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Abstract: This study assessed the spatial disposition of air pollutants and their relationship with 

meteorological parameters in urban slum settlements of Lagos city. The gaseous pollutants were 

quantified using a gas analyzer, and the PM2.5 concentration and meteorological parameters were 

determined using an Air Metric Sampler and Wind Mate, respectively. SPSS for Windows and 

ArcGIS were used for data analysis. The results revealed that the seasonal variations in SO2, NO2, 

CO2, and PM2.5 showed a higher level of air pollutant concentration during the dry season than dur-

ing the wet season. During the wet season, a significant correlation was observed between PM2.5 

and temperature at the 1% level (0.957**), and VOC and SO2 (0.907*) at the 5% level; during the dry 

season, significant correlations were observed between NO2 and SO2 at the 1% level (0.9477**), and 

PM2.5 and relative humidity (0.832*) at the 5% level. Atmospheric pressure (72%), temperature 

(60%), and relative humidity (98.4) were the primary meteorological factors affecting air pollutants 

such as VOC, CO2, and SO2. The spatial dispersal of air pollutants revealed a high Z score and a 

moderate p-value, indicating hot spot locations throughout the five selected slum settlements. It is 

recommended that regular monitoring based on quantifiable economic costs that are beneficial to 

the well-being of the populace be investigated, and policy-based initiatives for air pollution control 

based on scientific evidence be advocated for. 
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1. Introduction 

Environmental problems such as air pollution are the direct consequences of an 

opaque population [1]. Hence, a substantial problem with air pollution is seen mostly in 

underdeveloped countries [2]. Consequently, underdeveloped countries are increasingly 

contending with rampant urban sprawl, commerce evolution, traffic emissions, and in-

creasing urban populations [3,4]. Developing cities are subject to population explosions, 

degrading environmental quality, and increased costs of urban services. The internal 

growth of cities and migration to urban centers exceed by far the creation of jobs [5]. In a 

recent study, it was projected that more than 60% of Nigerians will live in urban centers 

by 2025, and a considerable proportion will likely live in slums if action is not taken [6]. 
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Slum conditions are a significant issue in sub-Saharan Africa, and the slum situation 

in Nigeria is already problematic because of the proportion of people affected. The official 

figure is 42 slum areas, according to the UNDP and World Bank [7]. Researchers have 

estimated the population of slum dwellers in Lagos to be at 60–70% [8]. Accordingly, [9] 

documented the communities of Majidun, Amukoko, Agege, Ijora-Badia, Bariga, Iwaya, 

and Makoko as the largest slum settlements in Lagos, as classified by the World Bank. The 

authors of [10] ascertained that Nigeria’s inability to strategize and control fast-growing 

urban centers has resulted in overpopulation, leading to air pollution in the entire urban 

center of Lagos. 

The air pollution in Lagos originates from both anthropogenic and natural factors 

[11]. However, particular aerodynamic diameters released during the burning of biomass 

fuel and traffic emissions are the most significant challenge to underdeveloped nations, 

especially Nigeria [12]. Lagos showed elevated levels of particles caused by smog events 

in the city on the 12th of October, 2005 [13]. These air pollutants were of anthropogenic 

and biogenic origin, and thus could originate from stationary pollution, chemical and ve-

hicular exhaust emissions [14], smoke from tobacco, chemicals for cleaning, the use of sol-

vents, the incineration of solid waste, the evaporation of gasoline, gas, and petroleum 

leakage [15]. Air pollutant accumulation caused by anthropogenic activities such as traffic 

emissions and industrial activity has resulted in worsening air pollution-related issues 

[16].  

Air pollutant concentrations rely on direct emissions and the quantity of gaseous pre-

cursors, which are NO2, SO2, CO2, and PM2.5, as well as meteorological variables [17]. Me-

teorological conditions affect the dispersion of air pollutants [18], and also control atmos-

pheric pollution on a moderately abrupt continuance scale [17]. Multiple factors, such as 

pollutant transportation and transformation, pollutant emissions, and meteorological 

conditions, affect air pollution [19,20]. Studies have uncovered that both meteorological 

conditions and air pollutant emissions dominate pollutant concentration trends [21,22]. 

The authors of [23] reported that favorable meteorological conditions have important ef-

fects on air criteria, by impacting dispersal conditions and thus the environmental capac-

ity. Hence, both regional and local meteorology have an effect on the temporal and spatial 

ordering of air pollutants [22]. The authors of [24] ascertained that more than 70% of the 

daily air pollutant absorption in China could be attributed to meteorological conditions. 

The authors of [25] documented that there is no clear linear relationship between the air 

pollutant concentration due to chemical transformation and meteorological parameters 

such as relative humidity, temperature, and atmospheric pressure. For instance, an in-

crease in clouds can cause an increase in sulfates and nitrates due increased sulfate heter-

ogeneous reactions in water [26]. 

Several studies have also assessed the effectiveness of adopted measures, pollution 

reduction, and forecasting air quality [27–30]. The authors of [31] carried out monitoring 

and intensity analysis of slum growth in Lagos. The authors of [32] carried out a study on 

slum upgrading in the era of world-class city construction, while [33] assessed the social 

capital and higher resilience of slums in the Lagos metropolis. The authors of [34] worked 

on the spatiotemporal urban growth dynamics of the Lagos Metropolitan region of Nige-

ria based on hybrid methods for LULC modeling and prediction, but there was no unified, 

high-resolution, and time-varied air pollutant emission information for the 42 identified 

communities in Lagos, which were ranked based on their level of decay [35]. In recent 

years, studies have developed statistical/empirical models, especially for Lagos slum set-

tlements, but only a few have been able to predict air pollutant concentrations arising from 

meteorological inputs. Researchers [36–39] have been able to explore the relationship be-

tween air quality dynamics and meteorology parameters in Dhaka city to a large extent. 

Most importantly, multiple non-linear regression models have been applied to explore the 

significance and role of various meteorology parameters, such as relative humidity, tem-

perature, atmospheric pressure, and precipitation, on particulate and gaseous air pollu-

tants [39]. Bivariate Pearson correlation coefficients were also employed to determine the 
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relationship between meteorological parameters and air pollutants [37]. Additionally, the 

cross-correlation approach and multi-linear regression were also used to assess the effect 

of meteorological variables on seasonal changes in particulate matter disposition in Dhaka 

city [38]. Several studies have considered the source apportionment [40,41], elemental 

characterization [42,43], and spatiotemporal distribution [42] of particulate matter in 

Dhaka city.  

However, there remains a knowledge gap between meteorological parameters and 

their impacts on concentrations of air pollutants. In this study, a systematic analysis, com-

prising the cross-correlation approach, multi-linear regression, and kriging and Getis–Ord 

general G statistics interpolation method, was used to investigate the relationships be-

tween air pollutants (PM2.5, CO2, SO2, NO2, and VOC) and meteorological parameters 

(temperature, atmospheric pressure, and relative humidity) in five selected slum settle-

ments, based on a 12-month record of observations from 2018 to 2019. The goal was to 

understand these vital relationships in order to improve the understanding of the mecha-

nisms that produce air pollution, enhance the forecast accuracy of air pollution, and pro-

vide effective measures for mitigating pollution. The objective of this study was to discuss 

the variation in air pollutant concentrations in coastal slum settlements, driven by mete-

orological parameters and the emissions of their precursors. The discussion includes: (i) 

the spatial pattern of air pollutant concentrations, (ii) meteorological factors that affect air 

pollutant concentrations and their relationship with meteorological variables, and (iii) the 

influence of meteorological parameters on ambient air quality in coastal slum settlements. 

This study will provide the necessary reference information for local governments to de-

velop atmospheric environment pollution control strategies, and an emergency plan for 

coastal slum dwellers. Moreover, we evaluated the spatial pattern of the air pollutant con-

centration; unlike in most developed societies, where air quality monitoring is carried out 

routinely, environmental researchers undertake air quality assessments in most countries 

of sub-Saharan African, including Nigeria. Nevertheless, environmental agencies, city ad-

ministrators, and residents need this information to safeguard the wellbeing of the people. 

Among the citizenry, this information will possibly motivate communal action to demand 

proper attention through responsible leadership. 

2. Materials and Methods 

2.1. Study Area and Sample Site 

The study area was the coastal slum settlement geomorphological unit of the Lagos 

metropolis, Southwestern Nigeria, which lies roughly between latitudes 6°30′ N and 6°40′ 

N and longitudes 3°00′ E and 4°00′ E. The study area occupies approximately 1171.28 km2 

of land, covering luculent geographical settlements, with a population density of 6871 

residents per square kilometer [44]. Its climate is characterized by two major vegetation 

types/climates, freshwater swamp and wet lowland tropical rainforest climates, with two 

distinct climatic seasons (a dry and a wet season) [45]. The region is drained by a dendritic 

drainage system comprising rivers that flow into the Lagos Lagoon, which ultimately dis-

charges into the Atlantic Ocean [46]. In terms of population size, Lagos State is estimated 

to have a population ranging from 24.5 million in 2015 to 29 million by 2025 [10]. The 

population growth rate is estimated to range between 2.35% [7] and 8.0% [47], which rep-

resents a 3.44% annual change [48]. The authors of [49] identified 42 communities in Lagos 

and ranked them based on their level of decay [35]. Five of these communities were se-

lected for this study: the Ijora-Badia, Iwaya, Majidun, Oworoshoki, and Bariga slums (Fig-

ure 1). 



Atmosphere 2021, 12, 1426 4 of 27 
 

 

 

Figure 1. Map of Lagos metropolis, showing the five selected slum settlements where the study area is located, and the 

sample locations. 

2.1.1. Ijora-Badia 

The Ijora-Badia slum is one of the earlier identified slums (1984) and is located in 

Lagos Island, in the Apapa local government area, with an estimated population of 

217,661 [44]. The settlement consists of three sub-communities: Oke Ilu-eri, Ajeromi, and 

Railway Line [33]. It is bordered on the north by the Lagos Badagry Expressway, on the 

east by a railway line running parallel with the Apapa road, and on the south by Ajegunle 

(another slum community) [33]. The earliest settlers of Ijora-Badia were displaced from 

the present-day location of the Nigeria National Art Theatre, Iganmu Lagos, after the fed-

eral government acquired the land through forceful eviction, without adequate consulta-

tion or compensation, in order to build the theater [50]. 

2.1.2. Iwaya 

The Iwaya slum is located in mainland Lagos’ local government area. The commu-

nity shares a boundary with another slum community [51]. The population is the smallest 

among the slum settlements, and the slum is enclosed by land. The estimated population 

was 58,000 and 725 persons per hectare in the 1995 projection [7]. It has close proximity to 

the University of Lagos, which aids its continuous growth. The community encroaches on 

water bodies, which can be seen from the Lagos third mainland bridge. Various ethnic 

groups live in Iwaya but are separated into sub-communities, such as Pedro/Shogunro, 

Ago Egun, and Iwaya Central. The community comprises both poor people [52] and 

white-collar workers [53]. Most of the residents engage in carpentry, fishing, and trading. 

The Iwaya slum has experienced forceful eviction of its residents and several demolition 

exercises. The Lagos State Government demolished more than 200 houses in August 2017 

[54]. 

2.1.3. Majidun 

Majidun is located in the Ikorodu local government area of Lagos State, in a peri-

urban area, and had an estimated population of 40,195 and a population density of 638 

persons per hectare in the 1995 projection [7]. The Yoruba ethnic group is the dominant 

group, and most of the buildings in these slums are referred to as family compounds ra-

ther than a slum community, as stated by the ruler of the area (king of Ikorodu commu-

nity). Most of the houses are of mud type, and the community still shows the features of 
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a traditional Yoruba town. The occupations of the residents include trading, tailoring, 

barbing, and pottery [55].  

2.1.4. Oworoshoki 

The Oworoshoki slum is located in the Somolu local government area of Lagos State. 

The estimated population is approximately 402,673 [56] in a land area of 11.6 km2. Accord-

ing to Adeniyi et al. [57], the Oworoshoki community shares a boundary with the Bariga 

Local Government area in the north, while, in the south, it shares a boundary with the 

Akoka community. In the east, the boundary is the major Ikorodu road from Fadeyi to 

Anthony, and in the west, it is Abule-Ijesha. The community is surrounded by swamp 

vegetation, located further north of its boundary in the Kosofe local government area [57]. 

2.1.5. Bariga 

Bariga is located in the Kosofe local government area of Lagos State. It is located in 

the northern part of the state and bounded by three local governments: Ikeja, Ikorodu, 

and Shomolu [58]. Its estimated population is 682,772 in an area of 178.85 km2 [56]. Bariga 

vegetation is mostly swamp forest, encroached on by buildings and marketplaces. The 

indigenous dwellers are mainly the “Aworis”, whose major occupations are trading, mat-

weaving, and fishing. A map of the Lagos metropolis was obtained and gridded to create 

cells of 300 m2 using Arc Map 10.1, as shown in Figure 1. Ten cells were randomly selected 

from each of the study areas using a random number table, according to the kriging 

method [59].  

2.2. Measurement and Sampling of Pollutants 

Ambient air and meteorological sampling were carried out at the five selected coastal 

slum settlements in the Lagos metropolis: Slum A (Ijora-Badia); B (Bariga); C (Majidun); 

D (Iwaya); and E (Oworoshoki). At each slum settlement, the air pollutant parameters 

were carbon dioxide (CO2), sulfur dioxide (SO2), nitrogen dioxide (NO2), volatile organic 

compounds (VOCs), and particulate matter (PM2.5). The meteorological parameters were 

temperature, relative humidity, and atmospheric pressure. These were measured four 

times per month for six months (June, July, Aug, Sept, Oct, Nov) in the wet season and six 

months (Dec, Jan, Feb, March, April May) in the dry season from June 2018 to May 2019. 

In totality, 12 months of air pollution and meteorological monitoring were carried out 

across the sample locations. The geographical coordinates (latitude-x coordinate and lon-

gitude-y coordinate) of the sample sites were determined using a GPS device from Garmin 

(GPSMAP 76CSX model). A handheld portable gas analyzer (multi-RAE PGM-6208) was 

used for CO2, SO2, NO2, and VOC measurement in the windward direction at the sample 

locations. An Air Metric Sampler (PDR.1000AN) measuring kit was used on-site for meas-

uring PM2.5 data. A Wind Mate (WM 350) instrument was used for measuring the meteor-

ological parameters. All the measurements were taken at a time-weighted average with a 

digital meter, at 2 m from ground level, where humans are most likely to be exposed. This 

procedure was repeated for accuracy and reliability, and the monitoring dimensions were 

taken in triplicate. According to the manufacturer’s recommendation, the equipment was 

calibrated before and after each batch of samples.  

The measurement techniques used for monitoring the reported criteria pollutants in 

this study were carried out according to the method proposed by [60] and [61]. The in-

struments used in the experiments provide an industry-leading array of interchangeable 

field-replaceable electrochemical, combustible, infrared, photoionization detector (PID), 

and gamma radiation sensors for a wide variety of applications. The instruments are dig-

ital meters that take time-weighted average measurements. The uncertainty associated 

with the instruments is primarily due to the devices not being calibrated before use, which 

results in inaccurate readout data. Additionally, not zeroing, erasing, or resetting the cur-

rent data after use may affect the readout readings during the following sampling period. 
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The hand-held portable gas analyzer (multi-RAE PGM-6208) was calibrated utilizing the 

“Two-point field calibration for zero and standard reference gases” method (span gas). 

VOC detection limits range from 100 to 2,000,000 mg/m3; SO2 detection limits range from 

100 to 20,000 mg/m3; NO2 detection limits range from 100 to 20,000 mg/m3; and CO2 de-

tection limits range from 1000 to 500,000 mg/m3. Calibration of the Air Metric Sampler 

(PDR.1000AN) for the measurement of PM2.5 was performed using two collectors of refer-

ence filters and two master real-time monitors (Thermo Electron Data RAM 4), with a 

detection limit of 1–4.0 × 105 µg/m3. The Wind Mate (WM 350) device that was used to 

measure meteorological parameters had been pre-calibrated according to the manufac-

turer’s specifications.  

2.3. Air Pollutant Data and Quality Assurance 

Ambient air and meteorological sampling was carried out in situ using various cali-

brated hand-held devices. Air pollutant and meteorological parameter monitoring was 

carried out in one-hour triplicate periods three times per day (morning, afternoon, and 

night), based on limits set by USEPA [62] and FMEnv [63]. The hourly ambient air pollu-

tant concentration was collected using different equipment calibrated according to the 

manufacturer’s recommendations for the gaseous, particulate, and meteorological param-

eters. These measurements were carried out at 50 points for each sample location, and 

replicated three times. Accordingly, data were generated based on the equipment’s stand-

ards and methods. Beforehand, screening of the raw data was conducted to ensure the 

accuracy of the obtained air pollutant and meteorological data. Missing data and maximal 

or minimal data for abrupt growth were removed. Hourly data were then used to generate 

the daily mean using at least 20 h of valid data. Secondly, monthly means were derived 

from the daily mean data, and an overall 20 days of valid data were used. The data were 

then used to generate the seasonal mean. Thirdly, validated data for the sample year were 

used to calculate the relationship and influence of these pollutant parameters.  

Missing data showed the same pattern across the five selected sample sites. The air 

pollutant concentrations across the air sampling sites in each slum settlement were calcu-

lated as the air pollutant concentration at the coastal slum community level. Several base-

lines of 1 h and 24 h mean concentrations proposed based on the NAAQS [64], WHO [65], 

and FMEnv [63] were adopted for this study. 

2.4. Assessment of Spatiotemporal Variations of Air Pollutants 

The spatial data for this study included the duration of sampling, categorizing re-

leased pollutants, air pollutant concentrations, and geographical locations, for a repre-

sentative collection of data across all the slum settlements. Air pollutant data from ground 

observations were imported into digital map layers for spatial analysis of the Lagos me-

tropolis. Location coordinates were saved in Excel, and the shapefile representing the cur-

rent scope of the Lagos metropolis was sourced into the GIS platform using ArcGIS 10.0 

software. After assigning attribute data to spatial objects, the system was ready for spati-

otemporal analysis and operation. Mapping of the areas with different concentration lev-

els was carried out using the kriging and Getis–Ord general G statistics interpolation 

method in the ArcGIS 10.0 environment. The spatial analysis employed in this study used 

hot spot analysis, where vectors were used to identify the major hot spot and cold spot 

areas. In this way, density was considered in this study, suggesting where clusters existed 

in the dataset, while points were used to add up to polygons [66]. Getis–Ord general G 

statistics were used for this study, which gave the Z scores and p-values. A high Z score 

and a modest p-value implied a significant hot spot location. A negative Z score and a low 

p-value suggested the presence of a substantial cold spot. A higher Z score implied more 

intense clustering, while an A–Z near zero score meant no spatial clustering [67]. 

The Getis–Ord statistic is given as: 
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The kriging and Getis–Ord general G statistics interpolation method was used to pre-

dict the movement of air pollutant parameters from slum A to other slum locations within 

the Lagos metropolis. The obtained readings for the distribution map development were 

computed into ArcGIS 10 software to pre-define ranges of the respective air quality pa-

rameters. Maps were produced as colored gradients, representing the distribution pattern 

of the respective ranges of the parameters. Figure 2 presents the spatial gradient maps of 

the five selected coastal slum settlements in the Lagos metropolis. 

     
(a) (b) (c) (d) (e) 

Figure 2. Spatial gradient map of the five selected coastal slum settlements in Lagos metropolis, showing the boundary of 

each of the slums, sampling design, and sample locations. (a) Majidun; (b) Oworoshoki; (c) Bariga; (d) Iwaya; (e) Ijora-

Badia. 

2.5. Statistical Analysis 

The statistical analysis employed in this study included descriptive and inferential 

statistics (SPSS windows, version 21.0). The trend in air pollutant concentrations was plot-

ted on a line graph; the level of association between air pollutants and meteorological 

parameters was determined using correlation analysis. Multivariate regression analysis 

was used to assess the influence of the meteorological parameters on the air pollutant 

concentrations. In order to identify the factors that could explain the variation in the levels 

of sampled air quality parameters, the meteorological parameters of relative humidity 

(RH), temperature (T), and atmospheric pressure (AP) served as the explanatory variables 

(X), and the concentrations of selected air quality parameters were the dependent variable 

(Y); this is shown in Equation (4). The predictor variables were screened for multi-collin-

earity using inter-correlation analysis, so as to ensure accurate values for each in the re-

gression models. All three variables had r2 values above 60.7%, so were suitable for the 

analysis [68]. 
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Y = a + b1 ˟ 1 + b2 ˟ 2 + b3 ˟  3 + e (4)

where: 

Y = value for the dependent variable (air quality parameters); 

b = the quotients of the predictor variable (parameter X); 

a = the intercept of model slope; 

x = value of the independent variable; 

e = estimation error.  

3. Results 

3.1. Seasonal Variation in Air Pollutants 

The variation in air pollutants monitored from June 2018 to May 2019 revealed the 

trend patterns of the pollutants in five selected coastal slum settlements (Figure 3a–e). 

Based on the available data, the observed variation in all air pollutants was 0.001–0.03 

mg/m3 (SO2), 0.001–0.05 mg/m3 (NO2), 3770–5750 mg/m3 (CO2), 1.09–4.97 µg/m3 (PM2.5), 

and 0.96–1.94 mg/m3 (VOC). It can be seen that from 2018 to 2019 (Figure 3a–e), there was 

an incremental change in the concentration level of air pollutants at the peak for SO2, NO2, 

CO2, PM2.5, and VOC (0.02–0.03 mg/m3, 0.03–0.04 mg/m3, 4510–5750 mg/m3, 3.86–4.97 

µg/m3, and 1.74–1.94 mg/m3, respectively). There were significant reductions observed at 

the troughs for these air pollutants, in the range of 0.001–0.01 mg/m3, 0.001–0.02 mg/m3, 

3770–4400 mg/m3, 1.09–2.90 µg/m3, and 0.96–1.55 mg/m3 for SO2, NO2, CO2, PM2.5, and 

VOC, respectively. According to the variations in the trend analysis, ambient air pollution 

of SO2 (Oct, Nov, Dec, Jan, and Feb), NO2 (Sept, Oct, Nov, and Jan), CO2 (Nov, Dec, and 

Jan), and PM2.5 (Oct and Dec) showed a higher concentration during the dry season. There 

were slight increments observed in the wet season for the months of March, April, and 

May (SO2), March and April (NO2), Feb and March (PM2.5), and June and July (VOC). In 

line with the observations from this study, Oworoshoki and Ijora-Badia showed a strong 

pattern for the SO2 concentration, while Ijora-Badia, Oworoshoki, Bariga, Majidun, and 

Iwaya showed a notable concentration pattern for NO2 pollution. Moreso and Iwaya ex-

perienced huge CO2 pollution. Oworoshoki, Iwaya, and Ijora-Badia had higher magni-

tudes of PM2.5 pollutants, while Majidun and Ijora-Badia experienced enormous VOC pol-

lution.  
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Figure 3. Concentrations of air pollution across the slum communities during the 2018–2019 sam-

pling period. (a) Trend pattern of SO2 concentrations in the selected slum settlements during 2018–

0

0.05

0.1

0.15

0.2

N
O

2
C

o
n

c.
 le

ve
lm

g/
m

3

Slum settlements

Sampling months

Ijora-Badia

Iwaya

Majidun

Oworoshoki

Bariga

0

2000

4000

6000

8000

C
O

2
C

o
n

c.
 le

ve
l m

g/
m

3

Slum settlements

Sampling months

Bariga

Oworoshoki

Majidun

Iwaya

Ijora-Badia

0

0.02

0.04

0.06

P
M

2
.5

C
o

n
c.

 le
ve

l µ
g/

m
3

Slum settlements

Sampling months

Bariga

Oworoshoki

Majidun

Iwaya

Ijora-Badia

0
0.5
1

1.5
2

2.5

V
O

C
 C

o
n

c.
 le

ve
l m

g/
m

3 Slum settlements

Sampling months

Bariga

Oworoshoki

Majidun

Iwaya

Ijora-Badia



Atmosphere 2021, 12, 1426 10 of 27 
 

 

2019, showing two slum settlements with pollutant increments at the peak both in the wet and dry 

seasons. (b) Concentrations of NO2 in the selected slum settlements during 2018–2019 showing 

four slum settlements with pollutant increments at the peak both in the wet and dry seasons, 

while one of the settlements shows a decreasing pattern. (c) CO2 concentration in the five selected 

slum settlements during 2018–2019 showing that all the slum settlements have the same trend 

pattern of pollutants both in the wet and dry seasons. (d) Trend pattern of particulate matter 

(PM2.5) concentration during 2018–2019 showing that two of the slum settlements had a similar 

trend pattern both in the wet and dry seasons compared to the other slum settlements. (e) Concen-

trations of VOC pollutants in the selected slum settlements showing a similar pattern of pollution 

emissions during the wet and dry seasons from 2018 to 2019. 

3.2. Temporal Variations in Air Pollutant Concentrations in the Slum Settlements 

The seasonal variation of the CO2 concentration is presented in Table 1. In the wet 

season, the mean concentration of CO2 was between 3843 and 4400 mg/m3, while in the 

dry season, it was 4874 to 5208 mg/m3 across all of the slum settlements. The obtained 

values were within the recommended threshold value of carbon dioxide in the environ-

ment. 

The level of SO2 recorded in this study ranged from 0.005 to 0.015 mg/m3 in the wet 

season and between 0.009 and 0.026 mg/m3 in the dry season (Table 1). This exceeded the 

WHO [65] limits of 0.2 mg/m3 for daily average limits, while some of the study areas rec-

orded values within the recommended limits. The obtained values were well below the 

NAAQS [64] (1 h) recommended limit of 0.075 mg/m3. Thus, the annual standard for SO2 

is 3.0 mg/m3 [62]. 

The level of PM2.5 in the study area ranged between 1.734 and 1.956 µg/m3 in the wet 

season and 1.876 and 3.348 µg/m3 in the dry season (Table 1). The obtained values were 

within the suggested limits for an hour, but when multiplied by 24 h, the resultant value 

surpassed the WHO [65], NAAQS [64], and FMEnv [63] limits of 25 ug/m3 for 24 h. The 

NO2 level in this study varied from 0.014 to 0.024 mg/m3 in the wet season and 0.005 to 

0.044 mg/m3 during the dry season (Table 1). The results obtained in some of the study 

regions were within the NAAQS [64] limit of 0.1 mg/m3 (1 h) and 0.05 mg/m3 (24 h), 

whereas values in other places surpassed the NAAQS [64] limit of 0.1 mg/m3 (1 h). 

The volatile organic compounds level ranged between 1.192 and 1.898 mg/m3 (wet 

season) and 1.346 and 1.466 mg/m3 (dry season). The obtained values were within the 

NAAQS [64] limit of 6000 mg/m3 for 24 h, while some of the study areas obtained values 

exceeding the WHO [65] limit of 0.02 (1 h) mg/m3.  

Table 1. Mean concentrations of the air quality parameters (N= 250) (wet and dry seasons). 

Wet Season 

Code/N = 50 Location VOC mg/m3 NO2 mg/m3 CO2 mg/m3 PM2.5 µg/m3 SO2 mg/m3 F-Tab 
Sig. Level 

(p < 0.005) 

SA Ijora-Badia 1.898 ± 0.026 d 0.017 ± 0.020 a 3875.60 ± 38.837 a 1.734 ± 0.290 a 0.010 ± 0.009 a 25.476 0.000 

SB Bariga 1.454 ± 0.221 b 0.018 ± 0.008 a 4344.20 ± 36.204 b 1.820 ± 0.176 a 0.005 ± 0.004 a 0.342 0.847 

SC Majidun 1.702 ± 0.110 c 0.016 ± 0.013 a 3843.00 ± 568.751 a 1.956 ± 0.161 a 0.015 ± 0.012 a 6.143 0.002 

SD Iwaya 1.192 ± 0.081 a 0.014 ± 0.010 a 4400.40 ± 39.029 b 1.834 ± 0.572 a 0.013 ± 0.007 a 1.482 0.245 

SE Oworoshoki 1.256 ± 1.136 a 0.024 ± 0.014 a 4384.40 ± 27.970 b 1.956 ± 0.984 a 0.010 ± 0.006 a 0.935 0.464 

Dry Season 

Code/N = 50 Location VOC mg/m3 NO2 mg/m3 CO2 mg/m3 PM2.5 µg/m3 SO2 mg/m3 F-Tab 
Sig. Level 

(p < 0.005) 

SA Ijora-Badia 1.386 ± 0.162 a 0.044 ± 0.005 c 5208.20 ± 138.401 b 2.992 ± 1.079 ab 0.026 ± 0.005 b 0.680 0.614 

SB Bariga 1.466 ± 0.078 a 0.022 ± 0.012 b 4874.20 ± 62.651 a 1.876 ± 0.553 a 0.009 ± 0.008 a 7.163 0.001 

SC Majidun 1.446 ± 0.095 a 0.005 ± 0.004 a 4941.40 ± 46.188 a 2.258 ± 0.695 ab 0.013 ± 0.009 ab 2.562 0.070 

SD Iwaya 1.438 ± 0.096 a 0.019 ± 0.016 ab 5071.00 ± 383.367 ab 3.348 ± 1.301 b 0.016 ± 0.010 ab 2.450 0.080 

SE Oworoshoki 1.346 ± 0.195 a 0.030 ± 0.015 b 4915.00 ± 102.127 a 3.236 ± 0.936 b 0.013 ± 0.012 ab 2.414 0.083 

NAAQS (2012) 

Limits 
- 6000 (24h) 0.1 (1h) - 3.5 (24h) 0.075 (1h) - - 
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WHO (2006) 

Limits 
- 0.001-0.02 0.2 (1h) 5000X3 (TLV) 2.5 (24h) 0.02 (24h) - - 

USEPA (2000) 

Limits 
- - 

0.05 (24h) 

0.04 (1yr) 
- 

3.5 (1h) 

2.5 (1yr) 

0.2 (1h) 

0.125 (24hr) 
- - 

Values are the means ± standard deviations. Different superscripts in the same column indicate significant differences at 

p < 0.05 according to the Duncan multiple range test (DMRT). 

3.3. Relationship between Air Quality and Meteorological Parameters 

The result of the correlation analysis for the five selected slum settlements in the wet 

seasons is shown in Table 2. A strong negative correlation was found between VOC and 

CO2 (r = −0.937**), VOC and PM2.5 (r = −0.874**), CO2 and SO2 (r = −0.994**), NO2 and PM2.5 

(r = −0.925*), and SO2 and temperature (r = −0.835*) across the study areas during the wet 

season. This implies that an increment in one parameter leads to a decrease in other pa-

rameters. 

A positive correlation existed between VOC and SO2 (r = 0.907*) and PM2.5 and tem-

perature (r = 0.937**). A decrease in one parameter will lead to a decrease in another pa-

rameter (Table 2).  

Based on the information given in Table 3, the results showed a strong positive cor-

relation between NO2 and SO2 (r = 0.947**) and PM2.5 and relative humidity (r = 0.832*). 

The strong association between PM2.5 and relative humidity can be explained by the pres-

ence of very humid aerosols, which create a positive artifact. There was a strong positive 

correlation between NO2 and SO2 and PM2.5 and temperature, meaning that an increase in 

one parameter will lead to an increase in another parameter. 

Table 2. Relationship between air quality and meteorological parameters across the study area (wet season). 

Parameters 

VOC  

mg/m3 

(w) 

CO2 

mg/m3 

 NO2 

mg/m3 

SO2 

mg/m3 

PM2.5 

µg/m3 

Tempera-

ture °C 

Atmospheric Pres-

sure  

mm/Hg 

Relative  

Humid-

ity % 

VOC mg/m3 (w) 1.00        

CO2 mg/m3 −0.937 ** 1.00       

NO2 mg/m3 0.77 −0.572 1.00      

SO2 mg/m3 0.907 * 
−0.994 

** 
0.56 1.00     

PM2.5 µg/m3 −0.874 * 0.785 −0.925 * −0.792 1.00    

Temperature °C −0.779 0.797 −0.799 −0.835 * 0.937 ** 1.00   

Atmospheric Pressure 

mm/Hg 
0.243 −0.109 0.557 0.102 −0.323 −0.357 1.00  

Relative Humidity % 0.444 −0.524 0.599 0.601 −0.755 −0.904 * 0.253 1.00 

** Correlation is significant at the 0.01 level (1-tailed). * Correlation is significant at the 0.05 level (1-tailed). 

Table 3. Relationship between air quality and meteorological parameters across the study area (dry season). 

Parameters  
VOC 

mg/m3 (d) 
CO2 mg/m3 NO2 mg/m3 

SO2  

mg/m3 

PM2.5 

µg/m3 

Tempera-

ture °C 

Atmospheric 

Pressure 

mm/Hg 

Relative Hu-

midity % 

VOC mg/m3 

(d) 
1.00        

CO2 mg/m3 −0.532 1.00       

NO2 mg/m3 0.172 0.456 1.00      

SO2 mg/m3 0.40 0.365 0.947 ** 1.00     

PM2.5 µg/m3 −0.684 0.531 −0.499 −0.517 1.00    

Tempera-

ture °C 
−0.753 0.702 0.425 0.141 0.235 1.00   
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Atmospheric 

Pressure 

mm/Hg 

−0.078 0.169 −0.028 0.148 0.333 −0.284 1.00  

Relative Hu-

midity % 
−0.477 0.393 −0.551 -0.599 0.832 * 0.208 -0.192 1.00 

** Correlation is significant at the 0.01 level (1-tailed). * Correlation is significant at the 0.05 level (1-tailed). 

3.4. Influence of Meteorological Parameters on Air Pollutants 

The influence of temperature, relative humidity, and atmospheric pressure was eval-

uated for both the wet and dry seasons using linear regression analysis. The results, 

shown in Table 4, revealed that relative humidity had a strong coefficient of determination 

with VOC of r2 = 92.6%, NO2 of r2 = 78.3%, and SO2 of r2 = 89.2%. A strong coefficient of 

determination was also observed for temperature with CO2 of r2 = 99.7% and PM2.5 of r2 = 

100%. Atmospheric pressure had a strong positive coefficient of determination with PM2.5 

at r2 = 100% during the wet season. Significant and non-significant coefficient relationships 

were observed among the meteorological and air pollutant parameters.  

As seen in Table 5, atmospheric pressure was positively correlated with all the air 

pollutant parameters in the dry season. The coefficient of determination for VOC was r2 = 

72.0%, CO2 was r2 = 73.8%, SO2 was r2 = 84.4%, and PM2.5 was r2 = 98.4%. A moderate 

coefficient of determination also existed between atmospheric pressure and NO2 of r2 = 

60.7%. Relative humidity was found to possess a positive coefficient of determination with 

PM2.5 of r2 = 100%. There were statistically significant coefficients of determination among 

the meteorological and air pollutant variables.  

Table 4. Influence of meteorological parameters on air pollutant parameters (wet season). 

Model Parameters (Wet Season) r2 (%) 
St. Error of the 

Estimate 
F. Value 

Sig. 

Level 

Yvoc = X(RH) 92.6 0.480 50.126 0.002 

YCO2 = X(T) 99.7 2.422 1475.385 0.000 

YNO2 = X(RH) 78.3 0.013 14.395 0.019 

YSO2 = X(RH)  89.2 0.001 33.154 0.005 

YPM2.5 = X(T + AP) 100 0.042 5006.222 0.000 

Table 5. Influence of meteorological parameters on air pollutant parameters (dry season). 

Model Parameters (Dry Season) r2 (%) 
St. Error of 

the Estimate 
F. Value Sig. Level 

Yvoc = X(AP) 72.0 0.062 0.858 0.641 

YCO2 = X(AP) 73.8 1.357 0.940 0.622 

YNO2 = X(T + AP) 60.7 0.010 0.515 0.742 

YSO2 = X(AP) 84.4 0.004 1.809 0.489 

YPM2.5 = X(AP + RH) 98.4 0.182 20.610 0.160 

3.5. Spatial Distribution of Air Pollutants across Coastal Slum Settlements 

The dispersal pattern of the air pollutant concentration level was monitored from 

June 2018 to May 2019 across the five selected slum settlements and is shown as five color 

charts on the map, representing the different concentration levels in the slum settlements 

(Figures 4–8). There was a high to low score value recorded throughout the study area. 

Maps with a high Z score and a modest p-value imply a substantial hot spot location. A 

negative Z score and low p-value suggest a substantial cold spot [69]. In line with the 

spatial analysis results obtained from this study, it was evident that the dispersal pattern 

of pollutants from the five selected slum settlements (SA–SE) had high Z scores and 
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modest p-values for air pollutants in the range of 49.19–57.59 (CO2), 0.03–0.05 (NO2), 0.02–

0.03 (SO2), 1.41–1.54 (VOC), and 3.43–4.91 (PM2.5), signifying significant hot spot areas. 

The negative Z scores and low p-values of the air pollutants varied in the range of 47.69–

48.79, 0.001–0.02, 0.001–0.01, 1.15–1.35, and 1.31–2.17 for CO2, NO2, SO2, VOC, and PM2.5, 

respectively, across the study areas; this suggested cold spot areas. 

The findings from this study during the wet season showed high Z scores and a mod-

est p-value for CO2, ranging from 39.00 to 44.40 for hot spot areas, while the values of 

28.31–38.67 for a negative Z score and low p-value suggested cold spot areas across the 

five selected study areas (Figures 4–8). NO2 showed a high Z score and a p-value that 

varied from 0.03 to 0.04, while the low p-score value ranged between 0.001 and 0.02. SO2 

had a high Z score and p-value between 0.02 and 0.03, while 0.001–0.01 represented a neg-

ative Z score and low p-value for a cold spot area. Furthermore, VOC had a high Z score 

of 1.51–1.94 and p-value of 1.14–1.45. Additionally, PM2.5 had a high Z score and p-value 

ranging from 1.82 to 2.17, while the negative Z score and low p-value varied from 1.33 to 

1.78 for cold spot areas in the Ijora-Badia, Bariga, Majidun, Iwaya, and Oworoshoki slum 

settlements. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 4. Dispersal pattern of air pollutant concentrations from the Ijora-Badia slum settlement from 2018 to 2019 during 

the wet and dry season sampling periods, showing areas with hot and cold spots marked with different colors on the map, 

representing the pollution level. (a) CO2 mg/m3 Dry; (b) NO2 mg/m3 Dry; (c) SO2 mg/m3 Dry; (d) VOC mg/m3 Dry; (e) PM2.5 

µg/m3 Dry; (f) CO2 mg/m3 Wet; (g) NO2 mg/m3 Wet; (h) SO2 mg/m3 Wet; (i) VOC mg/m3 Wet; (j) PM2.5 µg/m3 Wet. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 5. Air pollutant concentration maps showing the dispersal pattern of pollutants in the Bariga slum settlement, 

including areas with high and cold spot zones, identified by four color types on the map, from the 2018 to 2019 sampling 

period. (a) SO2 mg/m3 Dry; (b) VOC mg/m3 Dry; (c) PM2.5 µg/m3 Dry; (d) NO2 mg/m3 Dry; (e) CO2 mg/m3 Dry; (f) SO2 mg/m3 

Wet; (g) VOC mg/m3 Wet; (h) PM2.5 µg/m3 Wet; (i) NO2 mg/m3 Wet; (j) CO2 mg/m3 Wet. 

     
(a) (b) (c) (d) (e) 
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(f) (g) (h) (i) (j) 

Figure 6. Spatial pattern of the air pollutant concentration from the Majidun slum settlement (2018 to 2019) during the wet 

and dry seasons. The magnitude of the pollution is identified with different colors on the map, which signify areas with 

hot and cold spots. (a)CO2 mg/m3 Dry; (b) NO2 mg/m3 Dry; (c) SO2 mg/m3 Dry; (d) VOC mg/m3 Dry; (e) PM2.5 µg/m3 Dry; 

(f) CO2 mg/m3 Wet; (g) NO2 mg/m3 Wet; (h) SO2 mg/m3 Wet; (i) VOC mg/m3 Wet; (j) PM2.5 µg/m3 Wet. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 7. Pattern of air pollutant concentrations from the Iwaya slum settlement from 2018 to 2019 for the wet and dry 

season sampling periods. The intensity of the pollution is represented by four color types on the map, which depict hot 
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and cold spots. (a) CO2 mg/m3 Wet; (b) NO2 mg/m3 Wet; (c) SO2 mg/m3 Wet; (d) VOC mg/m3 Wet; (e) PM2.5 µg/m3 Wet; (f) 

CO2 mg/m3 Dry; (g) NO2 mg/m3 Dry; (h) SO2 mg/m3 Dry; (i) VOC mg/m3 Dry; (j) PM2.5 µg/m3 Dry. 

     
(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 8. Spatial pattern of air pollutant concentrations from the Oworoshoki slum settlement from the 2018 to 2019 sam-

pling periods for the wet and dry seasons. The dispersal pattern of the pollutants is shown on the map with different 

colors, and the legend displays the quantity of pollutant released in the ambient environment of the slum. (a) NO2 mg/m3 

Dry; (b) CO2 mg/m3 Dry; (c) SO2 mg/m3 Dry; (d) VOC mg/m3 Dry; (e) PM2.5 µg/m3 Dry; (f) NO2 mg/m3 Wet; (g) CO2 mg/m3 

Wet; (h) SO2 mg/m3 Wet; (i) VOC mg/m3 Wet; (j) PM2.5 µg/m3 Wet. 

4. Discussion 

The findings from this study were consistent with Islam et al. [37], who reported that 

monthly particulate matter shows a higher concentration in dry periods (October to 

March) than in wet periods (April to September) in Dhaka. Usually, wet deposition due 

to precipitation and seasonal pollution sources are considered the main reasons for this 

seasonal variation [37]. The increased and decreased concentration levels of pollutants at 

the peak and trough during wet and dry seasons could be due to vehicular traffic, accom-

panied by construction/demolition activities and their related waste transfer and manage-

ment, the open burning of solid waste, and secondary particle formation [70]. Trend anal-

ysis is an important tool for examining the changes in pollutant concentration over time 

[71] and can be used as evidence of the efficacy of policy interventions [72]. Studies have 

attempted to replicate this approach with more monitoring sites, such as the study by [73], 

which analyzed the trends in the concentration of a range of pollutants at 43 monitoring 

sites in the Veneto region of Italy. The authors of [72] employed a different method to 

examine the trends in roadside increments of various pollutants between 2005 and 2009 
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and 2010 and 2014, by averaging data from 65 London monitoring sites. The authors of 

[74] used this approach to estimate trends in particulate matter and ozone concentrations 

in Santiago, Chile, in 1989–1998, using data from four monitoring sites. In line with the 

observations of [75], environmental pollutants are emitted by large-scale human activities, 

thereby influencing the environment. These pollutants have different physical and chem-

ical properties, explaining the discrepancies in their capacity for producing toxic effects. 

In this regard, [76] reported that the diffusion of these air pollutants is not restricted by 

urban boundaries; they can travel from one region to another. The findings from this 

study confirmed that continuous expansion, population increase, and the transformation 

of Lagos will contribute to increasing levels of air pollutants, thereby posing great envi-

ronmental challenges to the city [13]. 

The authors of [77] documented that CO2 can enter into the atmosphere through mu-

nicipal solid waste burning, the burning of trees and wood products, and chemical reac-

tions. The authors of [78] also reported that the increase in anthropogenic activities is con-

tributing immensely to outdoor pollution, and the rising level of CO2 is altering the dis-

position, production, and seasonal occurrence of aeroallergens. A rise in temperature of 

one degree caused by CO2 could increase cancer cases by 20 to 30% [79]. Exposure of the 

body to increased CO2 affects a person’s internal respiration, and might cause problems 

such as kidney damage, asphyxiation, and frostbite [80]. Additionally, adverse health ef-

fects such as suffocation, dizziness, and disorientation under certain circumstances might 

arise due to higher concentrations of CO2 in residential settlements [81]. 

The findings from this study imply that harmful emitted SO2 gases can be attributed 

to fossil fuel consumption or industrial activities. The authors of [82] ascertained that SO2 

emissions are also a precursor to acid rain and atmospheric particulates. The authors of 

[83] showed that increased vehicle populations can be associated with SO2 emissions, 

since the combustion of fossil fuels creates SO2 emissions into the atmospheric environ-

ment. The authors of [84] stressed that anthropogenic activities are the main automobilist 

of air pollution emissions, adding to the pre-existing sources of natural emissions. How-

ever, [85] found that the health effects of these pollutants depend on the area, season, 

country, and time. Multiple cardiovascular health problems have been observed follow-

ing exposure to air pollutants. The authors of [86] also reported that SO2 plays a significant 

role in respiratory symptoms in the healthy and in patients with underlying pulmonary 

disease, with symptoms such as coughing and wheezing, bronchitis, mucus production, 

and bronchospasm. In their work, the authors of [87] demonstrated that empirical SO2 

exposure alters airway physiology, increasing airway resistance and increasing the risk of 

lung cancer in non-smokers. Furthermore, the authors of [88] conducted a study in China, 

where they found that SO2 may contribute to the risk of lung cancer mortality. The circu-

latory system is especially susceptible to toxins in exhaust fumes, and exposure has been 

linked to anemia and asphyxiation [89]. The toxicity of several air contaminants may also 

be related to numerous cancers in the long term [90]. 

The results of this study revealed that high levels of PM2.5 in these slums might be 

attributed to vehicular exhaust, due to the fairly dense traffic on major roads and bus 

stops. The authors of [91] reported that in arid regions in Asia, Africa, Latin America, and 

Australia, the main sources of PM2.5 in ambient air vary, but it can remain in the air for 

long periods. However, [92] reported that PM2.5 concentrations are higher in central urban 

areas because of the high-density built environment and human activities, with levels 

gradually decreasing toward the urban fringe. The authors of [93] also ascertained that 

variations in PM2.5 levels occur from site to site, based on the overall planning and layout 

of a city, landform [94], imminent built environment characteristics, and traffic [95], along 

with other human-related activities [96]. Furthermore, many epidemiological studies have 

confirmed the relationship between increased mortality and morbidity and higher PM2.5 

concentrations [97]. A recent US study found that long-term exposure to ambient PM2.5 

was associated with an elevated risk of mortality in nationwide adult cohorts [98]. Re-

cently, approximately one million premature deaths yearly were attributed to 
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atmospheric fine particle pollution worldwide [99]. An estimated 3.5 million COPD and 

220,000 lung cancer deaths result from anthropogenic PM2.5 annually [100]. 

The high values recorded in this study could be attributed to traffic-related pollutants 

emitted from automobile engines [101], combustion processes, and industrial activities 

[102], which have emerged as the most significant atmospheric air contaminants con-

nected to health problems such as chronic lung disease as a result of long-term exposure. 

However, systems other than respiratory organs can be involved; symptoms such as 

throat, nose, and eye irritation have been registered [103]. Recent epidemiological studies 

discovered that exposure to nitrogen dioxide early in life may lead to allergic diseases 

[104] and have a long-term impact on lung functional respiratory health throughout the 

lifetime [105]. The most vulnerable sub-group to NO2 is children, because they inhale 

more air than adults relative to their body size and have greater metabolic activity [106]. 

Poor air quality, either outdoors or indoors, can adversely affect the human respiratory 

and cardiovascular systems [107]. 

The results from this study showed that VOCs are released from both natural and 

man-made sources due to their elevated volatility under normal atmospheric conditions 

[108]. The International Agency for Research on Cancer (IARC) classifies VOCs such as 

benzene, 1,3-butadiene, and vinyl chloride as Group 1 carcinogens for humans [109]. 

There is evidence to support the idea that there is a link between environmental pollution 

and acute myeloid leukemia in children, particularly due to benzene exposure [110]. As a 

result, prolonged exposure to VOCs may be harmful to health [111]. VOCs are associated 

with neurological toxicity, kidney malfunction, acute and chronic respiratory disorders, 

irritation of the nose, throat, and eyes, headaches, nausea, dizziness, and allergic skin re-

actions, as well as damage to internal organs such as the liver and kidneys [112]. Simulta-

neous exposure to other VOCs may worsen other disease symptoms [113], through a syn-

ergistic effect on oxidative stress induction from exposure to toluene, chloroform, and di-

chloromethane. This type of exposure may also affect the fetal endocrine system [114], by 

altering the developmental process of the fetus. The authors of [115] commissioned a pol-

lution and health study and reported that an estimated five to six million deaths occurred 

worldwide in 2015 due to modern environmental pollution. 

The observed correlations among the air pollutants, especially VOC, CO2, and SO2 in 

the wet season and NO2 and SO2 during the dry season, may be due to their relatively 

common source [116]. The findings from this study confirmed that under high humidity 

conditions, semi-volatile species and aerosols can more easily be absorbed, leading to an 

increase in particulate matter concentrations [117]. In addition, high relative humidity fa-

vors the formation of temperature inversion, which stabilizes the atmospheric stratifica-

tion and hinders the vertical diffusion of pollutants [118]. The values of NO2 were nega-

tively correlated with temperature due to the transformation of NO2 to O3 and the high 

temperature under vertical dispersion conditions in [119]. Conversely, air pollutant vari-

ables in this study showed strong positive and negative correlations with meteorological 

parameters such as relative humidity, ambient temperature, and atmospheric pressure in 

both the wet and dry seasons (Tables 2 and 3). The results of this study showed that PM2.5 

had a significant positive correlation with temperature during the wet season; on the con-

trary, Islam et al. [37] reported an insignificant positive correlation with PM2.5 (r = 0.06, p 

= 0.734) during the wet season in Dhaka. An inverse relationship was found between PM2.5 

and temperature in the literature [120], which indicates the cooling effect of particulate 

matter due to its negative radioactive forces [37]. Air pollutants can become airborne from 

the ground surface when they are emitted from an elevated stack, and they can be formed 

in the atmosphere as secondary particulate matter [37]. The findings from this study also 

showed that relative humidity was negatively correlated with temperature during the wet 

season, which is consistent with the results obtained from Dhaka city, where relative hu-

midity was negatively correlated with PM2.5 in all periods (r = −0.48, −0.58, and −0.61, re-

spectively, for the dry-1, wet, and dry-2 periods, p < 0.05 in all cases) [37]. The negative 

relationship found between PM2.5 and relative humidity during the wet and dry seasons 
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showed the growth and posterior wet precipitation of particles, as observed in Dhaka [30], 

compared to the findings from this study. Other studies [37–39] have distinguished the 

effect of relative humidity on PM2.5. However, relative humidity can influence particles, 

where the gathered mass settles on the ground; the particulate matter average mass con-

centration has been shown to have a decreasing trend with an increase in ambient relative 

humidity [121]. High relative humidity has been found to favor the partition of semi-vol-

atile species into the aerosol phase [120], leading to high particulate matter concentrations. 

A moister atmosphere usually accompanies a lower boundary layer [122], which addi-

tionally enhances the concentrations of primary source pollutants. NO2, SO2, and CO2 play 

a major role in producing O3 in the environment [123]. Although all combustion in air can 

produce this chemical compound, it relies on the composition of nitrogen in the combus-

tion emissions [124]. Researchers [125] have found similar results to this study. Several 

studies have applied a correlation statistical tool to air pollution in Chicago [126], per-

formed isotopic analyses in topsoil [127], and identified sources and correlations between 

PAHs and heavy metals in Switzerland and Spain [128], and in the urban road dust of 

Xi’an (China) [129]. The interactions between meteorological and air pollutant parameters 

are quite complex, vary seasonally, and are often influenced by the local physiography 

variations, such as the location of mountains and valleys, and the presence of substantial 

water bodies (rivers and lakes) [130]. The findings from this study revealed that air pollu-

tion mainly affects those living in large urban areas, where most people still generate their 

electricity through fossil fuel (diesel and petrol) for both commercial and domestic use, 

and road vehicular emissions contribute the most to the degradation of air quality [131]. 

The regression model of this study showed that temperature, atmospheric pressure, 

and relative humidity had a higher predictive power for the air pollutant parameters com-

pared to the results obtained in Dhaka, with a low predictive power (adjusted r2 = 0.35). 

The study conducted in Dhaka city suggested that meteorological variables have a minor 

impact on the coarser particulate matter fraction compared to the finer fraction [30]. At-

mospheric pressure, relative humidity, and temperature are the most significant predic-

tors of the model used in this study, and their associations with the air pollutant parame-

ters correspond to other studies conducted in Dhaka [37]. A study conducted in Xi’an 

showed that the contribution of SO2 to PM2.5 outweighed that of NO2, which implies that 

the main polluting gas was SO2 [17]. Research has also shown that 31% of NO2 contributes 

10% of the total PM2.5 in air pollutants, especially from traffic, while 73% is emitted from 

power plants, accounting for 12% of the total PM2.5 in the year 2003 in the Huabei region, 

China [132]. The SO2 and NO2 contribution to PM2.5 in the year 2010 in Xi’an showed a 

different pattern compared to that recorded in 2003 in the Huabei region, while other 

studies showed that SO2 emissions started decreasing in China after 2006 [133]. In this 

context, [134] documented that Shanghai had a significant linear increase in NO2 concen-

trations, with approximately a 20% increase rate annually during the period of 1996–2005, 

while [135] noted that satellite observations and model simulation could also be used to 

detect and predict strong increases in NO2 in Eastern China. Accordingly, [133] found that 

SO2 from local coal-burning power plants is the primary contributor to air pollutants, pro-

duced from west–east electricity transmission and raw material-based projects in Xi’an. 

However, the findings from this study confirmed that meteorological factors can impact 

pollutant concentrations, and the exposure level of particle mixtures of pollutants can 

change throughout the year [136]. The heat from solar radiation is absorbed by the air, 

minimizing the atmospheric temperature near the Earth’s surface. The air layer nearer to 

the Earth’s surface becomes colder than the upper layers, thereby reducing the air currents 

moving upwards, leading to an increase in pollutant concentrations [137]. Generally 

speaking, this could explain the positive and moderately correlated air pollutant and me-

teorological parameters obtained in the wet and dry seasons. Several studies across the 

globe have assessed the link between meteorological processes and air pollution variables. 

The authors of [138] studied the effect of meteorological variables, including rainfall, on 

particulate concentration, and found that suspended particulate matter and PM10 had a 
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negative correlation with rainfall at Ahmedabad in India. The authors of [139] also studied 

the effects of seasonal variation on particulates in Delhi, and found that the suspended 

particulate matter concentration was inversely related to relative humidity in all seasons. 

The authors of [121] studied the relationship between meteorological processes and air 

pollution in Kathmandu in Nepal, and found that an increase in humidity has a negative 

correlation with the concentration of PM2.5. The authors of [17] reported the benefits of air 

quality enhancement zone establishments in Taiwan, including CO2 capture, carbon stor-

age, and global warming mitigation. However, the harmful effects of air pollution and its 

causes have been widely studied worldwide [140]. Air pollution is influenced by multiple 

environmental and meteorological factors, as well as traffic patterns, size, land use, and 

the orientation of buildings [141]. The findings from this study showed that the growth of 

these slum settlements is associated with anthropogenic activities that impact the urban 

environment [142]. 

The dispersion of pollutants can be affected by multiple variables [143]. Pollutant 

dispersion patterns can also provide information for an environmental health impact ap-

praisal [144]. The obtained information from the maps shows that pollutants at different 

locations express different emission patterns across the slum settlements. 

Additionally, the appearance of spatial clusters of pollutants in these areas suggests 

locations for the aggregation of contaminants, rather than representing the origin of emis-

sions, which is influenced by geographical and climatological conditions. Several studies 

have applied the kriging and Getis–Ord approach to identify different levels of spatial 

clusters. The authors of [145] estimated vehicle emissions for major traffic routes, and 

evaluated their spatial pattern by applying the global Moran’s I and Getis tests. Spatial 

resolutions varied for one monitor [146] in high-density sampling campaigns [147]. How-

ever, Wang et al. [148] used the ordinary kriging method to estimate the spatial character-

istics of PM across Beijing from 2008 to 2009. Liang et al. [149] suggested the use of 

hotspot-based spatial monitoring systems to further understand the mechanisms under-

lying the observed relationship between health and environmental policy implications. 

Spatial resolution should be adopted when carrying out air pollution monitoring ap-

praisement. 

5. Conclusions 

This study revealed the effects of air pollutants and their associated health hazards 

on slum residents between June 2018 and May 2019 in the coastal slum settlements of the 

Lagos metropolis. The seasonal variation in air pollutants showed that SO2, NO2, CO2, and 

PM2.5 had higher trend patterns of pollution concentrations during the dry season than 

the wet season. A strong correlation was found between PM2.5 and temperature at the 1% 

level (0.957**), and between VOC and SO2 (0.907*) at the 5% level, during the wet season. 

Furthermore, during the dry season, a positive correlation existed between NO2 and SO2 

at the 1% level (0.9477**), as well as between PM2.5 and relative humidity (0.832*) at the 5% 

level. The influence of meteorological parameters on air pollutants showed that the major 

predictive factors for the dispersion pattern of VOC, CO2, and SO2 were relative humidity, 

temperature, and atmospheric pressure, at a rate of 92.6%, 99.7%, and 100% and 72.0%, 

60.7%, and 98.4% during the wet and dry seasons, respectively. Spatial analysis revealed 

that the dispersal pattern of air pollutants showed a high Z score and a modest p-value in 

Bariga, Majidun, and Oworoshoki. Most of these slum settlements showed clustering of 

pollutants in some parts of the communities, indicating likely locations for the accumula-

tion of pollutants in hot spot zones. In addition, the Iwaya and Ijora-Badia slums recorded 

negative Z scores and low p-values in most parts of the settlement. The different patterns 

of clustering across the study area showed areas of lesser accumulation of pollutants, 

known as cold spot areas. Although this study captured the applicability of the kriging 

and Getis–Ord general G statistics interpolation method to map and quantitatively link 

the patterns and processes of air pollutants in the slum settlements of Lagos, there is scope 

for further improvement. The remotely sensed data utilized in this study covered two 
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periods (wet and dry seasons) due to limited data availability, and covered a few selected 

slum settlements in Lagos, preventing the interval level of intensity analysis. A broader 

coverage, including all identified slum settlements and more years of remotely sensed 

data, could give further insight into air pollutant concentrations and their relationship 

with meteorological variables in the slum settlements of Lagos, Nigeria. Integrating spa-

tial analysis in GIS and statistical modeling could help researchers to expand the under-

standing of the distribution of air pollutants in a location or area, in order to understand 

the factors that influence the trends and significance of ambient air pollution. The spatial 

map can also provide an overview of the potential risks experienced by slum dwellers 

exposed to high levels of air pollutants in certain areas. 

The findings imply that the spatial and meteorology-based air quality model devel-

oped for monitoring the slum settlements cannot be applied to other sites. This study 

clearly showed that the location of pollution sources with respect to densely populated 

urban centers may play an important role in determining their adverse impacts. These 

results indicate that atmospheric pressure, relative humidity, and temperature can be con-

tributing factors in governing air pollutant concentrations in the slum settlement. Some of 

these meteorological events are not completely dissociative; for instance, increased hu-

midity would naturally be positively correlated with rainfall events, and hence drawing 

a conclusion based on a particular meteorological parameter to predict the air pollutant 

concentration would be unwise. A follow-up investigation of the impact of meteorological 

variables on air pollutants in slum settlements is warranted once proper meteorological 

observations are available. The kriging and Getis–Ord general G statistics interpolation 

method presented here that was used to predict the movement of air pollutant parameters 

from slum A to other slum locations within the Lagos metropolis has other implications 

as well. The concentration of air pollutants can be forecast from the model used for this 

study if the meteorological variables and air pollutant concentration data of a city are 

known. A retrospective analysis of air pollutant trends in slum settlements where air pol-

lutant concentration data were not reported or were missing for a certain period of interest 

can also be achieved. Air pollutant and meteorology models can be developed through 

the predictive power of the model, as indicated by their respective adjusted r2 values; 

however, the predictions will have uncertainty. The predicted variables should be used 

cautiously, acknowledging their limitations. Additionally, the model is centered on the 

meteorological and air quality data of slum settlements in Lagos only; thus, care is neces-

sary when using it for other geographical localities, where emission scenarios and mete-

orological conditions may be different. 

In Lagos State, ambient air monitoring remains unregulated and uncoordinated, de-

spite the efforts of local researchers and relevant government agencies, such as the Na-

tional Environmental Standards and Regulatory Agency and Nigerian Metrological 

Agency. Therefore, it is recommended that a national air quality monitoring network be 

established in important urban areas, including the slum settlements in Lagos. Fixing 

emission caps and taxes for industries based on identifiable economic costs and ad-

vantages to public health and quality of life is required. This would support new, rational, 

and scientific regulations, policies, and advancements to combat air pollution. Finally, the 

findings from this study provide valuable information on environmental pollution 

sources that could aid environmental legislators in the decision-making process. 
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