i(t) + rk

i(t) (7)

IMFk =
1
m

m

∑
i=1

IMFi
k(t) (8)

(4) We repeat the above steps until the residual component is not suitable to decompose
again, and then we stop decomposing. At this time, all IMFs that meet the conditions are
extracted, and the trend term is rn(t):

X(t) =
n

∑
i=1

IMFi + rn(t) (9)

2.2. FE

FE [25] is an improvement of sample entropy (SE) [26] and approximate entropy
(AE) [27], which is used to measure the complexity of time series. FE introduces the



Atmosphere 2021, 12, 1452 4 of 15

concept of fuzzy sets, using exponential functions as fuzzy functions to calculate the
similarity of vectors. Not only does FE integrate the advantages of sample entropy not
dependent on data length, consistency, approximate entropy, strong anti-noise, anti-outlier
ability, and so forth, but the introduced fuzzy function also enables FE to solve the problem
of sample entropy breakpoints in the calculation and make the value change more stable.

2.3. BiLSTM

RNN can process time series data using neurons with self-feedback. However, as the
time series grows, the residual error that RNN needs to return decreases exponentially,
resulting in a slow update of the network weights and the problem of gradient disappear-
ance or gradient explosion. Hochreiter S et al. [28] proposed the most primitive LSTM,
and Gers et al. [29] proposed adding a forget gate. The information of the preceding and
following time steps can be filtered without all steps going through the fully connected
layer to form the basic framework of LSTM that is commonly used today. The long-term
and short-term neural networks replace the traditional hidden layer with the LSTM layer.
It can obtain two kinds of information of the cell state and the hidden layer state from the
previous moment. It adopts a control gate mechanism and is composed of memory cells,
input gates, output gates, and forgetting gates. Schuster M et al. [30] inherited the construc-
tion ideas of LSTM and bidirectional recurrent neural network (BRNN), and constructed
BiLSTM. The internal structure of the unit is the same as that of LSTM. The overall network
structure of BiLSTM is shown in Figure 1.
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On the basis of the forward layer, where the original information propagates forward
from the initial time to time t, the backward layer is added, where the information is
propagated back from time t to the initial time. Both layers determine the output at the
same time.

2.4. CEEMDAN-FE-BiLSTM

The CEEMDAN prediction model was divided into three parts. The first part is the
decomposition part, which uses the CEEMDAN model to decompose the hourly PM2.5
concentration to form K-many IMF components. The second part is the IMF component
merging part where (1) the concept of FE was introduced to measure the similarity between
IMF, (2) K-many FE values were obtained, and (3) K-means clustering was used to add and
merge the similar IMF sequences to obtain m-many components, which were recorded as
Feati (I = 1, 2, ···, m). The third part was the prediction part of the BiLSTM model. BiLSTM is
composed of forward LSTM and backward LSTM. The former is responsible for forward feature
extraction, and the latter is responsible for reverse feature extraction. The feature information
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propagated in these two directions was fused, and the final feature was output to obtain the
predicted value of the PM2.5 concentration. The modeling process is shown in Figure 2.
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3. Experimental Analysis
3.1. Data Sources

The data in this paper came from the air pollution values recorded in the Seoul dataset
from the Kaggle website. The hourly PM2.5 concentrations of Station 116 were selected
as the research objects. The time range was from 0:00 on 1 January 2017 to 23:00 on
31 December 2019, providing a total of 25,906 data points.

3.2. Evaluation Criteria

To quantitatively evaluate the prediction performance of the model, we selected the
root mean square error (RMSE), the mean absolute error (MAE), the symmetric mean
absolute percentage error (SMAPE), and R2 to measure the prediction accuracy and gener-
alization ability of different models. Let yi be the real value and ŷi be the model prediction
value, where I = 1,2, ···, n (n is the number of samples). The expressions of the above
evaluation indexes are shown in Equations (10)–(13).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷ)2 (10)

MAE =
1
n

n

∑
i=1
|ŷi − yi| (11)

SMAPE =
100%

n

n

∑
i=1

|ŷi − yi|
(|ŷi|+ |yi|)/2

(12)
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R2 =

n
∑

i=1
(ŷi − yi)

2

n
∑

i=1
(yi − y)2

(13)

It can be seen from the definition of the three evaluation indicators that the smaller the
RMSE and MAE values are, the closer the SMAPE value is to 0, and the closer the R2 value
is to 1, which means that the prediction error of the model is smaller and the generalization
ability is stronger.

3.3. Experimental Setup

In this experiment, we used the hourly PM2.5 concentrations over 3 years, with 374 h of
data missing in the middle. There were a few missing values, but these missing values had
little impact on the model effect. Therefore, no filling was performed, because the PM2.5
concentration changed greatly in different time periods. To retain the original information
of the data, no discrete values were processed. The first 80% of the data were divided into
the training set, and the last 20% were divided into the test set. The training set was used
for the key parameter selection and model establishment, and the test set was used for the
model prediction effect evaluation.

(1) CEEMDAN parameter setting: We used the CEEMDAN algorithm in the PyEMD
package to set different modal numbers, and to decompose and test the training set data. When
the modal number was set to 14, the score of each decomposed wave was the most stable.

(2) FE parameter setting: CEEMDAN has more IMF components after decomposing
the original sequence. We considered combining the components to reduce the amount of
calculation for subsequent predictions. The FE value of each IMF component was calculated
by the concept of FE, and the FE value was similar. The subsequence was reconstructed into
a new sequence. According to previous experience [31], we set the embedding dimension
m to 2 and the function boundary width r to 0.15, and we calculated the FE value of each
IMFi (I = 1, 2, · · · , 14).

(3) BiLSTM prediction: To merge similar sequences more objectively, K-means clus-
tering is used to merge the IMF sequences according to each FE value to form the input
sequence of BiLSTM. The parameter settings of BiLSTM are shown in Table 1 after the
investigation and case analysis.

Table 1. Key parameters of BiLSTM.

Main Hyperparameter Set Value

Batch size 12
Number of hidden layer units 32

Hidden layers 2
Learning rate 5 × 10−3

Max epoch 30
Optimizer Adam

Loss function MSE

We input 12 samples to BiLSTM each time, that is, a time window of 12 h, and
predicted the PM2.5 concentration value of the next hour based on the historical data
of the previous 12 h. The learning rate was 5 × 10−3, and the learning passed through
two hidden layers. The number of iterations was set to 30. For the optimization algorithm
in the model, compared to stochastic gradient descent, the Adam algorithm used in this
study had a faster and more stable convergence rate, and the common MSE was used for
the loss function. We selected the optimal number of clusters by searching, set the number
of clusters of K-means clustering to {1, 2, · · · , 14}, and we examined the new input sequence
on the training set under different clustering conditions. In the performance situation, the
input sequence corresponding to the minimum MSE was the input of the final BiLSTM
prediction, and then the test set was predicted.
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3.4. Experimental Results and Analysis
3.4.1. CEEMDAN Modal Decomposition

According to the CEEMDAN modal decomposition method, the original sequence of
the PM2.5 concentration was decomposed into 14 groups of decomposed waves, as shown
in Figure 3.
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From the IMFi of Figure 3a–n, these subsequences decomposed by CEEMDAN showed
a trend of decreasing frequency, decreasing amplitude, and increasing wavelength from
IMF1 to IMF14. The subsequences showed a certain change rule and period, indicating
that the complex sequence of PM2.5 concentration was decomposed into subsequences
containing information of different scales and gradually reducing noise.

3.4.2. FE Calculation Results

According to the set dimension and function boundary width, the sample entropy
of the decomposition wave IMFi was calculated, which was used to evaluate the degree
of confusion between the wavefront parts, that is, the frequency of the wave, to provide
a basis for the next step of merging and reorganizing the IMF components. The sample
entropy of the decomposition wave IMFi is shown in Table 2.

Table 2. Sample entropy of decomposed wave IMFi.

Decomposition
Sequence IMFi

FE Value Decomposition
Sequence IMFi

FE Value

IMF1 2.610 IMF8 0.424
IMF2 2.463 IMF9 0.160
IMF3 1.884 IMF10 0.038
IMF4 1.275 IMF11 0.006
IMF5 0.915 IMF12 0.001
IMF6 0.704 IMF13 7.40 × 10−5

IMF7 0.578 IMF14 4.82 × 10−6

The smaller the value of FE is, the more structured the signal’s pattern is, and the
larger the value is, the more random or unpredictable the signal is. It can be seen from
Table 2 that from IMF1 to IMF14, the FE gradually decreased, which once again shows that
the subsequence noise obtained by CEEMDAN decomposition gradually decreased.

3.4.3. BiLSTM Experiment Results

According to the key parameter settings of BiLSTM, the performance of BiLSTM on the
training set, when the number of clusters of K-means clustering increased, is shown in Figure 4.
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Figure 4. The performance of BiLSTM on the training set.

When the number of K clusters increased, the training error of BiLSTM first decreased and
then increased. When there were five K clusters, the training set RMSE value was the smallest
(4.70). Therefore, the IMF components were combined and reorganized into five reconstruction
sequences Feati (I = 1, 2, · · · , 5). To reflect the changes more intuitively in the reconstruction
sequence, the results of the partial component reconstruction are shown in Figure 5.
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As seen in Figure 5, the new sequences after merging and recombination all show
a certain periodicity, which indicates that the noise in the sequence after merging and
recombining was less than that before being decomposed. Next, we put these five Feat
components into the BiLSTM for training. As shown in Table 1, we set the following
parameters: window_size = 12, batch_size = 12, and max_epoch = 30. The flow of the
decomposed-combined Feat sequence in BiLSTM is shown in Figure 6.
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After the training was completed, we performed a test on the test set to obtain the
predicted values of the PM2.5 concentrations per hour, compared it with the real values,
and calculated the RMSE, MAE, SMAP, and R2 values of the test set to be 2.75, 1.94, 14.02%
and 0.96, respectively. To highlight the effectiveness of the CEEMDAN-FE-BiLSTM model
proposed in this paper for PM2.5 concentration prediction, we compared the CEEMDAN-
FE-BiLSTM model with the other models, and the results are presented in Section 3.5.

3.5. Model Comparison Analysis

We selected CEEMD-BiLSTM, CEEMD-SE-BiLSTM, and CEEMD-AE-BiLSTM as the
comparison models, and used the evaluation indicators RMSE, MAE, SMAPE, and R2 to
evaluate the performance of all prediction models.

Table 3 shows the performance evaluation of each hour of the PM2.5 concentration
predictions for each model on the test set. Figures 7a–c and 8a–c, from the horizontal
direction (RMSE, MAE, SMAPE) and the vertical direction (R2), respectively, compare the
prediction effects of each model intuitively.

Table 3. Forecast errors of different models.

Models RMSE MAE SMAPE R2

BiLSTM 4.09 2.74 17.49% 91.84%
EMD-BiLSTM 3.37 2.28 16.35% 94.44%

EMD-SE-BiLSTM 3.67 2.62 18.71% 93.43%
EMD-AE-BiLSTM 3.55 2.45 17.18% 93.85%
EMD-FE-BiLSTM 2.97 2.09 15.47% 95.71%
EEMD-BiLSTM 5.08 3.71 22.58% 87.38%

EEMD-SE-BiLSTM * 3.41 2.57 18.64% 94.32%
EEMD-AE-BiLSTM * 3.41 2.57 18.64% 94.32%
EEMD-FE-BiLSTM 3.26 2.45 17.96% 94.81%

CEEMDAN-BiLSTM 3.93 2.92 19.46% 92.47%
CEEMDAN-SE-BiLSTM 3.38 2.30 16.53% 94.42%
CEEMDAN-AE-BiLSTM 3.12 2.18 15.60% 95.24%
CEEMDAN-FE-BiLSTM 2.74 1.90 13.59% 96.34%

* Means: The clustering results of EEMD-AE-BiLSTM and EEMD-SE-BiLSTM are the same. Therefore, the final
result is the same.
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The results show the following: (1) The models that used the decomposition-merging
technology have significant effects. Models that did not use decomposition technology
or merging technology showed that decomposition-merging technology could effectively
overcome the non-linearity, large fluctuations, and noise of the PM2.5 concentration se-
ries. The impact of accuracy significantly improved the predictive ability of the model.
(2) In the hybrid model, the CEEMDAN decomposition method was more suitable for the
decomposition of the PM2.5 concentration sequence than EMD and EEMD. In terms of the
decomposition effect, CEEMDAN > EEMD > EMD. (3) FE presented the best merging effect
after decomposing the sequence. Compared with SE and AE, the SMAPE of the hybrid
model using FE was reduced by 12.88% and 17.79%, respectively, and the SE and AE meth-
ods had similar effects. In the case of EMD and CEEMDAN decomposing the sequence,
the AE merging effect was better. In the EEMD decomposition-merging, SE and AE had
the same entropy clustering effect. The result of the merging of 14 identical decomposition
sequences was the same. Therefore, the final result was the same. In terms of the merging
effect, FE > AE ≥ SE. (4) The prediction effect of CEEMDAN-FE-BiLSTM was better than
the other models in terms of the horizontal accuracy and goodness of fit. The RMSE, MAE,
and SMPE values were as low as 2.74, 1.90, and 13.59%, respectively, and the R2 value was
as high as 96.34%. (5) Compared with the single-model BiLSTM, the horizontal prediction
error RMSE, MAE, and SMAPE values of the CEEMDAN-FE-BiLSTM model were reduced
by 33.01%, 30.66%, and 22.30%, respectively, and the goodness of fit was improved by
4.90%. Decomposing the unmerged CEEMDAN-BiLSTM, the CEEMDAN-FE-BiLSTM
model’s horizontal prediction errors were reduced by 30.28%, 34.93%, and 30.16%, respec-
tively, and the goodness of fit was increased by 4.19%, indicating that the combination of
FE values can significantly improve the model’s prediction accuracy.

4. Extension Analysis

This section presents our exploration into the general applicability of the CEEMDAN-
FE-BiLSTM model. We tested the stability of the hybrid model based on PM10 and O3
concentration sets and compared them with the other models. The data used in this section
are the same as those in Section 3.1.

4.1. Predictive Analysis of PM10

The PM10 concentrations used in this section were monitored together with PM2.5,
and the evaluation indicators remained unchanged from the abovementioned RMSE and
MAE. Table 4 shows the performance evaluation of each model on the test set for each hour
of the PM10 concentration prediction, and Figure 9 presents the corresponding histograms.

Table 4. Prediction error of PM10 concentration prediction model.

Model RMSE MAE SMAPE R2

CEEMDAN-BiLSTM 8.01 5.72 21.94% 89.87%
CEEMDAN-SE-BiLSTM 7.78 4.97 18.55% 90.44%
CEEMDAN-AE-BiLSTM 7.14 4.37 16.27% 91.96%
CEEMDAN-FE-BiLSTM 5.64 3.57 14.05% 94.98%

From Figure 9, compared to the prediction model of PM2.5 concentrations, although
the prediction accuracy of the model when predicting PM10 was reduced, the difference
between the MAE and RMSE was less than 4. Regardless of the level of accuracy or
the goodness of fit, the CEEMDAN-FE-BiLSTM model remains the model with the best
predictive effect, with RMSE, MAE, and SMAPE values as low as 5.64, 3.57, and 14.05%,
and an R2 value as high as 94.98%. The hybrid model that does not use the entropy value
to merge the decomposition sequence had the worst effect, and the model effect of using
the entropy value to merge the decomposition sequence FE > AE > SE once again proved
the effectiveness of the FE model merging. In summary, the same model had the same
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effect on the predictions of PM10 and PM2.5, which proves the effectiveness and accuracy
of CEEMDAN-FE-BiLSTM in predicting similar particles.
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4.2. Predictive Analysis of O3

Section 4.1 proves the applicability of the CEEMDAN-FE-BiLSTM hybrid model in
PM particulate matter prediction. As described in this section, we selected a gas O3 dataset
that is different from PM2.5, used the same model in Section 4.1 to predict the hourly
concentration of O3, and used the same evaluation index for evaluation. In addition, the
stability of model prediction was further explored.

Table 5 shows the performance evaluation of each model on the test set for each
hour of O3 concentration prediction, and Figures 10 and 11 present the corresponding
histograms. Continuing the performance of predicting the concentrations of PM2.5 and
PM10, out of the four evaluation indicators used, CEEMDAN-FE-BiLSTM was significantly
better than the other models. Moreover, CEEMDAN-FE-BiLSTM was the best model for
predicting the hourly concentration of O3, except for the value of SMAPE. In addition
to the obvious increase, the RMSE and MAE values were still very low, as low as 0.0044
and 0.0036, respectively, and the R2 value was as high as 95.61%. The model that did
not use entropy decomposition had the worst effect. Unlike for predicting PM particles,
the effect of using SE value decomposition was significantly better than that of the AE
decomposition. Compared to CEEMDAN-AE-BiLSTM, the CEEMDAN-SE-BiLSTM model
showed that horizontal prediction error RMSE, MAE, and SMAPE values decreased by
40.71%, 42.62%, and 25.79%, respectively, and the goodness of fit increased by 37.47%.
Compared to the CEEMDAN-SE-BiLSTM model with the second-best prediction effect, the
horizontal prediction error RMSE, MAE, and SMAPE values of the CEEMDAN-FE-BiLSTM
model were reduced by 46.99%, 37.69%, and 12.10%, respectively. Therefore, in the gas
prediction, the FE decomposition also plays a decisive role in the accuracy of the model. In
summary, for O3 prediction, the prediction accuracy of CEEMDAN-FE-BiLSTM remained
the highest, and the goodness of fit was much better than the other three models. The other
three models presented large fluctuations, which proves that the CEEMDAN-FE-BiLSTM
hybrid demonstrated the best stability in its model predictions.

Table 5. Prediction error of O3 concentration prediction model.

Model RMSE MAE SMAPE R2

CEEMDAN-BiLSTM 0.0161 0.0140 63.67% 40.44%
CEEMDAN-SE-BiLSTM 0.0083 0.0070 43.99% 84.04%
CEEMDAN-AE-BiLSTM 0.0140 0.0122 59.28% 55.05%
CEEMDAN-FE-BiLSTM 0.0044 0.0036 27.41% 95.61%
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5. Conclusions

The PM2.5 concentration sequence has the characteristics of non-linearity, non-stationary,
and a lot of noise. We propose a CEEMDAN-FE-BiLSTM hybrid model based on the
decomposition-merge technology to predict PM2.5 concentrations hour by hour. First, the
CEEMDAN algorithm is used to decompose the original PM2.5 concentration sequence to
obtain 14 IMF components; then, the FE values of the 14 IMF components are calculated
according to the FE definition, the number of clusters is set, and the K-means clustering
is based on the FE value. IMF components are merged to obtain a new component Feat,
which is input into BiLSTM, and the optimal number of clusters is five, according to the
training effect. Finally, five new components are input into the BiLSTM model to predict
PM2.5 concentrations hour by hour. In order to prove the validity and stability of the
CEEMDAN-FE-BiLSTM model, it was used to predict PM10 and O3. The experimental
results show the following: (1) Decomposing the original sequence using the CEEMDAN
algorithm can effectively remove noise and extract timing information. (2) Using entropy
values to recombine IMF sequence can significantly improve the prediction performance of
the BiLSTM model. In different cases, SE and AE had different effects on the combination
of sequences. Whether for PM particles or gas particles, the prediction effect of BiLSTM
after using the FE value to recombine the IMF sequence was significantly better than the
first two, that is, FE combination plays a decisive role in improving the goodness-of-fit of
the model. (3) Regardless of whether it is. predicting similar or heterogeneous pollutants,
the CEEMDAN-FE-BiLSTM model is significantly better than the other models in terms of
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the horizontal accuracy and goodness of fit, with little fluctuation and a stable prediction
effect. The “CEEMDAN-FE” decomposition-merging technology proposed in this paper
can effectively reduce the instability and high volatility of the original data, overcome
data noise, and significantly improve the model’s performance in predicting the real-time
concentrations of PM2.5.

Although the proposed CEEMDAN-FE-BiLSTM hybrid model can solve the irregular
and unstable characteristics of PM2.5 concentration sequences and improve the prediction
accuracy of a PM2.5 concentration sequence, there are still many problems to be solved.
First of all, in this study, we only considered hourly forecasting. Next, we can explore the
prediction accuracy of the model for the next 12 h and 24 h to further enhance the broadness
of the model’s applicability. Secondly, we only considered the single series prediction
without considering the factors affecting its change, such as wind speed, temperature,
precipitation, and so on. If influencing factors are added, the prediction accuracy of the
model may be improved again.
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