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Abstract: This work gives a first insight into the potential of the Weather Research and Forecasting 
(WRF) model to provide high-resolution vertical profiles for land surface temperature (LST) 
retrieval from thermal infrared (TIR) remote sensing. WRF numerical simulations were conducted 
to downscale NCEP Climate Forecast System Version 2 (CFSv2) reanalysis profiles, using two 
nested grids with horizontal resolutions of 12 km (G12) and 3 km (G03). We investigated the utility 
of these profiles for the atmospheric correction of TIR data and LST estimation, using the moderate 
resolution atmospheric transmission (MODTRAN) model and the Landsat 8 TIRS10 band. The 
accuracy evaluation was performed using 27 clear-sky cases over a radiosonde station in Southern 
Brazil. We included in the comparative analysis NASA’s Atmospheric Correction Parameter 
Calculator (ACPC) web-tool and profiles obtained directly from the NCEP CFSv2 reanalysis. The 
atmospheric parameters from ACPC, followed by those from CFSv2, were in better agreement with 
parameters calculated using in situ radiosondes. When applied into the radiative transfer equation 
(RTE) to retrieve LST, the best results (RMSE) were, in descending order: CFSv2 (0.55 K), ACPC 
(0.56 K), WRF G12 (0.79 K), and WRF G03 (0.82 K). Our findings suggest that there is no special 
need to increase the horizontal resolution of reanalysis profiles aiming at RTE-based LST retrieval. 
However, the WRF results were still satisfactory and promising, encouraging further assessments. 
We endorse the use of the well-known ACPC and recommend the NCEP CFSv2 profiles for TIR 
atmospheric correction and LST single-channel retrieval. 

Keywords: thermal infrared (TIR); atmospheric correction; reanalysis; Landsat; radiative transfer 
equation (RTE); NCEP CFSv2; numerical weather prediction (NWP) 
 

1. Introduction 
Land surface temperature (LST) is one of the essential climate variables (ECVs) of the 

Global Climate Observing System (GCOS) [1,2]. It is closely connected to Earth–
atmosphere interactions, playing a pivotal role in surface energy and water balances at 
both local and global scales [3–5]. Therefore, LST is a key parameter in a wide range of 
environmental applications [6]: urban heat island studies [7]; numerical weather 
prediction [8]; agricultural, forests and drought monitoring [9–11]; monitoring of 
geothermal activity and natural hazards [12,13]; evapotranspiration estimation [14,15]; 
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fire detection [16,17]; water resource management [18,19]. It is worth mentioning that the 
LST should not be confused with the near-surface air temperature (typically measured by 
meteorological/in situ stations); the LST refers to the so-called “skin temperature” [10]. 

Thermal infrared (TIR) remote sensing is a one-off way of obtaining the LST at 
regional and global scales [20–22]. However, the spectral radiance measured by the TIR 
sensors on board satellites is influenced not only by the surface parameters (emissivity 
and temperature) but also by the composition and structure of the atmosphere (mainly 
water vapor) [23,24]. Thus, these atmospheric effects must be removed for the appropriate 
use of TIR remote sensing data in temperature research applications [4,25,26]. The 
atmospheric correction (AC) is, in general terms, the conversion of top-of-the-atmosphere 
(TOA) to ground-level measurements. Neglecting the AC leads to systematic errors in the 
LST estimation for any atmosphere [24,27]. 

One of the widely applied methodologies for AC and LST retrieval is the physics-
based radiative transfer equation (RTE) method [28]. It involves a simple inversion of the 
RTE for a particular channel and can provide theoretically accurate LST retrieval [23]. The 
RTE approach requires vertical atmospheric profiles (air temperature, water vapor, and 
pressure). This information is introduced into a radiative transfer model (RTM) to 
calculate the three atmospheric parameters necessary for AC: atmospheric transmittance, 
upwelling atmospheric radiance, and downwelling atmospheric radiance [24,29]. In situ 
radiosonde profiles launched simultaneously with the satellite overpass are ideal for AC 
[30,31]. Nevertheless, this kind of profile is unavailable under most realistic conditions 
[20,32,33], as local radiosonde launching has a significant financial cost [23,24]. 
Radiosonde stations with atmospheric-profile databases are launched daily around the 
globe (e.g., in airports). However, these data may be either non-synchronous or too far 
away from the scene footprint [4,34]. Hence, local radiosondes are mainly suitable for 
particular local studies and validation at specific sites [21,35]. 

Therefore, atmospheric profile products from different sources have been used as 
surrogate radiosondes in TIR atmospheric correction, resulting in LSTs with acceptable 
accuracy [4,26,36–39]. Satellite-derived profiles overcome the spatial limitations of local 
radiosondes. These are available at the satellite pixel scale, providing data over a large 
spatial extent. Although they have a high spatial resolution, the satellite-derived profiles 
can be compromised by low temporal coverage (only at the satellite overpassing time) 
[21,40]. Thus, the results may not be favorable when the sensor of interest is not (or not 
concurrent with) the one from which the profiles are derived [26,32]. Overcoming this 
temporal limitation, profiles from global reanalysis data provide a flexible temporal 
resolution (typically 3 and 6 hourly) and are a practical alternative to the radiosonde’s 
spatial constraint [21]. Reanalysis datasets are global gridded extended homogeneous 
time series, with no spatial or temporal gaps [41]. 

Barsi et al. (2005, 2003) [27,29] proposed an atmospheric web-based correction tool 
(Atmospheric Correction Parameter Calculator—ACPC) for Landsat 5, 7, and 8 thermal 
bands. It uses reanalysis profiles from the National Centers for Environmental Prediction 
(NCEP) and the code of the moderate resolution atmospheric transmission (MODTRAN) 
model [42] to directly provide the three atmospheric parameters for AC. Additionally, 
researchers have evaluated and compared the efficacy of different reanalysis and satellite-
based profile products for AC/LST retrieval. NCEP reanalyses (Reanalysis 1 [43] and FNL 
[44]) and a moderate resolution radiometer (MODIS) atmospheric profiles product 
(MOD07) [45] were analyzed for different sites in Spain [24,33,46] and in China [47], for 
TIR sensors such as Landsat, ASTER, and HJ-1B IRS. Coll et al. (2012) [32], in Spain, added 
the satellite-based profiles from Atmospheric Infrared Sounder (AIRS) [48] to the 
comparison. Rosas et al. (2017) [21] also included the European Centre for Medium-Range 
Weather Forecast’s (ECMWF) ERA-Interim reanalysis product [49] along with previous 
profiles for Landsat 8 LST estimates in Saudi Arabia. More recently, assessments with a 
greater number of different profile products were carried out. Meng and Cheng (2018) 
[20] evaluated reanalysis products from Modern-Era Retrospective Analysis for Research 
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and Applications (MERRA) [50] 1 and 2, ERA-Interim, NCEP FNL and NCEP Reanalysis 
2 [51], and Japanese Reanalysis (JRA-55) [52]. Their validation included profiles 
distributed around the globe and 32 Landsat 8 band 10 images over China. Yang et al. 
(2020) [40] assessed seven profile sources (AIRS, MOD07, ERA-Interim, MERRA 2, and 
NCEP’s FNL, Reanalysis 2, and GFS) using 17 radiosonde stations over Europe and in situ 
LST measurements in China. Overall, the accuracies of AC parameters and retrieved LST 
data using satellite-derived profiles were lower than those using reanalysis methods 
[32,33,40,46,47]. 

However, reanalysis profiles also have their disadvantages. The spatial resolution of 
several degrees (varying for each product) can be considered low. The accuracy is usually 
poorer for regions with less coverage of permanent observatories, such as the oceans and 
many Southern Hemisphere zones [41,53,54]. Since the data are spaced at grid points with 
time intervals commonly of 6 h, the description of meteorological phenomena on a sub-
grid or variable time scale may be affected [55]. On the other hand, modern numerical 
weather models benefit from computing performance and physical processes parameter-
ization in downscaling the reanalysis data. Mesoscale atmospheric models use global 
(re)analysis models as initial and boundary conditions for local applications [56,57]. Lee 
et al., (2020) [58] employed high-resolution (1.5 and 12 km) Numerical Weather Prediction 
(NWP) models distributed by the Korea Meteorological Administration (KMA) as input 
atmospheric data for AC and sea surface temperature estimation with visible infrared im-
aging radiometer suite (VIIRS) bands. Their KMA NWP dataset is restricted to eastern 
Asia, but the approach of using high-resolution NWP models combined with RTM pro-
vides an interesting background for studies of TIR remote sensing atmospheric correction. 

The Weather Research and Forecasting (WRF) model [59] is an atmospheric modeling 
system designed for both research and NWP. It is a state-of-the-art mesoscale model and 
the world’s most widely used model for these purposes. Non-hydrostatic, open-source, 
free, community-based, and with a wide range of parameterization options, the WRF 
model provides a spectrum of capabilities for a variety of applications in atmospheric sci-
ence and weather prediction [60]. Hence, the WRF model has been extensively employed 
for estimating high-resolution meteorological data [61–66]. 

It is imperative to assess whether the use of the WRF model to generate high-resolu-
tion atmospheric vertical profiles, in conjunction with an RTM, results in a higher AC/LST 
retrieval accuracy. Moreover, almost all studies that evaluated different profile sources 
for LST retrieval were performed over Asia and Europe. To the best of our knowledge, no 
study has carried out such an assessment in South America. There is also a lack of studies 
using newer and better reanalysis profiles (e.g., ERA5 [67] and NCEP Climate Forecast 
System Version 2 (CFSv2) [68]) for AC and LST estimation [38,69]. 

This study conducted simulations with the WRF model using NCEP CFSv2 reanaly-
sis data as initial and boundary conditions. Its objective was to generate high-resolution 
vertical profiles, improving the spatial, temporal, and vertical resolutions of the global 
reanalysis. The intention was to investigate the utility of these profiles in TIR atmospheric 
correction and LST retrieval, in relation to the ACPC web-tool and profiles extracted di-
rectly from the NCEP CFSv2 reanalysis. We used Landsat 8 TIRS band 10 as an example 
to retrieve LST values through an RTE inversion-based algorithm in conjunction with the 
MODTRAN radiative transfer model. The accuracy assessment was performed using local 
radiosonde observations in Southern Brazil. 

2. Materials and Methods 
2.1. Study Area and in Situ Radiosonde Data 

The Porto Alegre International Airport (SBPA), Rio Grande do Sul State, Brazil was 
selected as the study area. The airport includes a radiosonde station, which made this site 
a useful environment for studies that aimed to evaluate atmospheric profiles. The selected 
area covers the official limits of the Anchieta district [70], with an area of around 9.2 km² 
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(Figure 1). According to Köppen’s climate classification, the local climate is subtropical 
humid with hot summers (Cfa) [71], with a mean annual air temperature of 19.6 °C, mean 
annual relative humidity of 76.1%, and mean annual precipitation of 1397 mm [72]. 

 
Figure 1. Map of the study area showing the Porto Alegre Airport (SBPA) radiosonde station, South-
ern Brazil, and the WRF nested grids. 

The SBPA station is located at 30.00° S and 51.18° W, 3.0 m above mean sea level, and 
its identifier number is 83971. In this station, radiosondes are launched twice a day, at 
00:00 and 12:00 UTC. In this study, we used the 12:00 UTC radiosonde profiles, as this is 
the closest time to the Landsat 8 crossing time over the study site (~13 UTC). Data were 
obtained from the University of Wyoming website (http://weather.uwyo.edu/up-
perair/sounding.html, accessed on 28 October 2021). This dataset allows the vertical struc-
ture of the atmosphere to be characterized, with profiles of air temperature, pressure, and 
humidity with up to 99 vertical levels. The radiosonde observations, as well as the param-
eters calculated from them, are considered as ground truth for the assessments in this 
study. 

2.2. Landsat 8 Satellite Data and Case Days 
The Landsat mission has been providing moderate-resolution space-based surface 

observations for almost 50 years. Landsat 8 is the most recent operational satellite of the 
series and was launched in February 2013. It carries a two-sensor payload: the Operational 
Land Imager (OLI), which has nine reflective (visible, near-infrared, and short-wave in-
frared) bands with a 30 m spatial resolution and the Thermal Infrared Sensor (TIRS) with 
two bands in the TIR region. The TIRS bands have a 100 m spatial resolution but it is 
resampled and provided at 30 m by the United States Geological Survey (USGS), to be 
consistent with the OLI bands [73,74]. 

In this study, we acquired all Landsat 8 images (Collection 1) available under daily 
clear-sky conditions over the study area from 2013 to 2019. This resulted in a total of 27 
scenes at Path-Row 221-81 (Figure 1), with an acquisition scene center time around 13:20 
UTC. The full-swath Landsat data were reduced to a subset for a 10,184-pixel region cov-
ering the study area of Figure 1. Table 1 presents the specifications of the Landsat 8 data 
utilized in the study, as well as the case days that henceforward will be used to refer to 
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each dataset. Seeking to illustrate the meteorological conditions near the acquisition time, 
we also include in Table 1 the air temperature and the water vapor content in the atmos-
phere, using the precipitable water vapor (PWV) data for the entire radiosonde column 
measured by the SBPA station. TIRS band 10 (10.60–11.19 µm) was used for RTE-based 
LST retrieval (Section 2.6.2) and OLI bands 4—red (0.64–0.67 µm) and 5—near-infrared 
(0.85–0.88 µm) for land surface emissivity estimation (Section 2.5). 

Table 1. Information about Landsat 8 data used in the paper (27 images from 2013 to 2019, Path-Row 221-81). The last 
columns present meteorological conditions measured by the SBPA station. 

Scene ID Acquisition Date Case Day Season Air T [°C] PWV [g/cm²] 
LC82210812013322LGN01 18 November 2013 1 spring 23 1.57 
LC82210812013338LGN01 4 December 2013 2 spring 21 2.43 
LC82210812014037LGN01 6 February 2014 3 summer 31 4.10 
LC82210812014293LGN01 20 October 2014 4 spring 19.8 1.18 
LC82210812014341LGN01 7 December 2014 5 spring 26.6 1.99 
LC82210812015024LGN01 24 January 2015 6 summer 24.4 2.66 
LC82210812015056LGN01 25 February 2015 7 summer 24.6 3.26 
LC82210812015312LGN01 8 November 2015 8 spring 24.4 2.79 
LC82210812016075LGN01 15 March 2016 9 summer 22.8 2.23 
LC82210812016235LGN02 22 August 2016 10 winter 9.4 0.91 
LC82210812016347LGN01 12 December 2016 11 summer 23.4 3.27 
LC82210812017093LGN01 3 April 2017 12 autumn 22 3.31 
LC82210812017173LGN00 22 June 2017 13 winter 10.6 1.85 
LC82210812017205LGN00 24 July 2017 14 winter 13.4 1.93 
LC82210812017237LGN00 25 August 2017 15 winter 22.2 2.82 
LC82210812017317LGN00 13 November 2017 16 spring 20 1.83 
LC82210812017349LGN00 15 December 2017 17 spring 25.2 3.17 
LC82210812018048LGN00 17 February 2018 18 summer 23.4 2.36 
LC82210812018112LGN00 22 April 2018 19 autumn 19 3.26 
LC82210812018160LGN00 9 June 2018 20 autumn 6.6 0.84 
LC82210812018240LGN00 28 August 2018 21 winter 9.4 0.60 
LC82210812018272LGN00 29 September 2018 22 spring 23 3.60 
LC82210812018320LGN00 16 November 2018 23 spring 23.6 1.74 
LC82210812019083LGN00 24 March 2019 24 autumn 25.8 2.53 
LC82210812019099LGN00 9 April 2019 25 autumn 19.6 1.72 
LC82210812019227LGN00 15 August 2019 26 winter 10.8 1.08 
LC82210812019323LGN00 19 November 2019 27 spring 24.8 2.33 

2.3. Reanalysis Data 
The NCEP Climate Forecast System version 2 (CFSv2) [68] reanalysis data are pro-

duced using the NCEP Global Forecasting System (GFS) atmospheric model and the 
Gridpoint Statistical Interpolation (GSI) analysis system with three-dimensional varia-
tional data assimilation (3D-Var). This is arranged in grids with a horizontal resolution of 
0.5° × 0.5° and in 37 vertical (pressure) levels (1000—1 mbar), with 0.205° for surface pa-
rameters. We used CFSv2 reanalysis data from the 6-hourly product as initial and bound-
ary conditions for the WRF simulations. In addition, profiles retrieved directly from NCEP 
CFSv2 were included in the analysis, to assess the WRF model downscaling performance. 
These profiles were extracted from the grid point closest to the SBPA station. 
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2.4. WRF Model Configuration 
The WRF model version 4.1.2 with the advanced research WRF (ARW) dynamical 

solver [59,75] was used to perform high-resolution numerical simulations. We configured 
the WRF domains with two nested grids, in one-way mode, centered at the SBPA station, 
with horizontal resolutions of 12 km (G12) and 3 km (G03) (4:1 parent grid ratio) (see 
Figure 1) and 33 sigma vertical levels with 50 hPa as the top pressure value. The time step 
used for the outermost domain was 72 s with a 4:1 parent ratio. Geographical static data 
such as land use, topography, albedo, and reflectance, were inserted into the modeling 
process using the land use categories of USGS. 

Some atmospheric physical processes cannot be directly resolved by the numerical 
model and so need to be parameterized. Parameterization schemes represent the contri-
bution of unresolved but important phenomena in terms of variables resolved at the 
model discrete grid [76–78]. The WRF model has a vast range of parameterization scheme 
options. The physics parameterization chosen for our simulations included: Purdue Lin 
microphysics parameterization [79]; the Yonsei University (YSU) Planetary Boundary 
Layer (PBL) scheme [80]; the Betts–Miller–Janjic (BMJ) cumulus scheme [81]; Dudhia 
shortwave radiation [82]; the Rapid Radiative Transfer Model (RRTM) longwave radia-
tion option [83]; the Unified NOAH Land-Surface Model (LSM) [84]; the revised MM5 
surface-layer scheme [85]. In Diaz et al. (2021) [86], some parametrization options were 
tested for the same SBPA area, and the set used here is based on these results and those of 
Santos and Nascimento (2016) [87]. The WRF configurations are summarized in Table 2 [88]. 

Table 2. Overview of WRF model setting. 

WRF Model Configuration 
Version 4.1.2 

Dynamical solver ARW 
Boundary conditions NCEP CFSv2 

Map projection Lambert 

Grid size Domain 1: (119 × 116) × 33 
Domain 2: (169 × 165) × 33 

Horizontal resolution 
Domain 1: 12 km 
Domain 2: 3 km 

Nesting One-way 
Time step 72 s 

Static geographical data USGS 
Cloud Microphysics Purdue Lin 

Planetary Boundary Layer (PBL) Yonsei University (YSU) 
Cumulus Betts–Miller–Janjic (BMJ) 1 

Shortwave Radiation Dudhia 
Longwave Radiation Rapid Radiative Transfer Model (RRTM) 

Land Surface Model (LSM) Unified NOAH 
Surface-layer Revised MM5 

1 Domain 1 only. 

The WRF model was run using the above configurations for each of the case days in 
Table 1. We conducted simulations of 24 h duration starting at 00:00 UTC and the resulting 
profiles were extracted at 12:00 UTC for the grid point closest to the SBPA station, to match 
with the local radiosonde observations. Hence, the first 12 h of the simulation was consid-
ered to be spin-up time. The model output for each domain was stored every 30 min. 
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2.5. Land Surface Emissivity Estimation 
Land surface emissivity (LSE) is one of the key parameters for retrieving LST from 

remote sensing data. It is a measure of the surface’s intrinsic ability to convert heat energy 
into radiant energy. LSE is a function of the composition, roughness, and moisture of the 
surface and the observation conditions [74,89,90]. Among the methods for LSE retrieval 
from space, those based on the normalized difference vegetation index (NDVI) are oper-
ational and are the most frequently applied, with satisfactory results [89,91–96]. Sekerte-
kin and Bonafoni (2020a, 2020b) [74,97] examined the influence of six NDVI-based LSE 
models on the performance of LST retrieval. Based on their results, we opted to use the 
NDVI threshold method (NDVITHM) of Sobrino et al. (2008) [91]. The LSE estimation from 
satellites inevitably has errors and NDVI-based methods also have their limitations, espe-
cially in urban environments [98]. However, a recent study [99] reported that the use of 
LSE data estimated by different methods resulted in no significant variations in the LST 
accuracy. Nevertheless, assessing the LSE estimation is beyond the scope of this paper. 

To calculate the NDVI from Landsat 8 data, the first step is to convert the digital 
number (DN) values of bands 4 (red) and 5 (near-infrared—NIR) to reflectances using 
Equation (1) [97,100]: ρ஛ =  M୮ ∙ Qେ୅୐ + A୮sin θୗ୉  (1)

where ρ஛ is the reflectance of the corresponding band, M୮ is the multiplicative rescaling 
factor of the corresponding band, Qେ୅୐ is the calibrated and quantized standard product 
of pixel values (DNs), A୮ is the additive rescaling factor of the corresponding band, and θୗ୉ is the local sun elevation angle. 

Then, the NDVI is obtained from Equation (2): NDVI =  ρ୒୍ୖ − ρୖρ୒୍ୖ + ρୖ (2)

where ρ୒୍ୖ is the reflectance of the NIR band and ρୖ is the reflectance of the red band. 
It is not necessary to correct the atmospheric effects in the red and NIR bands to estimate 
LSE [101]. 

From the NDVI, it is possible to calculate the fractional vegetation cover (P୚) from 
Equation (3) [102]: P୚ =  ൤ NDVI − NDVI୫୧୬NDVI୫ୟ୶ − NDVI୫୧୬൨ଶ

 (3)

where NDVI୫୧୬ = 0.2 and NDVI୫ୟ୶ = 0.5 in a global context [30,91,103]. The P୚ is an im-
portant factor in the LSE estimation. 

The NDVITHM proposed by (Sobrino et al., 2008) [91] estimates the LSE considering 
three different cases as presented in Equation (4), for Landsat 8 [74]: 

ε =  ൝0.979 −  0.035ρୖ0.004P୚  +  0.9860.99                      NDVI <  0.2       0.2 ≤  NDVI ≤  0.5                     NDVI >  0.5 (4)

where ε is the land surface emissivity (LSE). For NDVI < 0.2, the pixel is considered to be 
bare soil, and the emissivity is calculated using the reflectance of the red band. In the sec-
ond case (0.2 ≤ NDVI ≤ 0.5), the pixel is considered to be composed of a mixture of bare 
soil and vegetation and the LSE depends on the P୚ value. The pixels with NDVI values 
higher than 0.5 are considered to be fully vegetated areas and the emissivity is assumed 
to be 0.99. 
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2.6. Atmospheric Correction and LST Retrieval 
2.6.1. Atmospheric Parameters Calculation with MODTRAN and ACPC 

MODTRAN (moderate resolution atmospheric transmission) is a commercial and 
widely employed atmospheric RTM developed by the U.S. Air Force and Spectral Sciences 
Inc. [42]. The present study used the MODTRAN4 v3r1 [104] to estimate the three atmos-
pheric correction parameters (i.e., atmospheric transmittance, upwelling atmospheric ra-
diance, and downwelling atmospheric radiance) in the Landsat TIR spectrum. We intro-
duced into the MODTRAN as input, vertical profiles of pressure, air temperature, and 
relative humidity from: (i) SBPA radiosonde; (ii) NCEP CFSv2 reanalysis; (iii) WRF G12; 
(iv) WRF G03. The atmospheric parameters calculated from SBPA profiles were treated as 
ground truth data. 

The methodology of Barsi et al. (2003) [29] was adopted to fulfill the profiles. To pre-
dict space-reaching atmospheric parameters, MODTRAN requires atmospheric profiles 
reaching “space”, or 100 km above sea level. Since the radiosondes and NCEP CFSv2 
stretch from the surface to about 30 and 50 km, respectively, the upper atmosphere layers 
(to 100 km) were extracted from the MODTRAN standard atmospheres and pasted into 
our site-specific profiles. We used the standard mid-latitude summer profile [105] for case 
days in hot seasons (spring and summer) and the mid-latitude winter profile [106] for 
those in cold seasons (autumn and winter). The WRF-simulated profiles refined the NCEP 
CFSv2 profiles by increasing the number of levels in the portion of the atmosphere closest 
to the surface. The model was set up with the top pressure level at 50 hPa (~18 km). Thus, 
these profiles were completed first with the remaining levels from the reanalysis and then, 
starting at 50 km, with MODTRAN standard atmospheres. 

This approach results in surface-to-space vertical profiles of air temperature, pres-
sure, and water vapor. The profiles constructed for MODTRAN from the NCEP CFSv2 
reanalysis count 40 (43) vertical levels in the warm (cold) seasons. Using WRF, the number 
of vertical levels in the filled profiles increases to 45 (48). The radiosondes describe the 
atmospheric profile in more detail, but the number of vertical levels varies, averaging 88 
and reaching 109 in our final profiles. These completed profiles were inserted into a MOD-
TRAN input file and then processed [27,29]. 

MODTRAN outputs are provided in the model’s spectral resolution, so an integra-
tion must be performed between the bounds defined by the spectral response curve of the 
sensor band (Equation (5)) [4]: 

var (λ୧)  = ׬  var (λ)Rୱ(λ)dλ஛౟,ౣ౗౮஛౟,ౣ౟౤׬ Rୱ(λ)dλ஛౟,ౣ౗౮஛౟,ౣ౟౤  (5)

where Rୱ is the spectral response of the sensor at the center wavelength λ୧ of a band with 
a spectral window of λ୧,୫୧୬–λ୧,୫ୟ୶ and var alternatively denotes the atmospheric param-
eter (transmittance, upwelling, or downwelling radiance) value extracted from the MOD-
TRAN output file, between the wavelengths λ୧,୫୧୬ and λ୧,୫ୟ୶. In this case, the spectral 
response curve is from the Landsat 8 TIRS band 10 (TIRS10). 

Additionally, we included in the comparative analysis the atmospheric parameters 
estimated by NASA’s well-established Atmospheric Correction Parameter Calculator 
(ACPC) web-tool [27,29]. As mentioned above, the ACPC uses NCEP reanalysis profiles 
(with 1° × 1° horizontal resolution and 28 vertical levels), MODTRAN code, and a suite of 
integration algorithms to provide the AC parameters for the particular date, time, and 
location inputted. The reanalysis profiles used by ACPC are to about 30 km, so they are 
fulfilled using MODTRAN standard atmospheres. Completed ACPC profiles have 33 ver-
tical levels. The mid-latitude standard upper profiles varied according to the season of 
each case day. The option of using the atmospheric profile from the closest integer coor-
dinate to the inputted location (SBPA station) was set. 
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2.6.2. Radiative Transfer Equation (RTE)-Based LST Retrieval Method 
The inverse solution of the RTE [28] is a direct and a priori the most appropriate 

procedure for LST retrieval using a single TIR band [101]. The RTE applied to a particular 
TIR band/wavelength (λ) can be simplified and given by: L஛ୱୣ୬ = ൣε஛B஛(Tୱ) + (1 − ε஛)L஛↓ ൧τ஛ + L஛↑  (6)

where L஛ୱୣ୬ (W·m−2·sr−1·µm−1) is the at-sensor (TOA) spectral radiance of the correspond-
ing TIR band (in this paper, TIRS10), ε஛  refers to the LSE (dimensionless), B஛ 
(W·m−2·sr−1·µm−1) is the black body radiance, Tୱ (Kelvin) represents the LST, L஛↓  and L஛↑  
(W·m−2·sr−1·µm−1) refer to the downwelling and upwelling radiances, respectively, and τ஛ 
is the atmospheric transmittance (dimensionless). Hence, the emitted radiance for a black 
body at a temperature Tୱ is given by the inversion of Equation (6): B஛(Tୱ) = L஛ୱୣ୬ − L஛↑ − τ(1 − ε஛)L஛↓τ஛ε஛  (7)

where the L஛ୱୣ୬ of Landsat 8 TIRS10 is obtained by converting the DN values (Qେ୅୐) ap-
plying Equation (8) [100]: L஛ୱୣ୬ =  M୐ ∙ Qେ୅୐ + A୐ (8)

where M୐ and A୐ are the multiplicative and additive rescaling factors of the correspond-
ing band (TIRS10). In addition, B஛ comes from Planck’s law: B஛(T) = Cଵλହ(eେమ ஛୘⁄ − 1) (9)

where Cଵ = 1.19104 × 108 W·µm4·m−2·sr−1 and Cଶ = 14,387.7 µm·K are Planck’s radiation 
constants. Thus, Tୱ is calculated by inverting Planck’s law in Equation (7): 

Tୱ  = Cଶλ ⎣⎢⎢
⎢⎡ln ⎝⎜

⎛ Cଵλହ ቈL஛ୱୣ୬ − L஛↑ε஛τ஛ − ቀ1 − ε஛ε஛ ቁ L஛↓ ቉ + 1⎠⎟
⎞

⎦⎥⎥
⎥⎤ିଵ

 (10)

Finally, Equation (10) can be simplified and the LST (Tୱ) from Landsat 8 TIRS10 is 
estimated as: LST =  Kଶ

ln ൮ KଵL஛ୱୣ୬ − L஛↑ − τ஛(1 − ε஛)L஛↓τ஛ε஛
+ 1൲ 

(11)

where Kଵ and Kଶ refer to calibration constants, whose values for Landsat 8 TIRS10 are 
774.89 W·m−2·sr−1·µm−1 and 1321.08 K, respectively [100]. Henceforth, the spectral notation 
(λ) will be omitted, since here only a single TIR band is used. 

The aforementioned procedure was applied with τ, L↑, and L↓ calculated using pro-
files from: 
1. SBPA local radiosonde; 
2. NCEP CFSv2 reanalysis; 
3. WRF G12; 
4. WRF G03; 
5. ACPC. 

The LST images retrieved using the atmospheric parameters from SBPA radiosondes 
are considered as “ground truth”, and LST retrievals considering the other cases were 
compared to this, as detailed in the next section. 



Atmosphere 2021, 12, 1436 10 of 24 
 

 

2.7. Metrics for Performance Evaluation 
To evaluate the performance of the WRF model and other profiles we take into ac-

count the atmospheric parameters (τ, L↑, and L↓) and LST images. The SBPA radiosondes 
are the available in situ observations. Hence, the AC parameters and LSTs calculated us-
ing SBPA profiles are considered our references. To perform the comparative assessment, 
the Pearson’s correlation coefficient (R), bias (mean error), mean absolute error (MAE), 
and root mean square error (RMSE) were used as statistical criteria. These metrics are 
widely employed to evaluate and compare models [31,107,108]. The metrics’ equations 
are given as follows: R =  ∑ (p୧ − pത)(o୧ − oത)୬୧ୀଵඥ∑ (p୧ − pത)ଶ୬୧ୀଵ ඥ∑ (o୧ − oത)ଶ୬୧ୀଵ  (12)

bias = 1n ෍(p୧ − o୧)୬
୧ୀଵ  (13)

MAE = 1n ෍|p୧ − o୧|୬
୧ୀଵ  (14)

RMSE = ඩ1n ෍(p୧ − o୧)ଶ୬
୧ୀଵ  (15)

where p୧ and o୧ are pairwise predicted and observed values, respectively, n is the num-
ber of pairs, and terms with overbars are respective mean values. 

R scores range from −1 to 1, and values approaching 1 indicate stronger correlations. 
Bias is useful in determining if the model is underestimating (bias < 0) or overestimating 
(bias > 0) the observed values. MAE is the average of the absolute difference between the 
predictions and the observations, despite model overestimation or underestimation. It is 
a negatively oriented index (values closer to zero are better). RMSE is also negatively ori-
ented. It indicates the deviation between modeled and observed values and is more sen-
sitive to outliers as the errors are squared before summing. 

3. Results and Discussion 
3.1. Evaluation of Atmospheric Parameters 
3.1.1. Overall Results 

The AC parameters (τ, L↑, and L↓) calculated with different sources of estimated ver-
tical profiles (CFSv2, WRF G12, WRF G03, and ACPC) were compared against those using 
observational SBPA radiosondes (Figure 2). In Table 3, the accuracies of atmospheric pa-
rameter estimations are presented. All the profile sources provide AC parameters with 
high correlation coefficients, all greater than 0.9 in relation to the reference (SBPA). The R 
values of ACPC are slightly better, followed by those of CFSv2. There is a general but 
small tendency to overestimate the transmittance values. On the other hand, the atmos-
pheric radiances tend to be underestimated, except for ACPC downwelling. The smallest 
biases were from the WRF for all three parameters. The largest were from CFSv2. With 
respect to MAE and RMSE, the best results were from ACPC followed by CFSv2. The 
largest RMSE value found was 0.43 W·m−2·sr−1·µm−1 for the downwelling calculated with 
WRF G03 profiles. 
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Figure 2. Comparison of (a) atmospheric transmittance, (b) upwelling radiance, and (c) downwelling radiance calculated 
with SBPA in situ radiosondes and estimated profile sources. The dashed line represents the “1:1 line”. 

Table 3. Statistical metrics of atmospheric parameters estimated from different atmospheric profiles. Bias, MAE, and 
RMSE are in the units of the parameter of interest, i.e., W·m−2·sr−1·µm−1 for atmospheric radiances and the transmittance is 
dimensionless. 

  CFSv2 WRF G12 WRF G03 ACPC 

Transmittance 

R 0.96 0.93 0.93 0.97 
bias 0.01 0.00 0.00 0.01 

MAE 0.02 0.03 0.03 0.02 
RMSE 0.03 0.04 0.04 0.03 

Upwelling 

R 0.97 0.94 0.94 0.98 
bias −0.12 −0.04 −0.02 −0.06 

MAE 0.21 0.24 0.24 0.16 
RMSE 0.27 0.33 0.34 0.20 

Downwelling 

R 0.97 0.95 0.95 0.98 
bias −0.15 −0.05 −0.03 0.08 

MAE 0.28 0.30 0.30 0.21 
RMSE 0.35 0.42 0.43 0.27 

The higher negative bias of the atmospheric radiances with NCEP CFSv2 in our find-
ings may be due to the fact that these reanalysis profiles have the lowest level at 1000 hPa, 
which corresponds to around 60–250 m for the SBPA station in our case days. Therefore, 
the lowest layer of the atmosphere (which typically presents the largest water vapor con-
tent and warmest temperature) is neglected in these profiles. This fact was indicated by 
Coll et al. (2012) [32] and Meng and Cheng (2018) [20]. We tried to reduce this limitation 
by downscaling the CFSv2 reanalysis profiles with the WRF model. The WRF profiles 
bring the first level to around 1 m above the surface. 

Figure 3 illustrates the performance of the AC parameters from the different profile 
sources via Taylor diagrams [109]. These quantify the agreement of the modeled profiles 
with the observational profiles in terms of graphical representations of the three statistics 
combined: standard deviation, root mean squared deviation (RMSD, the same as RMSE), 
and correlation coefficient. Figure 3 corroborates the results shown in Table 3. It indicates 
that ACPC obtained better results than the other profiles for all three atmospheric param-
eters. Next was the CFSv2 reanalysis profiles. The diagrams clearly point out that the pro-
files from WRF G12 and G03 had very similar accuracies. In fact, no significant statistical 
differences were found between the parameters from the WRF grids G12 and G03. This 
suggests that computation costs can be saved by using profiles from a WRF domain with 
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coarse horizontal resolution. Despite other aims, scholars have already reported this kind 
of result with WRF model grids [57,110–112]. 

 
Figure 3. Taylor diagrams of (a) atmospheric transmittance, (b) upwelling radiance, and (c) downwelling radiance. The 
parameters calculated with SBPA radiosondes are the references. The black dashed lines represent the correlation coeffi-
cient (R), blue dash-dot lines represent the standard deviation, and the magenta dotted lines represent the root mean 
squared deviation (RMSD = RMSE). 

Our RMSE range is in agreement with the findings for reanalysis profiles in Meng 
and Cheng (2018) [20] for the three parameters. The authors analyzed 30,715 atmospheric 
profiles in 163 stations around the globe. The RMSE values of Yang et al., (2020) [40] were 
overall slightly lower than ours. However, their assessment only includes profiles from 
Europe. In Diaz et al. (2021) [85], the vertical distributions of air temperature and water 
vapor for the SBPA radiosondes, CFSv2 reanalysis, and WRF (G12 and G03) profiles were 
compared. The evaluation of the profiles themselves showed that both CFSv2 and WRF 
models skillfully represent the vertical profiles of temperature and water vapor. Never-
theless, the statistical metrics indicated that increasing the horizontal resolution did not 
significantly improve the quality of the simulated atmospheric profile. This is in line with 
the above results for the atmospheric parameters comparison. 

3.1.2. Analysis by Meteorological Conditions 
The errors in the estimation of atmospheric parameters for each case day are shown 

in Figure 4. This shows that, despite the fact that ACPC presented the best overall metrics, 
none of the profile sources performed best in all cases. For instance, in eight of the case 
days, one of the WRF profiles had the best results in calculating the downwelling radiance. 
For case day 23, the WRF model plainly produced the largest errors, whereas for case days 
such as day 26, the model successfully reduced the largest error in the driving reanalysis 
data. Therefore, it is pertinent to assess the dependence of the performances of different 
profile sources on the meteorological conditions. 
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Figure 4. Errors in the estimation of (a) atmospheric transmittance, (b) upwelling radiance, and (c) downwelling radiance 
from the different profiles for each case day. 

Figure 5 shows the RMSE values of the AC parameters calculated taking into account 
specific ranges of precipitable water vapor (PWV) for the entire atmospheric column 
(measured by SBPA radiosondes) and air temperature observed at the SBPA station (Table 
1). The WRF model performs better under dry and cold conditions. It outperforms the 
other profile sources in the range of 2–3 g/cm² PWV. Under almost all moisture and tem-
perature conditions, the ACPC profiles presented better results than the NCEP CFSv2 
profiles. All the different profiles presented minor errors in situations of the lowest water 
vapor and air temperature. However, it is important to mention that the number of case 
days under these conditions was less than for the other ranges. This is consistent with the 
research of Meng and Cheng (2018) [20], where it was noted that the best global RMSEs 
were for profiles with a water vapor content lower than 1 g/cm². Furthermore, they indi-
cated that the largest RMSEs occurred when the water vapor was between 3 and 4 g/cm². 
With respect to the air temperature, our results suggest that errors in estimating the at-
mospheric parameters are higher on warmer days. 
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Figure 5. Atmospheric parameters’ RMSE values calculated for specific ranges of observed precipitable water vapor 
(PWV) (a–c) and air temperature (d–f). 

3.2. Application to RTE-Based LST Retrieval 
To further assess the different atmospheric profiles, the LSTs retrieved by RTE inver-

sion with atmospheric parameters, Landsat 8 TIRS10 radiance, and NDVITHM emissivity 
were compared with each other. Once more, the LST images that used SBPA profiles were 
assumed as reference data. Except for the atmospheric parameters calculated from the 
different profile sources, the other variables in Equation (11) were the same for each pixel 
of the scenes. Therefore, the differences between LST values that were retrieved with 
SBPA profiles and those from other sources were due to the discrepancies among the pro-
files [40]. Figure 6 illustrates an example (case day 25) of the LST spatial distribution in 
the study area. Note that the hottest pixels are over the airstrip and adjacent buildings of 
the airport. 
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Figure 6. LST images retrieved with atmospheric parameters from (a) SBPA, (b) CFSv2, (c) WRF 
G12, (d) WRF G03, and (e) ACPC, for case day 25 (9 April 2019). 

Histograms of LST errors for all the 10,184 pixels in the study area of the 27 case days 
are shown in Figure 7. These represent the frequency distribution of the errors in the re-
trieval of LST using the different atmospheric profile sources. For all profiles, more than 
50% of the errors are in the range of ±1 K. Yang et al. (2020) [40] also found the most LST 
differences in this range, using different reanalysis and satellite-derived profiles. The his-
tograms in Figure 7b,c indicate that WRF profiles tend to overestimate the LST, whereas 
ACPC tends to underestimate it (Figure 7d). Using WRF profiles, LST errors can reach to 
more than 4 K, although only in a very small number of cases. For ACPC and both WRF 
grids, the error range that occurs most often is between 0 and −1 K. The distribution of 
CFSv2 LST errors is more symmetrical than in the other profiles. 
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Figure 7. Normalized histograms of the LST errors using profiles from (a) CFSv2, (b) WRF G12, (c) 
WRF G03, and (d) ACPC. 

Table 4 summarizes the metrics of the LST retrieval comparative analysis. Overall, 
the LST values of the four profile sources analyzed in this study were found to be in good 
agreement with the reference. All of them showed a very strong correlation and relatively 
low bias, MAE, and RMSE values. CFSv2, WRF G12, and WRF G03 presented an average 
positive bias and ACPC a negative bias. This corresponds with the histogram analysis in 
Figure 7. The mean error criteria (MAE and RMSE) indicate that the profiles with the best 
performance in the AC- and RTE-based LST retrieval are, in descending order: CFSv2, 
ACPC, WRF G12, and WRF G03. The differences between CFSv2 and ACPC overall MAE 
and RMSE values were very small, and similarly for WRF G12 and G03. 

Table 4. Statistical metrics of land surface temperatures (LST) retrieved using atmospheric param-
eters from different profile sources. The LST values calculated with SBPA parameters were consid-
ered as reference values. 

  CFSv2 WRF G12 WRF G03 ACPC 

LST [K] 

R 0.99 0.99 0.99 0.99 
bias 0.23 0.32 0.36 −0.38 

MAE 0.54 0.79 0.81 0.56 
RMSE 0.55 0.79 0.82 0.56 

Comparing these results with previous studies that evaluated the application of dif-
ferent atmospheric profiles for LST retrieval, Meng and Cheng (2018) [20] reported overall 
LST RMSE values higher than ours for eight different reanalysis profile sources analyzed 
around the globe. All their eight average RMSEs were larger than 1 K. The authors men-
tion that ERA-Interim and MERRA (6 h product) showed the lowest RMSEs, at 1.09 K and 
1.07 K respectively. They also indicated an average tendency to overestimate the LST, ex-
cept for JRA-55. In Yang et al. (2020) [39], RMSEs were smaller than 0.6 K using profiles 
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from ERA-Interim, MERRA2, NCEP GFS, and NCEP FNL, over Europe. Their worst ac-
curacy (RMSE of 1 K) was obtained using MOD07 satellite-based profiles. Retrieving LST 
from three MODIS thermal bands, Pérez-Planells et al. (2015) [33] showed RMSEs between 
0.6 and 0.9 K using ACPC/NCEP and between 1.3 and 3 K for MOD07 profiles, depending 
on the band and the altitude of the study sites in Spain. 

Figure 8 displays the distribution of LST bias and RMSE among the case days. Figure 
8a evidences the ACPC and WRF settings’ average tendency to under and overestimate 
the LST, respectively. We found better RMSE values using CFSv2 in 11 of the 27 case days, 
and in 8 using ACPC. However, the metrics of mean errors are greater for WRF profiles, 
as in 11 case days the model improves the results of the reanalysis. Furthermore, the finer 
grid (G03) succeeded in downscaling the G12 11 times. In fact, the largest errors were 
achieved when using the WRF model (e.g., for case days 23, 19, and 17), contributing to 
the higher overall RMSE values. In general, the days with larger errors in atmospheric 
parameters (Figure 4) were the days with larger LST RMSEs, as in case day 23. Conversely, 
for case day 22, the errors in atmospheric parameters using ACPC were less than those 
using WRF profiles, but the highest LST RMSE on this day was with ACPC. Jiménez-
Muñoz et al. (2010) [24] suggest that cases like this may be explained by compensation 
among the AC parameter errors, for instance, a significant positive difference in transmit-
tance and significant but negative differences in the atmospheric radiances. Figure 9 
shows how errors in the atmospheric parameters propagate to the retrieved LST. The sen-
sitivity analysis of Sekertekin and Bonafoni (2020a) [74] reported that an uncertainty of 
±0.01 in atmospheric transmittance had an impact of ±0.97 K on RTE-based LST retrieval. 
For upwelling and downwelling, uncertainties of ±10% led to ±1.82 K and ±0.07 K errors 
in LST, respectively. Rosas et al. (2017) [21] mentioned that an introduced uncertainty of 
20% in the relative humidity profile could result in LST errors as large as 1.5 K in arid 
environments. 

 
Figure 8. LST (a) bias and (b) RMSE for each case day. 
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Figure 9. Relation of daily LST bias with errors in (a) transmittance, (b) upwelling, and (c) downwelling radiances for each 
case day. The gray line represents the linear regression for all data. 

In summary, the attempt at downscaling the horizontal resolution of reanalysis data 
from 0.5° (~56 km) to 12 km and so to 3 km, aiming to reduce errors in the calculation of 
atmospheric parameters and hence in LST retrieval, did not perform as theoretically ex-
pected. Using WRF simulations, we improved the vertical resolution in the lowest atmos-
pheric levels. However, no significant improvement was found in the AC using the WRF 
profiles. In some cases, using a finer grid resolution profile resulted in even greater differ-
ences in atmospheric parameters and LST estimation. Rosas et al. (2017) [21] reported that 
the higher vertical resolution of NCEP and ECMWF profiles in their study did not seem 
to play a significant role in the atmospheric correction. Even if data with higher resolution 
naturally tend to represent the atmospheric parameters better, it is not a strictly direct 
relationship [20,40]. Furthermore, the ACPC, which uses profiles with 1° × 1° (~111 km) 
horizontal resolution, showed good results. Although these profiles have a coarser hori-
zontal resolution, previous studies have found satisfactory results using the ACPC, even 
surpassing other methods [24,31,46,93,113–117]. It is important to note that in this study 
the WRF profiles were extracted at 12 UTC to match the available radiosonde data. Nev-
ertheless, the extraction could be set for the exact time of the satellite overpass. In the 
ACPC, and in general for reanalysis profiles, this time synchronization is achieved 
through linear interpolation, which may not be the most appropriate strategy for sam-
pling weather fronts and diurnal heating cycles [20,27,29]. 

4. Conclusions 
Vertical atmospheric profiles are key inputs in the atmospheric correction for esti-

mating LST using the RTE inversion single-channel approach. This study evaluated the 
use of the WRF numerical model to simulate high-resolution profiles, improving horizon-
tal, temporal, and vertical resolutions of NCEP CFSv2 reanalysis data. The profiles were 
incorporated into the MODTRAN RTM to compute the atmospheric correction parame-
ters, which were then applied in the RTE to retrieve LST values from Landsat 8 TIRS10 
data. We included in the comparison analysis the widely applied ACPC web-tool. The 
assessment took into account 27 clear-sky Landsat 8 scenes over a radiosonde station in 
Southern Brazil. 

The obtained results showed that for the three atmospheric parameters (atmospheric 
transmittance, upwelling radiance, and downwelling radiance) the ACPC provided pa-
rameters in better agreement with those calculated using the radiosondes. The second-
lowest uncertainties occurred when using CFSv2 profiles. No significant statistical differ-
ences were found between the parameters from the two WRF grids. None of the profile 
sources outperformed the others in all case days analyzed. The overall metrics of the WRF 
profiles were influenced by some cases with large errors. In general, the assessed profile 
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sources better represented the atmosphere in dry and cold conditions. With respect to the 
retrieved LST values, using those calculated with the SBPA profile as reference, CFSv2 
had the best results. With an RMSE of 0.55 K, it was slightly more accurate than ACPC 
(RMSE of 0.56 K). WRF G12 and G03 showed RMSE values of 0.79 and 0.82 K, respectively. 
Both WRF grids and CFSv2 generated a positive LST bias, while ACPC generated a nega-
tive bias. On balance, all the profile sources presented relatively good results in estimating 
the LST. 

From the above findings, we conclude the following. 
• Our main conclusion is that there is no special need to increase the horizontal reso-

lution of reanalysis profiles aiming at general RTE-based LST retrieval. We recom-
mend the use of NCEP CFSv2 profiles for these applications. 

• The results reinforce the validity and feasibility of ACPC, which is free of charge. 
• Even though the overall statistical metrics for WRF profiles were inferior, their results 

were satisfactory for the estimation of both atmospheric parameters and LST values. 
Despite the fact that some studies used the WRF model to simulate the skin temper-

ature [118,119], to the best of our knowledge, this paper is the first attempt to apply the 
WRF model to aid the atmospheric correction of thermal remote sensing data. Its use 
showed potential, and our findings encourage further validations. Our study adds to the 
background of studies combing TIR satellite images and high-resolution NWP models. 

Finally, in spite of the discoveries in this study, some limitations to be considered in 
future work are worth mentioning. There were no in situ LST data available to perform 
validation of the retrieved LST. The uncertainties in the SBPA radiosonde profiles were 
not analyzed; they were directly assumed as reference data. The study results refer to one 
area only, and therefore additional research is currently ongoing to extrapolate the con-
clusions to other environments. 
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