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Abstract: With the aggravation of the ocean–atmosphere cycle anomaly, understanding the potential
teleconnections between climate indices and drought/flood conditions can help us know natural
hazards more comprehensively to better cope with them. This study aims at exploring the spa-
tiotemporal patterns of drought and its multi-scale relations with typical climate indices in the
Huaihe River Basin. First, the spatial patterns were identified based on the seasonal Standardized
Precipitation Index (SPI)-3 during 1956–2020 by means of the Empirical Orthogonal Function (EOF).
The two leading sub-regions of spring and winter droughts were determined. Then, we extracted
the periodicity of spring and winter SPI-3 series and the corresponding seasonal climate indices
(Arctic Oscillation (AO), Bivariate El Niño–Southern Oscillation (ENSO)Timeseries (BEST), North
Atlantic Oscillation (NAO), Niño3, and Southern Oscillation Index (SOI)) and the sunspot number by
using the Continuous Wavelet Transform (CWT). We further explored the teleconnections between
spring drought, winter drought, and climate indices and the sunspot number by using Cross Wavelet
Transform (XWT) and Wavelet Coherence (WTC) analyses. The results show that there are in-phase
multi-scale relations between spring/winter PC1 and AO, BEST, and Niño3, of which the climate
indices lead spring PC1 by 1.5–2 years and the climate indices lag winter PC1 by 1.5–3 years. Anti-
phase relations between spring PCs and SOI and the sunspot number were observed. NAO mainly
affects the interdecadal variation in spring drought, while AO and Niño3 focus on the interannual
variation. In addition, Niño3 and SOI are more related to the winter drought on interdecadal scales.
Moreover, there is a positive correlation between the monthly average precipitation/temperature
and Niño3 with a lag of 3 months. The results are beneficial for improving the accuracy of drought
prediction, considering taking NAO, AO, and Niño3 as predictors for spring drought and Niño3 and
SOI for winter drought. Hence, valuable information can be provided for the management of water
resources as well as early drought warnings in the basin.

Keywords: SPI; drought; wavelet coherence; EOF; ENSO; AO; NAO; SOI; sunspot

1. Introduction

The Intergovernmental Panel on Climate Change’s Sixth Assessment Report (IPC-
CAR6) shows that global climate change will be further aggravated in the coming decades,
intensifying the water cycle and indicating that more extreme droughts will occur in many
regions all over the world [1]. Drought is a kind of complex and dynamically accumulat-
ing meteorological disaster, with negative impacts on socioeconomic development and
ecosystem sustainability. Nowadays, researchers pay more attention to the teleconnection
of drought and atmospheric circulation [2–6]. It is of great significance to understand
the potential linkages between climate indices and drought variability in order to make
reasonable predictions or assumptions about future regional droughts.
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In recent years, a lot of research has been conducted to detect the possible relation
between large-scale climate phenomena and droughts or floods in specific geographical
locations [2,5,7–23]. Wahiduzzaman concluded that major flood events over Bangladesh
occurred during the monsoon period, and most of them occurred under the La Niña
condition [24]. Sobral et al. detected the relation between the annual SPI index and the
El Niño–Southern Oscillation (ENSO), and found that the events of El Niño and La Niña
were not directly related to the variation in rainfall in any region of South Rio de Janeiro
(SRJ) [25]. Chen et al. analyzed the relations between temperature, drought, El Niño, La
Niña, and sunspots in North China, and concluded that El Niño events always occur with
increased temperature and decreased rainfall, which is the opposite of La Niña events.
Regarding sunspots, there are negative correlations with temperature and rainfall [11]. Jin
et al. explored the relationship between the ENSO and summer and winter precipitation in
eastern China. The results showed that the warm phase of the ENSO has a good correlation
with increased winter precipitation in eastern China [3]. Zou et al. detected the response of
extreme rainfall to sunspots, the ENSO, and the Pacific Interdecadal Oscillation (PDO) in
the lower reaches of the Yangze River, and found that sunspots exhibit the strongest effect,
while the effect of the PDO is the weakest [26]. Wang et al. took the Loess Plateau as the
study region and found that the ENSO and Western Pacific pattern (WP) have a significant
influence on SPI-6 and SPEI-6, while the Pacific North American (PNA) teleconnection
pattern has been more sensitive to SPI-12 and SPEI-12 for the past 57 years [27]. Xu et al.
concluded that the ENSO mainly affects the interannual variation in drought, while the
PDO and Arctic Oscillation (AO) mainly affect the interdecadal and interannual variation
in Lanzhou, Northwest China [28]. Liu et al. evaluated the effect of the ENSO and AO
on the winter drought variability in Shaanxi, North China, and showed that there are
inverse multi-scale linkages with the ENSO and positive linkages with the AO in most of
the study area [4]. Different climate indices always represent different climate phenomena
in specific regions worldwide, which have a diverse impact on different areas. It is thus
necessary to explore the teleconnection of climate events and atmospheric circulation in a
particular region.

The Huaihe River Basin, one of the areas in which droughts most frequently occur
in China, is located in the north–south climate transition belt in China. In recent decades,
droughts have happened frequently and severely in most parts of the river basin, resulting
in water resource shortages, crop failures, socioeconomic losses, and adverse ecosystem
consequences [29–31]. A considerable number of studies have been conducted on the topic
of the drought evolution in the Huaihe River Basin. The existing studies mainly focus
on three aspects, i.e., the adaptability of drought indicators, drought centers and drought
evolution trends in the basin, and forecasting droughts with reanalysis products. To be
specific, Wang et al. evaluated the revised Palmer Drought Severity Index (PDSI) in the
Huaihe River Basin and verified its application in drought monitoring and early warning
systems [13]. Lu et al. found that there is an increasing trend of drought intensity by using
the China-Z growing season index and found that the drought coping ability was relatively
poor in the Huang-Huai-Hai River Basin based on nine evaluation indexes [32]. Ji et al.
employed the Regular vine Copula to establish the joint distribution of multi-dimensional
variables and took the ENSO, ENSO Modoki, North Atlantic Oscillation (NAO), Indian
Ocean Dipole (IOD), and AO as the predictors to improve the accuracy of drought-level
transfer prediction [33]. In addition, taking SPI as the index, Yao et al. extracted the shift in
the drought center in the Huaihe River Basin during 1962–2016 and found that the drought
center mainly diffused from the center of the river basin to the surrounding areas [6].
Although much progress has been made in understanding and predicting the drought
evolution in the Huaihe River Basin, there remain some limitations. As previous studies
usually analyzed the spatial and temporal patterns of drought by detecting the drought
center and its shifts, it is necessary to further explore the spatiotemporal patterns of the
drought by sub-regions. In addition, there are few studies on the correlation between the
spatiotemporal patterns of drought and the large-scale climatic phenomena. Analyzing
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the spatiotemporal patterns of drought by sub-regions and revealing its correlation with
the large-scale climatic phenomena are of great value for drought prediction and water
management in the Huaihe River Basin.

Therefore, the main objectives of this paper are: (i) to identify the spatial patterns of
monthly SPI-1 and seasonal SPI-3 of the Huaihe River Basin during 1956–2020, which are
characterized by sub-regions; (ii) to extract the periodical oscillation feature of spring SPI-3,
winter SPI-3, and the corresponding seasonal climate indices on the basis of (i); (iii) to
detect the possible locally phase-locked behavior between drought and climate indices and
reveal their phase relations; and (iv) to discuss the potential relation between meteorology
events and the ENSO phase position.

2. Materials and Methods
2.1. Study Area

The Huaihe River Basin is located in the north–south climate transition belt in China
and borders the Yangtze River in the south and the Yellow River in the north. The basin
stretches from 111◦94′ E–121◦25′ E and 30◦95′ N–36◦36′ N, with an area of 270,000 km2.
The west, southwest, and northeast of the basin are mountainous and hilly areas, while the
rest are vast plains (Figure 1). The Huaihe River Basin is influenced by different climate
features varying from north to south, i.e., a warm temperate semi-humid monsoon climate
and a subtropical semi-humid monsoon climate. The basin is characterized by a hot and
rainy summer and a cold and dry winter. In general, the temperature increases from north
to south and from the coast to the inland, while the annual precipitation varies from south
to north and from mountains to plains, which are greatly affected by the complex terrain.
The annual average water surface evaporation is 900–1500 mm.
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Figure 1. Geophysical location and the topographical distribution of the Huaihe River Basin.
The background map is the world physical map from the Environmental Systems Research In-
stitute (ESRI).

2.2. Data

The monthly precipitation values were obtained from the National Meteorological
Information Center of China in order to calculate the standardized precipitation index
(Section 2.3.1), which was applied to evaluate and define the drought severity. The website
of the National Meteorological Information Center of China is http://data.cma.gov.cn/
(accessed on 16 May 2021). The 73 meteorological stations are spread across the basin

http://data.cma.gov.cn/
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as shown in Figure 1. The monthly precipitation values were quality-controlled in this
study through two aspects. First, the meteorological data downloaded from the National
Meteorological Information Center of China were subject to strict quality control and
inspection, and the statistical results were manually checked by an extremum test and a
time consistency test. Second, the default value of the precipitation data at all 73 stations
in the Huaihe River Basin was replaced according to the meaning of the eigenvalue as
explained in the data description document, i.e., 999,998 (without data) and 999,999 (lack
of measurement) were replaced by the multi-year average of the corresponding month,
and 999,990 (microscale) was replaced by zero. In addition, the start time of some data
sequences lagged behind January 1956, indicating that there were gaps. The missing part
(the gap) from January 1956 to the data sequence start time was supplemented by the
ten-year moving average when the data start time lagged behind January 1956. There were
26 stations with gaps, accounting for 35% of the 73 stations, while the lag time of 18 stations
was less than 5 years. The longest lag time was 20 years, i.e., the start time of the data
sequence was January 1975, and occurred at only one station, while the second-longest lag
time was 7 years. To summarize, 66 stations (accounting for 90% of the 73 stations) had
more than 60 years of data.

Climate indices, i.e., the Niño3, AO, NAO, Bivariate ENSO time series (BEST), and
Southern Oscillation Index (SOI), and sunspots were used to study the teleconnections
with spring and winter droughts in the Huaihe River Basin. The climate index series,
i.e., the monthly Niño3, AO, NAO, BEST, and SOI series, can be downloaded from the
National Oceanic and Atmospheric Administration (NOAA) website (https://psl.noaa.
gov/data/climateindices/list/, accessed on 7 July 2021). The monthly sunspot number
can be obtained from the International Council for Science (ICSU)’s World Data Sys-
tem (WDS) (https://wwwbis.sidc.be/silso/home, accessed on 7 July 2021). Specifically,
the Niño3 index, covering most of the area of the tropical Middle East Pacific Ocean
(5 N–5 S,150 W–90 W), was used to represent the ENSO activity, which is a periodical at-
mosphere and ocean phenomenon with strong effects on global climate anomalies. The
AO index represents the corresponding time coefficients of the first Empirical Orthogonal
Function (EOF) of the monthly sea-level pressures north of 20◦ N, referring to the Arctic
Oscillation. The NAO index is an effective indicator for assessing the North Atlantic
Oscillation. The SOI index is the quantitative indicator of the Southern Oscillation, in-
dicating the coherent interannual fluctuation in atmospheric pressure over the tropical
Indo-Pacific region. BEST index series are calculated by combining a standardized SOI and
a standardized Niño3.4 SST time series. The sunspot number is a measure of the daily solar
activity, of which high values indicate intense activity and vice versa. The most direct effect
of the sunspot number on the Earth is the magnetic field, which pushes the atmospheric
circulation to longitudinal-direction flow, causing severe climate events. All the selected
climate indices and the sunspot number have shown potential relations with meteorology
events in China [8,34–36].

In this paper, the winter time series of climate indices and sunspots (hereinafter
referred to as climate indices) refer to the corresponding values averaged for December,
January, and February, and the spring time series were calculated by taking the average of
March, April, and May.

2.3. Methodology
2.3.1. Standardized Precipitation Index (SPI)

The standardized precipitation index (SPI) is a drought evaluation index that repre-
sents the precipitation in a certain region within a given time using probability, which is
applied to define the drought severity [37,38]. Positive and negative SPI values indicate
wet and dry conditions, respectively, whose severity varies with magnitude. The SPI can
be used to evaluate regional drought conditions above the monthly scale, e.g., 3 months for
seasonal drought, 12 months for annual drought, 24 months and 36 months for multi-year

https://psl.noaa.gov/data/climateindices/list/
https://psl.noaa.gov/data/climateindices/list/
https://wwwbis.sidc.be/silso/home
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drought, and so on [14,26,27]. It is a standardized index that makes comparisons possible
and reliable in different regions.

The SPI is a satisfactory drought index for assessing the drought conditions in the
Huaihe River Basin [29,39]. In this study, monthly SPI values, three-monthly SPI values,
and twelve-monthly SPI values were calculated for a 65-year span (1956–2020) at 73 meteo-
rological stations across the Huaihe River Basin (Figure 1). SPI-1 and SPI-12 were selected
to assess the short-term and long-term water resource shortage conditions. SPI-3 was used
to represent the seasonal drought for agriculture. The SPI-3 value of January was used to
evaluate winter drought, the SPI-3 value of April was used to evaluate spring drought, the
SPI-3 value of July was used to evaluate summer drought, and the SPI-3 value of October
was used to evaluate autumn drought.

The first step in the SPI computation is the calculation of the probability density
function of the precipitation within a given period, assuming a gamma or Pearson Type
III distribution. Then, the probability density is standardized to a normal distribution.
In the end, the drought severity is defined on the basis of the normalized cumulative
frequency distribution.

f (x) =
1

βγΓ(x)
xγ−1e

−γ
β (x > 0) (1)

where f (x) is the probability density function of precipitation series x, β is the scale parame-
ter, and γ is the shape parameter, both of which are greater than zero. The best performance
β and γ can be obtained by using a Maximum Likelihood Estimation.

β = x/γ (2)

γ =
1 +
√

1 + 4A/3
4A

(3)

A = log x− 1
n

n

∑
i=1

log xi (4)

where xi is a sample in the precipitation series, x is the mean of the precipitation series, and
n is the total number of samples in the precipitation series.

Then, for a specific precipitation x0, the cumulative probability is:

P = F(x < x0) =
∫ x0

0
f (x)dx (x > 0). (5)

When x is zero, the probability is:

P = F(x = 0) =
m
n

, (6)

where m is the number of samples with zero precipitation, and n is the total number of
samples in the precipitation series.

The normalized probability density with a gamma distribution is given by:

P = F(x < x0) =
1√
2π

∫ x0

0
e−

z2
2 dx (x > 0) (7)

where z represents the SPI value.
The approximate solution of SPI (z) can be obtained by:

z = SPI =


(c2t+c1)t−c0−t

[(d3t+d2)t+d1]+1 , P ≤ 0.5
−(c2t+c1)t+c0+t
[(d3t+d2)t+d1]+1 , P > 0.5

(8)

where t =
√

ln(1/P2), c0 = 2.515517, c1 = 0.802853, c2 = 0.10328, d1 = 1.432788, d2 = 0.189269,
and d3 = 0.001308 [40,41].
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2.3.2. Empirical Orthogonal Function (EOF)

The Empirical Orthogonal Function (EOF), also known as Eigenvector Analysis or
Principal Component Analysis, is a method for extracting the eigenvector of variables. It
was first applied to climatology and meteorology by Lorenz in the 1950s and is now widely
used to highlight potential physical mechanisms related to climate variability [6,16,17].
The spatial patterns (EOFs), the temporal series (PCs), and the eigenvalues are the outputs
of the EOF analysis. The EOFs can identify the spatial modes of the variables by plotting
them as vector maps, while the PCs represent the amplitude of each EOF mode over time.
In addition, the modes are ranked by their significance to the overall variability according
to the eigenvalues. In general, the leading modes can account for most of the original
variability.

The computation steps are as follows.
Data preprocessing: process the selected data in the form of anomalies to obtain matrix

Xm×n.

Cm×n =
1
n

X× XT (9)

If Xm×n is anomalous, then Cm×n is a covariance matrix. If Xm×n is standardized, then
Cm×n is a correlation coefficient matrix.

Eigenvalue matrix Em×m and eigenvector matrix Vm×m must meet:

Cm×m ×Vm×m = Vm×m × Em×m (10)

Em×m =


λ1 0 · · · 0
0 λ2 · · · 0
· · · · · · · · · · · ·
0 0 · · · λm

 (11)

where λ1 > λ2 > · · · > λm. Each eigenvalue corresponds to a column eigenvector, i.e.,
an EOF.

PCm×n = VT
m×m × Xm×n (12)

Each row of the PC represents the temporal series of the corresponding eigenvector.
The error in the eigenvector at the 95% confidence level is

∆λ = λ

√
2
N

(13)

where λ is the eigenvalue and N is the degree of freedom (DOF) of the data. By means of
detecting each λ within the error range, if the neighbors overlap, the significance test has
not been passed.

2.3.3. Continuous Wavelet Transform (CWT)

The continuous wavelet transform (CWT) is widely used in geographic physical
studies as a time-series intermittent wave feature extraction tool that decomposes a signal
into the time and frequency dimensions [42,43]. In all wavelet functions, the Morlet
wavelet is widely used owing to its ability to balance the time and frequency performance,
defined as

ψ0(η) = π−1/4eiω0ηe−
1
2 η2

(14)

where ψ0 is the wavelet generating function of the Morlet wavelet, ω0 is the dimensionless
definite frequency, and η is dimensionless time. The Morlet wavelet ω0 = 6.

The CWT of a time series (xn, n = 1, . . . , N) is defined as:

WX
n (s) =

√
δt
s

N

∑
n=1

xnψ0

[
(n′ − n)

δt
s

]
, (15)
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where δt is the uniform time step, s is the scale, and η = s·t. Usually, the wavelet power
refers to

∣∣WX
n (s)

∣∣2.
Because the wavelet transform assumes that the data series is cyclic, the edge effect

will appear in the wavelet power spectrum when the time series is of a finite length.
Therefore, the Cone of Influence (COI) cannot be ignored, in which area the wavelet power
caused by a discontinuity at the edge has dropped to e−2 of the value at the edge.

The significant regions can be detected on the basis of the background spectrum
and the desired confidence level. The null hypothesis is that the signal is generated by
a stationary process with a given background power spectrum (Pk). Values other than
the COI are estimated at a significance level of 5% at each scale. In general, the red noise
spectrum is an appropriate background spectrum in studies on geophysical processes. The
red noise was used and modeled as a lag-1 autoregressive (AR1) process.

Pk =
1− α2∣∣1− αe−2iπk

∣∣2 , (16)

where k is the Fourier frequency index and α is the confidence level.
The probability that the wavelet power of the sequence with a given Pk is greater than

p is

D

(∣∣WX
n (x)

∣∣2
σ2

X
< p

)
=

1
2

Pkx2
v(p), (17)

where v is 1 for a real wavelet and 2 for a complex wavelet.

2.3.4. Cross Wavelet Transform (XWT)

The cross wavelet transform (XWT) is a method used to expose regions with a high
common power and further reveals information about the phase relationship (in-phase or
anti-phase) and a consistent or slowly varying phase lag [9,42,44]. The XWT of the two time
series xn and yn is defined as WXY = WXWY*, where * donates complex conjugation. |WXY|
is further defined as the cross-wavelet power.

Usually, the circular mean of the phase angles can be used to quantify the phase
relationship plotted as arrows, in-phase pointing right and anti-phase pointing left. xn
leads yn by pointing straight downward, while xn lags yn by pointing straight upward.

2.3.5. Wavelet Coherence (WTC)

The wavelet coherence can be used to reveal the coherence of the cross wavelet
transform (XWT) in the time frequency space, i.e., to identify frequency bands and time
intervals. Torrence and Webster defined the wavelet coherence of two time series as a
function of the power spectrum density (PSD) and the cross-spectrum density (CSD) [43,44].

R2
n(s) =

∣∣S(s−1WXY
n (s)

)∣∣2
S
(

s−1|WX
n (s)|2

)
·S
(

s−1|WY
n (s)|

2
) , (18)

where S is the smoothing operator, WX
n (s) and WY

n (s) are the wavelet transforms of the
two time series X and Y, respectively, and WXY

n (s) is the cross-wavelet spectrum of X and
Y.

S(W) = Sscale(Stime(Wn(s))), (19)

where Sscale denotes smoothing along the wavelet scale axis and Stime denotes smoothing
in time.

The statistical significance level of the wavelet coherence is estimated using Monte
Carlo methods with red noise. Here, “coherence” usually means the squared WTC, ranging
from 0 to 1, where 1 stands for the highest degree of coherence.
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3. Results
3.1. Spatiotemporal Variability in Drought Conditions

The spatial and temporal patterns of the seasonal (spring, summer, autumn, and
winter) drought condition over the whole river basin were detected by conducting an EOF
analysis based on the SPI-3 value series. The monthly drought condition was analyzed
according to the SPI-1 value series. The eigenvalues of the leading EOFs are presented
in Table 1, which all pass the significance test at the 95% confidence level. It is obvious
that the first two EOFs of all seasons (except summer) and the SPI-1 series account for
over 50% of the total variance, indicating that the complexity of the spatial pattern of the
drought conditions over the river basin can largely be explained by the first two EOFs.
Therefore, the spatial structure of the first two EOFs of all seasons and SPI-1 are presented
in Figures 2 and 3 to identify the corresponding spatial variability characteristics.

Table 1. The leading EOFs of seasonal SPI-3 and SPI-1 over the Huaihe River Basin.

Season Mode Percent Variance
Explained (%)

Cumulative Variance
(%)

Spring
PC1 60.44 60.44
PC2 12.99 73.43
PC3 4.53 77.96

Summer
PC1 32.46 32.46
PC2 16.82 49.28
PC3 9.16 58.43

Autumn

PC1 37.35 37.35
PC2 17.32 54.67
PC3 10.77 65.44
PC4 4.61 70.05

Winter

PC1 59.80 59.80
PC2 14.49 74.29
PC3 7.27 81.57
PC4 3.46 85.03

SPI-1

PC1 48.88 48.88
PC2 14.43 63.31
PC3 6.86 70.17
PC4 3.93 74.10
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As shown in Figure 2, there is an area of strong spatial coherence characterized by the
high loading vector values covering the middle part of the study area (almost all of the
river basin) in the spatial distribution of EOF1 for all seasons. Although the core area is
slightly different, the consistency of EOF1 proves that the drought is a kind of continuous
natural disaster in both time and space. In addition, the distribution characteristics of EOF2
in spring and winter are similar to each other, indicating a sub-region with strong loading
vector values in the northern part of the river basin. Additionally, there is a sub-region, i.e.,
the southern part of the river basin, in terms of the EOF2 modes in summer and autumn.
The corresponding PC time series for the EOFs were analyzed to demonstrate the temporal
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variability in the drought conditions. Drier trends of winter and spring SPI-3 can be found
for the northern part of the river basin (EOF2), while there are drier trends of spring and
autumn for the middle part (EOF1) and indistinct wetter trends of winter for the middle
part (EOF1). There are indistinct drier trends in summer and autumn for the southern part
of the river basin (EOF2). The spatiotemporal characteristics of the EOF analysis in the
SPI-1 value series are similar to those in spring and winter.
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To summarize, the spatiotemporal variability in the Huaihe River Basin seems to
be localized well, with three distinct sub-regions regarding various geographical and
climatic variations. Considering that spring and winter droughts are more common, more
changeable, and of a greater influence in the Huaihe River Basin, the climatic characteristics
of winter and spring droughts will be further studied in this paper.

3.2. Periodicity of Spring SPI-3, Winter SPI-3, and Climate Indices

To identify the periodical oscillations of drought and climate indices, the CWT was
conducted on eight time series for spring and winter, respectively, including two PCs of
each season and the six corresponding seasonal climate indices, the results of which are
shown in Figure 4. Obviously, the sunspot number in the time series fluctuates constantly in
a 10–13-year band, which is consistent with the 11.2-year average activity circle as scholars
have already shown. The SPI-3 spring time series of the EOF1 sub-region shows significant
wavelet power in the 3.5–7-year band during 1992–2008 and in the 2–3-year band from
1965 to 1968. The power spectrum of the SPI-3 winter time series of EOF1, representing the
middle part of the river basin, is distributed in a 2–4-year band from 1969 to 1976, during
the periods of 1992–2001 and 2011–2015. Additionally, it can be observed that the wavelet
power spectrum of winter PC1 closely resembles those of the BEST, Niño3, and SOI series,
while the power spectrum of winter PC2 is consistent with that of the NAO and AO series.
In addition, a few synchronous oscillation periods were found between spring PC1 and
the NAO series as well as the SOI series, and the wavelet power spectrum of spring PC2
resembles those of BEST, AO, and Niño3.

3.3. Multi-Scale Linkages between Spring SPI-3, Winter SPI-3, and Climate Indices

The WTC analysis was performed to further identify the possible multi-scale rela-
tionships and the locally phase-locked properties between the PCs of spring and winter
and the corresponding climate indices. The EOF1 sub-region of spring and the AO have
significant coherence around the 1–2-year band during 2002–2012 and an over 14-year
band from 1980 to 2000 as illustrated in Figure 5a. Figure 5a also illustrates significant
coherence with BEST around the 1–5-year band from 1996 to 2000 and the 1–2-year band
during 2004–2011. The EOF1 sub-region of spring and the NAO have significant coherence
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around the 2–4.5-year, the 7–8-year, and the over 14-year bands for different time stages.
Additionally, there are 1–3-year, 1–4-year, and 7–8-year bands with significant coherence in
the wavelet coherence spectrum of spring EOF1 and Niño3. It is shown in Figure 5a that
the significant coherence between spring EOF1 and the SOI occurs around the 1–2-year and
4–6-year bands during 1996–2010. Moreover, it is obvious that the sunspot number and
spring EOF1 are phase-locked for the 1–2-year band for different time stages. The phase
relations between spring PC1 and the AO, BEST, NAO, and Niño3 in most of the sectors
with significant coherence are prominent in the in-phase, except for a few sectors in the
anti-phase or an ambiguous phase over some time stages, indicating positive multi-scale
linkages. In contrast, an anti-phase relation can be observed between spring PC1 and the
SOI and sunspot number.
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Similarly, as shown in Figure 5c, the EOF1 sub-region of winter and the AO have
significant coherence around the 1–4-year band during 1972–1978. There are 3–5-year, 2–4-
year, and 9–13-year bands with significant coherence in the wavelet coherence spectrum
of winter EOF1 and BEST. The significant coherence between winter EOF1 and Niño3
is around the 1–4-year, the 3–5-year, and the 9–12-year bands in different time stages,
while there is only a 1–3-year band during 1985–1990 for the NAO. There is an 8–13-year
phase lock during 1982–2005 between winter EOF1 and the SOI. The locally phase-locked
property is not very clear between winter EOF1 and the sunspot number. The phase
relations between winter PC1 and climate indices are basically identical to the relations
between spring PC1 and climate indices, except for the anti-phase relation with the NAO.
The same analytical method can be used to detect the multi-scale relations between the
EOF2 of spring (Figure 5b), the EOF2 of winter (Figure 5d), and the corresponding seasonal
climate indices.

The XWT analysis aimed to identify the high common power in the time series, in
contrast to the use of WTC to detect the common change area in the time series. As shown
in Figure 6, there is a high common power period represented by an over 7-year band
between the sunspot number and spring/winter. The high common power property is
more significant between spring/winter and BEST, the SOI, and Niño3 with a roughly
similar time frequency distribution. It is worth noting that the high common power
between the AO and spring/winter droughts occurred more frequently in the last three
decades than in the previous period.
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4. Discussion
4.1. Spatiotemporal Patterns of Drought in All Seasons

Through the EOF analysis, the complexity of the spatial pattern of drought conditions
over the study area can be explained by a small number of spatial structures (PCs) effec-
tively and reliably, i.e., by a dimensionality reduction. The spatial structure of the EOFs
always indicates distinct sub-regions regarding the climatic characteristics of the river basin.
There is a common sub-region for all seasons covering the middle part of the river basin,
which explains the total variance of up to 60.44%. That is to say, the middle part of the river
basin is the dominant area for drought in the Huaihe River Basin. This finding resembles
the result obtained by Yao et al. that the drought center of the Huaihe River Basin is mainly
diffused from the center of the river basin to the surrounding areas. Here, the consistency
of EOF1 in all seasons proves that the drought is a kind of continuous natural disaster
in both time and space. Throughout history, eastern Henan, northern Anhui, northern
Jiangsu, and the whole of the Shandong Province have been typical areas where drought
disasters occur frequently [30,31] (see Figure 7), which confirms the reasonableness of the
analysis. However, there are slight offsets of the central region for different seasons when
considering PC1 (the middle part of the river basin). The offsets can be used to further
study the spatiotemporal evolution of drought on multiple scales in the Huaihe River
Basin. In addition, the EOF1 for spring and the EOF1 winter explain over half of the total
variance, indicating the representative and dominant role of the EOF1 spatial mode. In
contrast, the spatiotemporal patterns of summer and autumn drought conditions are more
complicated with several indistinct EOF spatial modes, which need to be explored in detail
in a future study.

4.2. The Oscillation Period of Drought and Climate Indices

The periodicity is an important feature used to identify and predict natural disasters
and the climate. It has been shown that SPI-3 winter and SPI-3 spring mostly cover
short periodical oscillation areas (2–7 years) that are complementary or similar to each
other, indicating that spring and winter droughts occur with a high frequency and rate
of concurrence. The periodical oscillations of spring/winter EOF1 and spring/winter
EOF2 always appear alternately with time. However, there is a 4–8-year band in the
period of 1985–2000 in which spring EOF1 and spring EOF2 appear at the same time.
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Additionally, there is a 2–4-year band from 1992 to 2000 that exists in winter EOF1 and
winter EOF2, which verifies the continuous drought during 1991–2001 over the whole river
basin, especially winter and spring droughts [39,45–47]. The years during which significant
wavelet power occurred are always in correspondence with the years during which El Niño
or La Niña occurred [8,48]. Considering that the BEST is a combination of standardized
SOI and standardized Niño3.4 SST time series, similar periodical oscillation features of
BEST, the SOI, and Niño3 can be easily understood. It has been recognized that large-scale
climate circulations play an important role in the climate variability over China, including
the study area [33,49]. In this study, a synchronous oscillation period was found between
PCs and some climate indices, while the oscillation behavior and the large-scale feedbacks
between them remain unknown. A composite analysis needs to be further implemented
based on the atmospheric circulation anomalies.
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4.3. Multi-Scale Linkages between Seasonal Drought and Climate Indices

The wavelet analysis was implemented in this paper and the spatiotemporal telecon-
nections between spring/winter droughts and climate indices were determined. In this
study, the sunspot number shows weak anti-phase relations with spring PCs and weak
in-phase relations with winter PCs, always with a 2-year lead period (spring/winter PC1)
or a 2-year lag (spring PC2). It can be concluded that the fluctuation in teleconnections
between the sunspot number and seasonal drought is relatively stable, where the sunspot
number usually affects the drought through affecting the atmospheric circulation. The
phase relations are closer between Niño3, the SOI, and the two winter PCs covering the
8–12-year band, while the NAO, the AO, and Niño3 have a greater influence on the two
spring PCs. There are in-phase relations between spring/winter PC1 and the AO, BEST,
and Niño3, of which the climate indices lead spring PC1 by 1.5–2 years and the climate
indices lag winter PC1 by 1.5–3 years. As for spring/winter PC2, the phase relations with
climate indices are mostly opposite to those for spring/winter PC1. Usually, changes in the
phases of climate phenomena are intimately related to the climate events, such as the fact
that a negative ENSO or a positive AO is usually accompanied by droughts [10,43,48,49].
The mechanism of atmospheric circulation affecting the regional drought evolution has
been studied for many years. The exact causes determining this in-phase or anti-phase
relation remain unknown. More work will be done to further explore the core links between
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drought and climate phenomena in the Huaihe River Basin, which has the potential to be
used for drought prediction.

4.4. Potential Relation between Meteorology Events and ENSO Phase Position

As analyzed and demonstrated in the foregoing section, the climatic conditions of
the Huaihe River Basin are complex and vary among different regions. Here, we take
Zhengzhou City (Henan Province) and Taian City (Henan Province) as representative
stations to discuss the potential relation between meteorology events and the ENSO phase
position (El Niño/La Niña), both of which are located in the first two sub-regions of spring
and winter in the Huaihe River basin (Figure 2). Moreover, Henan Province and Henan
Province play an important role in Chinese agriculture, with a great contribution to the
total grain production. Temperature and precipitation are two leading factors in drought
formation. As shown in Figure 8, the monthly average temperature and the monthly
average precipitation of Zhengzhou City and Taian City lag Niño3 by 3 months with a
significant positive relation, while both of them lag Niño3 by 9 months with a significant
negative relation. In other words, the occurrence of El Niño/La Niña in spring or summer
may cause a precipitation reduction/increase in that year, while the occurrence of El
Niño/La Niña in autumn or winter may cause a precipitation increase/reduction in the
next year. In addition, it can be detected in Figure 9 that the simultaneous occurrence of El
Niño and La Niña could be accompanied by drought or flooding. If El Niño is stronger
than La Niña in the same year or they share the same intensity, then it is more likely to
cause flooding, while the influence of the fact that La Niña is stronger than El Niño is
relatively small. Independent El Niño and La Niña events are also related to both drought
and flooding, depending on their onset, process, and intensity [4,50–53]. It is obvious
from Figure 9a that severe or above flooding (SPI > 1.5) fluctuates on a 20-year cycle in
Zhengzhou City, indicating that severe flooding could occur around 2024. Whether it is
associated with the extraordinary rainstorm in Zhengzhou on 20 July 2021 is a question
deserving of research.
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Figure 9. The relations between SPI-12 and El Niño/La Niña events in (a) Zhengzhou City and (b) Taian City during
1956–2020. The years that El Niño and La Niña events occurred come from an integration of statistics from several research
references [34,54–56].

5. Conclusions

In this study, the spatiotemporal variability in drought and its multi-scale linkages
with climate indices in the Huaihe River Basin (Central China and East China) during
1956–2020 were studied. First, the SPI as a drought evaluation index was used to assess the
drought condition over the river basin from 1956 to 2020. Then, the possible sub-regions of
the drought condition were identified for all seasons of SPI-3 and SPI-1 by conducting an
EOF analysis. Next, the periodical oscillation features of spring SPI-3, winter SPI-3, and the
corresponding seasonal climate indices were explored by means of the CWT. Finally, the
multi-scale teleconnections between spring drought, winter drought, and several climate
indices were revealed by XWT and WTC analysis, including possible locally phase-locked
behavior and the corresponding phase relations.

The main conclusions are as follows:

a. The spatial variability in the Huaihe River Basin seems to be localized well with
three distinct sub-regions regarding seasonal drought and monthly drought. There
are two sub-regions that can account for spring and winter drought variability,
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respectively, referring to the middle part of the study area (occupying most areas of
the river basin) and the north part of the river basin.

b. Spring and winter droughts fluctuate with a 2–7-year cycle in the time series, es-
pecially in terms of concurrence. The periodical oscillation features of winter PC1,
referring to the 2–4-year cycle from 1969 to 1976, during the periods of 1992–2001
and 2011–2015, closely resemble those of the BEST, Niño3, and SOI series. The
periodicity of spring PC1, characterized by the 3.5–7-year cycle during 1992–2008
and the 2–3-year cycle from 1965 to 1968, has good consistency with the NAO and
SOI series.

c. There are in-phase multi-scale relations between spring/winter PC1 and the AO,
BEST, and Niño3, of which the climate indices lead spring PC1 by 1.5–2 years and
the climate indices lag winter PC1 by 1.5–3 years. Anti-phase multi-scale relations
between spring PCs and the SOI were observed. The sunspot number shows weak
anti-phase relations with spring PCs and weak in-phase relations with winter PCs,
always with a 2-year lead period (spring/winter PC1) or a 2-year lag (spring PC2).
Moreover, the NAO has an important impact on the interdecadal variation in the
two spring PCs, while the AO and Niño3 mainly affect the interannual scale. Niño3
and the SOI are intimately related to the two winter PCs around the interdecadal
scales covering the 8–12-year cycle.

d. Taking Zhengzhou City and Taian City in the Huaihe River Basin as representative
stations, the monthly average temperature and the monthly average precipitation
lag Niño3 by 3 months with a significant positive relation, while both lag Niño3 by
9 months with a significant negative relation. The onset, process, and intensity of
El Niño/La Niña events clearly influenced the dryness/wetness condition in the
river basin.

The results presented in this paper could contribute a lot to our understanding of the
multi-scale linkages between drought and large-scale climate phenomena in the Huaihe
River Basin. They provide a possible way to improve the accuracy of drought prediction by
taking the NAO, the AO, and Niño3 as predictors for spring drought and Niño3 and the SOI
as predictors for winter drought. Moreover, we provided a preliminary discussion of the
feedback between drought/flooding and atmospheric circulation. Thus, the information
could serve as a basis for water resource planning and management in the river basin and
for making emergency plans for drought events.

However, the obtained results from the observed data are not suitable for extrapolation
into the future [57,58]. On the one hand, the statistical results could be related to climate
variability but not to persistent changes in time. On the other hand, the investigated trend
depends on the observation period, so it could be different if the observation period is
extended. With the decrease in precipitation in the northern part of the river basin and the
increase in precipitation in other parts of the river basin over the past 65 years, it would be
worth determining in future work exactly what the influence of the changing climate on
drought in the river basin is and how it is affected.
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