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Abstract: The number of cities, or parts of cities, where air quality has been computed using the
PMSS 3D model now appears to be sufficient to allow assessment and understanding of performance.
Two fields of application explain the growing number of sites: the first is the long-term air quality
assessment required in urban areas for any building or road project. The geometric complexity
found in such areas can justify the use of a 3D approach, as opposed to Gaussian ones. However,
these studies have constraining rules that can make the modelling challenging: several scenarios
are needed (current, future with project, future without project), the long-term impact implies a
long physical time period to be computed, and the spatial extension of the domain can be large in
order to cover the traffic impact zone of the project. The second type of application is dedicated to
services and, essentially, to forecasting. As for impact assessments, the modelling can be challenging
here because of the extension of the domain if the target area is a whole city. Forecast also adds
the constraint of time, as results are requested early, and the constraint of robustness. The CPU
amount needed to meet all these requirements is important. It is therefore crucial to optimize all
possible parts of the modelling chain in order to limit cost and delay. The sites presented in the article
have been modelled with PMSS for long periods. This allows feedback to be provided on different
topics: (a) daily forecasts offer an opportunity to increase the robustness of the modelling chain;
(b) quantitative validation at air quality measurement stations; (c) comparison of annual impact
based on a whole year, and based on a sampling list of dates selected thanks to a classification process;
(d) large calculation domains with widespread pollutant emissions offer a great opportunity to
qualitatively check and improve model results on numerous geometrical configurations; (e) CPU time
variations between different sites provide valuable information to select the best parametrizations, to
predict the cost of the services, and to design the needed hardware for a new site.

Keywords: air quality impact study; 3D; PMSS model; high resolution grid

1. Introduction
1.1. General Context and Motivations

Air pollution is known to impact health strongly: the World Health Organization esti-
mates today that it kills approximatively 7 million people per year. Exposure is especially
alarming in dense urban areas, where both population and pollutant emissions are high.

Methodologies for estimating the exposure in cities is therefore fundamental to de-
scribe current and future situations, and define improvement strategies.

Air quality in cities results not only from local emissions, but is a complex system that
can be described by the following simplifications [1]: the regional-scale contribution which
have a uniform impact on the city; the city-scale contribution, including emissions from
heating for example, that is uniformly considered within the city or within the different
districts of the city according to the spatial resolution of the available emission inventory;

Atmosphere 2021, 12, 1410. https://doi.org/10.3390/atmos12111410 https://www.mdpi.com/journal/atmosphere

https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://doi.org/10.3390/atmos12111410
https://doi.org/10.3390/atmos12111410
https://doi.org/10.3390/atmos12111410
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/atmos12111410
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos12111410?type=check_update&version=3


Atmosphere 2021, 12, 1410 2 of 22

and the street-scale contribution, which are related mainly to local traffic emissions, and
are highly non-uniform.

The present article is focused on the deterministic modelling of the street-scale con-
tribution. As air quality observations provide concentration measurements of all the
contributions, model validation is not performed with only the street-scale, but also with
the larger scale contributions that can be named “background contribution”.

Modeling provides additional and complementary information to air quality mon-
itoring networks that are limited to a given number of measurement points: exposure
maps detailing spatial gradients are one of the added values of modeling. Urban micro-
meteorology has been studied since the 1980s [2], and different types of approaches,
ranging from simple analytical formulations (Gaussian models) to full fluid dynamics
(CFD models), are used nowadays [3].

The approach is noticeably chosen depending on the objectives, the time, and budget
constraints. The present article deals with applications where both 3D high resolution
and limited CPU time are required, and for which the PMSS modeling system is an
applied solution.

1.2. The PMSS Modeling System

Parallel-Micro-SWIFT-SPRAY (PMSS) is a flow and dispersion modelling system con-
stituted by the SWIFT and SPRAY models. They became Micro-SWIFT and Micro-SPRAY
when explicit consideration of the obstacles [4,5] was added based on the preliminary work
of Rockle [6], with the principal objective of rapid modelling (faster than a full CFD model)
of the accidental or malicious dispersion of pollutants in dense urban areas. PMSS has
then been improved, and parallel versions of Micro-SWIFT and Micro-SPRAY (abbreviated
as PSWIFT and PSPRAY) have been developed [7,8]. Recent validations in this scope of
application are presented in [9,10].

The rapid nature of PMSS and the increase in power of the computational machines
then enabled, in addition to the defense-oriented use, the study of air quality in dense urban
areas, often highly impacted by road traffic. The model was first used on neighborhoods
such as Bologna [5], and then on entire cities such as Paris [11]. In this type of application,
the number of sources to be considered is much more important, and makes the calculation
more CPU expensive.

PSWIFT [1] is a 3D diagnostic, mass-consistent, terrain-following model providing
the wind, turbulence, and temperature following three main steps:

• A first guess computation based on the interpolation of heterogeneous meteorological
input data, a mix of surface and profile measurements, and/or possibly meso-scale
model outputs;

• The modification of the first guess using analytical zones defined around isolated
buildings or within groups of buildings, based the approach originally proposed
by [6];

• The mass-consistency (with impermeability condition at the ground and buildings)
obtained by minimizing the difference of the wind field of the second step over
the volume of the domain under the mass conservation constraint. The effect of
atmospheric stability on the flow around obstacles is considered through a coefficient
α applied to the vertical wind component terms during the minimizing process [12].

The method allows detailed flow fields in the urban environment to be generated
within a matter of minutes [13]. To consider traffic-produced turbulence (TPT) in street
canyons, a formulation based on the OSPM model [14] has been added, increasing the
turbulent kinetic energy field predicted by PSWIFT in these zones according to vehicles
fluxes, speed, and effective area.

PSPRAY is a 3D Lagrangian particle dispersion model (LPDM) [15], directly derived
from the SPRAY code [16–22]. The dispersion of a pollutant (gas or fine aerosol) is simulated
following the trajectories of a large number of numerical particles. The trajectories are
obtained by integrating in time the particle velocity, which is the sum of a transport
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component defined by the local averaged wind provided by PSWIFT, and a stochastic
component representing the dispersion due to the atmospheric turbulence. The stochastic
component is obtained by solving a 3D form of the Langevin equation for the random
velocity, and applying the stochastic scheme developed by Thomson [23].

To consider the transformation between NO and NO2, a simple chemical scheme has
been added in PSPRAY [24].

1.3. The Different Type of High Resolution Air Quality Modeling Applications

In France, the two main frameworks in which such modelling are used are regulatory
impact studies for road or building projects, and forecasting (or now-casting) systems
operated by territorial agencies. The number of neighborhoods or cities modelled in these
contexts with PMSS now seems to be sufficiently large to gather different feedbacks and
optimization methods of the computational resource in the present article, with the goal of
satisfying temporal and budgetary constraints.

In the first section, different reasons making the use of HPC useful for long-term
impact studies of air quality in cities are presented. In some examples, optimization
methods of computing resources and modelling validations are also presented. It should
be noted that for most impact studies, contractual context frequently does not allow for
the publication of results. These studies, limited in terms of budget, also don’t include
modelling validation. Consequently, in this article, only the results obtained in the study
of chronic pollution in the framework of collaborative research and innovation projects
are presented.

In the second section, feedback is presented from forecasting systems incorporating
the PMSS model. This type of system poses a significant performance constraint in terms
of computational time in order to obtain results early enough.

Finally, the third section gathers information on the configuration parameters of the
model, on the computational machines used, and on the performances obtained, in order
to identify useful trends for specifying the resources required for future modelling of the
same type.

2. Long Term Air Quality Assessment in Urban Areas
2.1. Why Is HPC Used?

In France, urban development projects can be subjected to environmental assessment
or to a case-by-case analysis according to criteria and thresholds (decree No. 2020-844 of
3 July 2020 on the environmental authority and the authority responsible for the examina-
tion of the case). The content of the “air and health” section of impact studies is defined in
the methodological guide provided with the technical note of “22 February 2019”, related
to consideration of the health effects of air pollution in road infrastructure impact studies.
According to this methodological guide, air concentrations that are induced by the project
must be estimated with the help of a dispersion model.

Several specificities of these development project impact studies on air quality in dense
urban areas potentially lead to a model choice whose complexity and computational cost
guide towards the use of HPC machines. The following section describes these different
specificities, partially within the prism of French regulations.

2.1.1. Complex Geometry

The first element is the geometric context of this type of study: in a dense urban area,
the volume occupied by buildings is important. Inside Paris, for example, 39% of land is
covered with buildings (calculated from the BD TOPO database of the National Geographic
Institute (IGN)). This significant percentage implies a calculation error of the pollutant
concentration for modelling approaches that do not consider the volume occupied by
buildings. This is the case, for example, for Gaussian models such as CALINE4 [25], for
which concentration underestimations are recorded by [26] for a canyon street configuration.
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The operational street pollution model, OSPM [27], takes into account the confinement effect
in street canyons, while keeping an inexpensive approach in terms of computation time.

The high buildings density and their organization into streets, crossroads, and blocks
of houses also involve channeling effects. The Gaussian approach to model the disper-
sion can then be upgraded, as in the SIRANE model [28], with pollutant mass exchange
algorithms both at the top of canyon streets, and at crossroads between road segments.
Modelling consequently remains inexpensive in terms of computing time.

These approaches are based on the geometric hypothesis of a classic or semi-open
canyon street with a uniform building height along the street. To address any geometric
configurations, it seems required to explicitly take into consideration the volumes of each
building, for example, by constructing an unstructured mesh around it, or by projecting
these volumes on a structured mesh. This spatial discretization is typical for CFD models,
which are, however, more expensive in terms of computation time. In the atmospheric
dispersion field, the family of models based on Rockle’s work [6], such as PSWIFT, provides
less expensive alternatives compared to full CFD models [29].

2.1.2. Unsteady Meteorology and Unsteady Emissions

A second specificity of impact studies is the temporal variability, both in terms of
meteorological conditions, and pollutant emissions. This double variability raises questions
concerning the use of steady or unsteady models, and increases the potential number of
situations to be modelled.

Steady versus Unsteady Approaches

Straight-lined Gaussian models are stationary by construction, and the most com-
plete models, such as the CFD models, can also be used in a stationary way within the
atmospheric dispersion framework when the considered meteorological conditions and
emissions are constants. To calculate an annual impact, a number (often limited for the more
expensive models) of these steady-state situations is simulated, and an average, weighted
by the frequency of occurrence of each situation, is used to estimate annual values. This ap-
proach was used in 2020, for example, on the impact study of the developing project around
the Eiffel Tower (https://www.paris.fr/pages/grand-site-tour-eiffel-un-poumon-vert-au-
c-ur-de-paris-6810/ (accessed on 10 September 2021)), and for the developing project
at the “Porte de Montreuil” (https://www.paris.fr/pages/20-e-porte-de-montreuil-3329
(accessed on 10 September 2021)). It can be described as a frequency approach. The
transitory aspect of the dispersion is neglected. To take it into account, it is necessary to
use an unsteady dispersion model over sequences of several hours or several days for
example, and ideally, over a full year. Today, calculating sequences over several days
with a full CFD model seems to be too costly, in terms of computation time, to be com-
patible with deadlines and the total costs of impact studies, however, with intermediate
approaches such as PMSS, it is reasonable, and already done for many studies. A com-
plete one-year sequence is a possible approach (sequential approach), but in practice, the
selection of a few dozen typical days (several 24 h sequences) is more affordable. The
latter has been used, for example, in the impact study of the Porte Maillot project in 2019
(https://www.paris.fr/pages/projet-16e-17e-porte-maillot-4559 (accessed on 10 Septem-
ber 2021)). It is then both a sequential and frequential approach. This trade-off is detailed
in a concrete study case in Section 2.2.

Input Data Cross-Variability

Time variability in meteorology and emissions implies, for a frequential approach,
choosing the most representative combinations, a task which might not be trivial. For ex-
ample, if low winds are rather nocturnal and, therefore, associated with low traffic periods,
in winter, the night can last until the morning peak traffic. The situation then penalizes
the air quality because of weak winds and large emissions, and might be considered in the
selection. However, in a frequential approach, the limited number of cases often entails the
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impossibility of considering this type of specific combination because only average daily
traffic values are used.

2.1.3. Purifying Systems

In order to bring a contribution to the air quality improvement in cities, some develop-
ment projects include depollution systems. The use of a high-level model with a sufficient
complexity is required in order to take into account the effects of the depollution systems,
and quantify the extent of the affected zone in three dimensions.

2.1.4. Numerous Scenarios

In France, the methodological guide, coming with the technological note of “22
February 2019”, related to the effects of air pollution on health in impact studies of road
infrastructures, states the necessity of examining numerous scenarios: the current situation,
and the future situation at different horizons (at least at the commissioning of the project,
and up to 20 years after the commissioning, with and without the project)—at least five
scenarios for each project should be examined. As deadlines to conduct impact studies
are often short, it is necessary to use powerful computing machines to complete all of the
calculations.

2.1.5. Domain Extents

For road development impact studies, French regulations require the computational
domain to cover the zone for which road traffic is modified by 10%. Areas that must be
modelled can then be far more extended than the development project itself. As an example,
for the development of the Eiffel Tower neighborhood (Autorité Environnementale, 2020
Avis délibéré de l’Autorité environnementale sur l’aménagement du site de la Tour Eiffel
(75)—N◦ Ae 2020-115), the project’s extension is included in a 1.5 km × 1.5 km area, and
the computation domain for the modelling of the air quality is 7 km × 5.3 km.

2.2. Annual Impact on a Coastal City with Very Complex Terrain—HPC Use Optimization
with Classification
2.2.1. Presentation and Objectives

The computation times of PMSS can lead to costly annual impact studies of a site when
many sources are being considered. As discussed in the previous section, for an urban
site with emissions linked to road traffic, a classification of the input data (meteorological
data for example), allows for the selection of a few entire days to model. Statistics, and,
in particular, average concentrations, are therefore calculated from a few dozen days, but
not from the whole year. The use of classified input data allows the computation time
to be restricted, while keeping the benefits associated with the modelling of continuous
sequences, taking into account diurnal cycle and emission modulations.

Self-organized maps (SOMs) is the classification method used in the study presented
in this section. It is based on artificial neural networks that operate through unsupervised
learning [30]. This method was introduced in the context of atmospheric studies in the
late 1990s as a classification and shape recognition method. The article [31] reviews
the applications of the SOMs method to meteorology and oceanography. This method
is shown to be useful at very different spatial and temporal scales. The current study
proposes verifying that the SOMs classification of the input data allows for the estimation
of a yearly average and percentiles of concentrations close to those obtained without
SOMs classification. Percentiles are important to assess the frequencies of exceedances
for regulatory impact studies. Estimating these values with the classification is more
challenging than annual averages because classifications tend to approximate statistical
tails less accurately.

This study, in collaboration with Atmo Sud, deals with the air quality modelling of
a port agglomeration in the south of France. The horizontal extent of the study domain
is about 3.6 km by 4.6 km. Given the street types of the agglomeration, a 3 m resolution
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was chosen for the whole domain to efficiently model the dispersion of the pollutant in the
urban fabric. The steep topography culminates at 770 m. The 3D buildings database (BD
TOPO IGN) has 3637 polygons in the modelled domain. The road network is described
in 1382 sections, on average 101 m long, but whose length can vary from a few meters
up to 3.3 km. Hourly meteorological data from a station located in the computation
domain is integrated as an input to the PMSS model. Pollutant emissions from road traffic
were modelled with the COPERT 5 method, and were provided by Atmo Sud with time
modulation profiles for business days, Saturdays, Sundays, and holidays. Atmo Sud also
provided the emissions from an incinerator located in the modelled domain with the
thermodynamic properties of the chimneys (height, temperature, expulsion speed of the
discharges at the chimney output). Other sources of pollutants are taken into account by
integrating background concentrations recorded at urban background stations located in
the modelled area. These stations are supposed to be located outside of the direct influence
of the sources that are explicitly modelled.

NO2 concentrations are herewith presented. PM10 and PM2.5 concentrations have also
been analyzed. As the conclusions from the SOMs classification assessment are similar, they
are not presented. Background concentrations of NO2 were recorded at two measurement
stations, but only the minimum value is selected as the background concentration. O3
background was also extracted from observations at background monitoring stations.

2.2.2. Model Performance without Classification

Days without observations were not modelled. Consequently, the year 2017 counted
359 days that could be modelled. In this first part of the study, all the available days were
considered. Calculations were carried out at the CALMIP computation center (University
of Toulouse). With PSWIFT, one day is modelled in 15 min by allocating 151 computation
cores, whereas PSPRAY runs for 91 min with 240 computation cores. In comparison with a
Eulerian model such as PSWIFT, the Lagrangian approach of the PSPRAY model implies a
significant variability of the computation time, mainly according to meteorological situation.
For example, the 15 March was modelled in 102 min, whereas the 17 March was modelled
in 76 min.

In the context of the project, in 2018, Atmo Sud conducted a measurement campaign
to complete the field diagnostic by bringing complementary data to the five permanent
stations located in the modelled area.

Table 1 presents the scores obtained for hourly concentrations at the five stations. The
high scores at station three can be explained by the fact that the values at this station were
used as input data for the model.

Table 1. Statistical evaluation of the model performances for hourly NO2 concentrations on five monitoring stations during
359 days of year 2017.

Station Mean Observation (µg/m3) Mean Model (µg/m3) Bias (µg/m3) RMSE (µg/m3) r

Station 1 * 27.9 21.4 −6.8 15.46 0.78
Station 2 41.3 33.7 −7.6 24.44 0.56

Station 3 * 20.4 20.2 −0.4 5.33 0.95
Station 4 50.8 52.9 2.2 20.89 0.68
Station 5 35.3 32.8 −2.3 20.10 0.57

* background stations.

In addition to the five permanent stations, passive NO2 measuring samplers were
positioned on 37 locations in the modelled domain. The locations of the measurements aim
to better characterize air quality at a fine scale on the modelled area. Particular attention
has been paid to consider:

• Different neighborhoods, in order to evaluate the distribution of the concentrations,
and to better consider the impact of the topography;

• Major road axes crossing the territory, and those with a canyon-type;
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• The acquisition of measurements in the vicinity of atypical sources of emissions
(proximity to heliports, gas stations, cruise ships quays, tunnel portals, etc.).

Sampling took place over two periods of the year. The first took place during the
winter between the 22 January and the 26 February, whereas the second one took place
between the 19 June and the 17 July in the summer season. Assessing two distinct periods
allows for the inclusion of seasonal meteorological variations, as well as activity variations
on the territory. Linear regression coefficients to estimate the 2017 annual average as a
function of the values obtained during the campaign (average of summer and winter) were
established for the permanent stations. These linear regression coefficients are then used to
estimate average concentrations for 2017 of each passive sample.

Figure 1a shows the average observed concentrations for 2017 at the passive samplers
for NO2, and those computed with the PMSS model. The figure shows a significant
heterogeneity in concentration levels, and this observation is generally valid for dense
urban centers. For 86% of the points in Figure 1a, a vast majority of them, the PMSS
model is less than 10 µg·m−3 from the observations. The regression line shows a slight
underestimation of PMSS. The origin of this underestimation is difficult to isolate, and
probably results from the different intermediate approximations. Figure 1b shows the
annual average and 99.8th percentile estimated by PMSS at the five permanent stations.
The calculation of the annual average also presents a slight underestimation. In the case
of three stations out of five, an underestimation is observed by the model for the 99.8th
percentile. The line «y = x/2» shows, however, that these values remain within a factor of 2
of the observations.
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Figure 1. Comparison of observed and computed NO2 concentration for annual average at passive sensors (a), and annual
average and 99.8th percentile at monitoring stations (b).

2.2.3. Results with SOMs Classification

All the elements that need to be classified (vectors) at the input of SOMs are of the
same size: there are 359 days (vectors) described in hourly step, and each component of
these vectors can be the 24 values of speed, and (or) of direction, and of temperature, etc.
The SOMs classification is applied to two sets of surface data from permanent monitoring
stations. In the c1 setup, the input data of SOMs are wind speed, its direction, humidity,
and temperature, whereas setup c2 also includes background concentrations (PM10, PM25,
NO, NO2, O3).
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Input data processing is applied before the SOMs classification. The comparison be-
tween vectors is based on a Euclidian distance. In order to not privilege components with
high values (temperatures in Kelvin for example) over those with low values (wind am-
plitudes in m·s−1 for example), the variables were standardized (zero mean and standard
deviation of 1). The wind direction and its magnitude are preferred to wind components,
in order to preserve the angle notion in the classification. This was not the case in this
example, however, a shift of 90◦ might be considered if the north sector is a dominant
direction of the wind (because of the proximity between 359◦ and 1◦).

One of the parameters of the SOMs classification algorithm is the targeted class number
Nc, defined as the product of two integers Nc = Xdim.Ydim. The SOMs method forms a
grid with Xdim.Ydim nodes, where each node is associated with a vector. The classification
is done through two successive learning phases, where the second one is finer than the first
one. In this study, the number of neighbors of a node is fixed at 4 (rectangular grid), and
all the nodes are modified by each input vector, with a respective weight that decreases
with distance. Three-hundred fifty-nine vectors at the input are divided into Nc classes. A
Euclidian distance between vectors and the barycenter of “their class” is calculated, and
the vector with the smallest distance is acknowledged as the best representative of the class.
The modelling of this day (=vector) with PMSS thus represents its class. It is then necessary
to choose a method to rebuild a complete time history, in order to compute annual means
and percentiles from the Nc best representatives modelled with PMSS. Two reconstruction
methods are tested: an unmodelled day is represented by “its best” representative among
those modelled (method m1); or by a weighted sum of the modelled days (method m2),
with a weighting chosen from the Euclidean distance between a representative and the
studied day (the weighting is described in [32]).

The symmetry of the SOMs classification has been checked. This means that a classifi-
cation with Nc = Xdim.Ydim classes is identical to the classification with the Ydim.Xdim
classes. It must, however, be noted that a number of classes can be obtained in several
ways (40 = 5 × 8 = 4 × 10), and as many different classifications. For this study, and
for the convergence analysis, the number of targeted classes is chosen as 5 × 5 = 25 and
10 × 10 = 100. Concentrations are extracted from the five air quality monitoring stations
located in the calculation domain. Table 2 summarizes the presented elements.

Table 2. List of tested classifications parameters.

Setup c1 Wind speed, direction, humidity, and temperature

c2 Wind speed, direction, humidity, temperature, and background concentration (PM10, PM25,
NO, NO2, O3)

Reconstruction
m1 A day is equal to the day associated with its representative among the modelled days
m2 A day is equal to the weighted sum of the modelled days

Nc
5 × 5

10 × 10

For the eight possible cross configurations (setup/reconstruction/Nc), Figure 2 shows
the obtained values for the annual mean estimate (left) and the 95th percentile (right).
Other statistics, such as the median and the 5th percentile, were also analyzed, and present
similar conclusions. The regression lines allow an aggregation of the values at the five
stations, and the correlation coefficients R2 of the different lines are all superior to 0.995.

A greater gap with and without the classification is observed on the 95th percentile
than on averages. A greater deviation also implies that the regression line moves away
from the perfect correlation (y = x). The classification tends to underestimate the means and
the 95th percentile values, and tends to overestimate the 5th percentiles. This is consistent
with the complexity for the classifications to properly reproduce statistical distribution
tails. However, errors remain in the order of 5 µg·m−3, and are less than 2 µg·m−3 for
the means. The consideration of the background concentrations (setup c2) substantially
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improves the means and the 95th percentile values estimation. It is consistent with the
fact that air quality in urban areas is not only sensitive to local emissions, but also to
background concentrations, with air quality being a multiscale issue. The 95th percentile
estimate with the c1 setup does not seem to depend on the number of classes. In other
cases, a decrease in the differences is observed overall with the increase of the number of
classes. For the percentile’s estimation in the c2 setup, this decrease is actually faster for
the reconstruction method m1. This last finding is understandable because method 2 (m2)
represents the unmodelled days by a weighted sum of all the representatives, and thus,
smooths the complete time history more than the m1 method does. Annual means do not
seem responsive to the reconstruction model, and this also remains true for each annual
means at a specific hour (not shown here).
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Figure 2. Comparison of annual average (a) and 95th percentile (b) with and without SOMs classification, for different
configurations (c1; c2), reconstruction method (m1; m2), and number of target classes (5 × 5; 10 × 10).

2.3. Grenoble Case—Validation with High Density Sensors Network
2.3.1. Context and Model Setup

A modelling at the local scale is operated on the Grenoble agglomeration by Atmo
Auvergne Rhône Alpes (Atmo AURA), mainly based on the SIRANE model. In 2016–2018,
the Mobicit’air project has also allowed the evaluation of different methodologies for the
assimilation of concentration observations (https://www.atmo-auvergnerhonealpes.fr/
sites/ra/files/atoms/files/rapport_final_mobicitair_lot3.pdf (accessed on 10 September
2021), published in 2017) with a relatively high density of sensors, thanks to the use of
micro-sensors, which are less costly than reference stations with analyzers. In 2018–2019,
as part of the FUI FAIRCITY project (https://www.axelera.org/fr/actualite/Projet-Faircity
(accessed on 10 September 2021), published in 2019), this measurement campaign, including
micro-sensors and reference stations, was used to assess the performance of the PMSS
model, and develop a coupling methodology between SIRANE and PMSS. The coupling,
which is not detailed in this article, aims to allow the application of PMSS on a sub-domain
to the one of SIRANE. It is based on the creation of groups of emission sources in the
SIRANE input in order to be able to access the effects of all sources, but also of all sources
except the ones taken into account by PMSS. This specification in the larger scale modelling
(here SIRANE) allows for the summing of the concentrations of PMSS and SIRANE in the
PMSS subdomain without double counting. This summation assumes a linearity of the
sources’ contributions particularly, despite chemical reactions in the atmosphere, such as
NO/NO2 conversion.

The PMSS computation domain is 1770 m × 1671 m, located in the center of Grenoble
(the SIRANE domain extent is, in comparison, 32 km × 44 km). The horizontal spatial

https://www.atmo-auvergnerhonealpes.fr/sites/ra/files/atoms/files/rapport_final_mobicitair_lot3.pdf
https://www.atmo-auvergnerhonealpes.fr/sites/ra/files/atoms/files/rapport_final_mobicitair_lot3.pdf
https://www.axelera.org/fr/actualite/Projet-Faircity
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resolution is 3 m. The vertical spatial resolution is 2 m between the ground and the
first 10 m, then progressively decreases up to the computation ceiling, located at 2000 m.
The mesh contains about 7.9 million cells. The domain was specifically chosen in or-
der to include a large number of sensors: two reference stations and five micro-sensors.
Concentration values used by the micro-sensors were post-processed by Atmo AURA,
notably, thanks to the cross-comparisons before and after the measurement campaign
(see https://www.atmo-auvergnerhonealpes.fr/sites/ra/files/atoms/files/rapport_final_
mobicitair_lot3.pdf (accessed on 10 September 2021) published in 2017).

The emissions considered with PMSS are limited to the road traffic emissions. They
are extracted from the emissions estimated by Atmo AURA and used in the SIRANE setup
for the whole agglomeration. The potential contributions of other (and external) sources are
considered with the help of the regional scale model (named CHIMERE [33]) and a kriging
algorithm using concentration measurements from the entire Atmo AURA measurements
network. Comparisons are made on NO2 hourly concentrations over the continuous period
from the 15 January 2017 to the 31 January 2017.

2.3.2. Results

The model-measurement deviations are inferior to 20%, except for the MC_GRE_JPerrot
station, where the error exceeds 50%. A strong correlation is observed with an overestima-
tion trend (see Figure 3). All the comparison stations are located close to traffic. Only the
Mob_Grenoble_caserne_Bonne is an urban background type. For this station, where scores
are the best (see Table 3), regional modelling quality might be preponderant. At the fixed
station Grenobles_Boulevard, the hourly evolution of modelled concentrations reproduces
well those of the observed concentrations (see Figure 4). If the absolute values of the
concentrations are not properly reproduced on the peaks, the temporality is satisfactory.
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Table 3. Statistics of comparison between observed and computed hourly average concentration of NO2 during the period
from the 15 January 2017 to the 31 January 2017.

Station Mean Observation (µg/m3) Mean Model (µg/m3) Bias (µg/m3) RMSE (µg/m3) r

Grenoble_Boulevards 64.9 76.1 11.2 19.9 0.74
MC_GRE_JJaures 53.4 61.0 7.6 13.5 0.84
MC_GRE_JPain 76.5 72.9 −3.6 24.7 0.73

MC_GRE_JPerrot 40.4 61.0 20.6 23.2 0.85
MC_GRE_Leclerc 52.9 45.6 −7.3 18.1 0.77
MC_GRE_VHugo 62.0 63.6 1.6 16.2 0.76

Mob_Grenoble_caserne_Bonne 53.8 53.7 −0.1 8.8 0.90

https://www.atmo-auvergnerhonealpes.fr/sites/ra/files/atoms/files/rapport_final_mobicitair_lot3.pdf
https://www.atmo-auvergnerhonealpes.fr/sites/ra/files/atoms/files/rapport_final_mobicitair_lot3.pdf


Atmosphere 2021, 12, 1410 11 of 22

Atmosphere 2021, 12, 1410 11 of 24 
 

 

 

Figure 3. Scatter plot observation versus model for all the measurements points (two stations and 

five micro-sensors)—Hourly average concentration of NO2 during the period from the 15th of Jan-

uary 2017 to the 31st of January 2017. 

 

Figure 4. Time series of observed and computed concentration of NO2 at Grenoble_boulevards station between the 25th of 

January 2017 and the 31st of January 2017. 

PMSS NO2 results are compared to SIRANE results obtained by Atmo AURA over 

the same computation period with strictly the same input data (emissions, meteorology, 

and background concentrations) (see Figure 5). Only the first vertical level of the PMSS 

model is compared to the concentrations of the SIRANE model, which correspond more 

by construction to spatial averages within each street. 

Figure 4. Time series of observed and computed concentration of NO2 at Grenoble_boulevards station between the 25 January
2017 and the 31 January 2017.

PMSS NO2 results are compared to SIRANE results obtained by Atmo AURA over
the same computation period with strictly the same input data (emissions, meteorology,
and background concentrations) (see Figure 5). Only the first vertical level of the PMSS
model is compared to the concentrations of the SIRANE model, which correspond more by
construction to spatial averages within each street.
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points—Observation in blue, PMSS model in orange, and SIRANE model in grey.

At the MC_GRE_JPerrot station, an overestimation with both models is observed.
At the MC_GRE_Leclerc station, where PMSS presents an underestimation compared to
SIRANE, PMSS input data was therefore reviewed, allowing for the notification of an
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underestimation of the pollutant mass rates in the neighborhood because of the position at
the boundary of the calculation subdomain. The contribution of some near-road sections
is missing.

At the Grenoble_Boulevards reference station, it is interesting to observe a good agree-
ment for SIRANE, and an overestimation for PMSS. It is also interesting to analyze the
geometric definition of the emission strands in this street, which is, in real life, organized
into two traffic lanes separated by two tramway lanes at the center of the street. In the
input data, the emissions from both directions are allocated to a single strand, which is
itself off-centered and located near the measuring station on one of the sidewalks. In the
database, most of the streets are taken into account by a single emission strand, as the
SIRANE model considers a balance per street. This might explain the difference observed
in the comparison between the two models.

Average concentration maps over the period (see Figure 6) have been calculated by
only taking into account the results of the models, without adding the regional background.
This enables a better comparison between the specificities of each model. The SIRANE map
resolution is 10 m, whereas the PMSS one is 3 m. For the same color scale, concentrations
are more contrasted with the PMSS model compared to the SIRANE model (higher concen-
trations on the road delineation, and zero in buildings). The decrease in concentrations
obtained by moving away from a road is more abrupt with the PMSS model, where the
SIRANE model further dilutes the concentrations within the streets. This difference not
only originates from the resolution difference between the two models, but also, perhaps,
from the different modelling principles.
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with SIRANE (a) and PMSS (b) models.

2.4. Rome Case
2.4.1. Context and Model Setup

In the framework of the BEEP project (Big Data in Environmental and Occupational
Epidemiology, https://www.progettobeep.it/index.php (accessed on 10 September 2021),
2019), a long-term simulation at building-resolving scale over a large domain that covers
most of the Rome conurbation has been run. The simulation has been conducted for the
entire year 2015 over a 12 × 12 km urban domain with a high spatial resolution of 4 m
grid step, and provides hourly ground concentration fields for different pollutants. The
resulting fields account for the concentration values in cells between 0 and 3 m in height,
but the domain extends in height up to 300 m, therefore, the calculation grid considers
1.8 × 107 cells.

https://www.progettobeep.it/index.php
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The simulation has been carried out using a hybrid modelling approach to reproduce
air quality of an urban area. The developed hybrid modelling system (HMS) couples PMSS
with the Eulerian chemical transport model (CTM) and FARM (flexible air quality regional
model) [34,35]. The latter reproduces the transport and the chemical interactions at regional
scale of all the sources that are discretized only at the resolution of the CTM, such as the
space heating. PMSS simulates, instead, traffic emissions within the city, which cause
hotspots and strong concentration gradients typical of urban environments, and deals with
the presence of buildings that lead to urban canyon effects. The two models have been
run independently, and subsequently combined, allowing the application of each model
over a different domain with appropriate grid resolution, and with proper emission inputs.
The consistency between the models is ensured by using the same meteorological data,
provided by the WRF meteorological model [36], as well as the same topography and land
use data for both models. Consequently, FARM considers a 60 × 60 km domain centered
over Rome with a horizontal resolution of 1 km, whereas PMSS is applied over the target
domain described above.

The advantage of the models’ independent execution is minimizing the computational
effort, making it feasible to run long-term microscale simulations over large domains. In
fact, a CTM, which requests a lower computational time, manages a greater number of
sources, whereas a LPDM, which is more demanding, simulates only traffic emissions.
Accordingly, PMSS computational time is representative of that of HMS. In this work,
FARM computational time is equal to 11 min per simulated day on an HPC system with
1 node and 36 cores, whereas PMSS takes 3 h per simulated day on an HPC system with
5 nodes and 180 cores. Furthermore, PMSS computational demand is particularly low in
respect to traditional implementations, thanks to the exploitation of the kernel method
to calculate concentrations inside PMSS code [37]: for this simulation, the deployment of
this method has allowed a reduction estimated at about 80% of the computational time
compared to what would be obtained using the traditional PMSS code.

2.4.2. Results

The HMS achieved good performance when reconstructing the typical urban spatial
variability, showing very diverse concentration levels in different neighborhoods across
the city. The comparison of HMS outcomes with the results of a CTM run at urban scale
(typically of 1 km) is particularly promising, mainly due to the fact that the HMS is capable
of reproducing the presence of city hotspots, contrarily to a CTM, which is unable to
capture these because of its coarser horizontal resolution. Figure 7 shows the comparison
between observed and two predicted daily NO2 concentrations during the entire year 2015
at Magna Grecia station, which belongs to the air quality monitoring system of this region,
and which is located near a main road. The figure reports the concentrations calculated
with FARM in green, run at 1 km of horizontal resolution, and taking into account all the
emissions considered by the HMS, and the HMS concentrations are in blue. From this
comparison, it is evident that the CTM itself underestimates NO2 concentrations at this
urban traffic station, whereas HMS, mainly thanks to PMSS, which better reproduces traffic
contribution, has a good agreement with measurements.

Table 4 reports the statistical evaluation of HMS performance on the urban traffic
station of Magna Grecia for daily NO2 concentrations, carried out with the estimation
of bias, RMSE, and correlation. It confirms the good agreement of HMS results with
measurements.

Table 4. Statistical evaluation of HMS (FARM + PMSS) performance for daily NO2 values on Magna Grecia station.

Station Mean Observation (µg/m3) Mean Model (µg/m3) Bias (µg/m3) RMSE (µg/m3) r

Magna Grecia 65.2 61.6 −3.6 18.78 0.56
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Figure 7. Comparison between observed (black dots) and modelled daily NO2 concentrations by the CTM FARM run at
1 km (a) and by HMS (FARM + PMSS) (b) at monitoring station Magna Grecia in Rome.

3. REX from Different Forecast Systems

Using a full deterministic approach to forecast physical phenomena implies the con-
straint of a CPU time smaller than the real time: the whole modelling chain must be faster
than real time.

Contrary to the context of the studies presented in the previous section, the com-
putational time cannot be shortened by modelling only a number of days limited by a
classification. Hybrid methods including a statistical part can be used [38]. In this paper,
the focus is only on entirely deterministic approaches. Two operational systems on cities
are presented in this section. The system operated during the Elise project in Turin in
2015–2016 gives an additional example, not detailed here, but described in [39].

3.1. Paris Forecast System
3.1.1. Context and Model Setup

A forecasting system was operated in Paris between September 2018 and January 2019
as part of the FUI FAIRCITY project. It partly takes the configuration setup previously used
during the FEDER AIRCITY project [11]: the extent of the calculation domain of the PMSS
model is 14,022 m × 11,499 m, including the whole city of Paris. The horizontal spatial
resolution is constant, and equal to 3 m. The vertical spatial resolution is of 2 m between
the ground, and the first 30 m then decreases until the calculation ceiling, located at 800 m.
The mesh counts approximately 6.27 × 108 cells. The calculation chronology allows the
calculation of the 24 h of the following day during the night. The system provides hourly
concentrations.

Large-scale meteorological data and background concentrations of NO, NO2, O3,
and PM10 are taken from the ESMERALDA forecast system of AIRPARIF (http://www.
esmeralda-web.fr/accueil/index.php (accessed on 10 September 2021). They are available
around 10 PM, local time. Emissions considered by the PMSS model are limited to those
from road traffic. The pollutant emissions are estimated by AIRPARIF with the help of a
classification by standard day (as opposed to quasi-real-time estimates using real-time-
existing measurements of the vehicles fluxes that are not available for the forecasting
system). All the input data are available at an hourly time resolution.

The period of several months was leveraged to make the computational workflow
more robust. Malfunctions were analyzed and, if possible, led to calculation chain upgrades.
Among the malfunctions, those that come from the hardware can be cited (under-sizing of
the memory requested to the calculation server: a safety margin has been put into place;

http://www.esmeralda-web.fr/accueil/index.php
http://www.esmeralda-web.fr/accueil/index.php
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crash of a computational node of the calculation server: one occurrence without possible
patch; AIRPARIF ftp server does not provide access to the ESMERALDA forecast: two
disfunctions), and those that come from the software can be cited (case of a very weak
wind leading to PMSS error: three crashes before setting up a patch). The chronology of
the malfunctions of the calculation system over the targeted period was: six in September,
four in October, one in November, and none in December and January.

The results, in terms of NO2 and PM10 concentrations, were quantitatively analyzed by
comparison to observations at the location of AIRPARIF monitoring stations, qualitatively,
through the observation of hourly average maps.

3.1.2. Results

Over the period between the 1 September 2018 and the 30 January 2019, the compari-
son of statistics at monitoring stations, from which we can distinguish those close to the
traffic and those in the background, shows a significant over-estimation trend (see Table 5).
The over-estimation is lower for the background stations, but present for NO2 and PM10.
The models’ calculation cost has greatly limited the number of sensitivity tests that could
be carried out afterward. The following paragraphs present some attempts to improve the
modelling chain.

Background concentrations added hour by hour to the PMSS results could explain a
part of the over-estimation. Modifying them does not require a recalculation, but only post-
treatments. Scores at the measuring stations could be recalculated over the entire period
with a different method of background estimation: instead of extracting the cell value of
the ESMERALDA chain (horizontal resolution of 15 km in the available nesting level early
enough for the PMSS forecast chain) located in downtown Paris, we have extracted the cell
values upwind of Paris, according to the wind prediction from the ESMERALDA chain.
This new calculation, therefore, remains compatible with a forecast mode. It allows for
the avoidance of doubly counting emissions related to traffic in Paris, considered both
with PMSS and ESMERALDA. Inversely, it does not allow for the inclusion of sources
in the PMSS domain but not considered by PMSS, such as urban heating. This method
permits significant improved RMSEs and biases, except for several background stations,
particularly, with the emergence of negative biases for the NO2 (PA_12, PA_13, and PA_18)
and PM10 (PA_18) concentrations, which could be explained by the underestimate of
sources other than the road traffic previously mentioned.

The significant size of the computation domain and the large size of the number
of modelled days constitute a database with a large variability of both geometric and
meteorological configurations. The analysis of concentration maps, more particularly, days
with major deviations at stations, has enabled the identification of several issues. The
main one is the emergence of a large number of concentration accumulation zones in
front of buildings, yet not direct neighbors of an emission strand. The settings analysis
of PMSS, and, more specifically, the comparison with other setups that do not present
this artifact, highlighted the effect of the α stability coefficient in PSWIFT, used during
the mass conservation step. In the Paris calculation chain, this coefficient was calculated
during a pre-processing step to PSWIFT from the ESMERALDA temperatures profiles and
a tabulation indexed on the vertical temperature gradient. This tabulation, derived from
an in-house parametric study carried out with confidential data from a wind farm site
with a complex terrain, is adapted for the consideration of the stability effect on obstacle
avoidance with hill or mountain length scale, but not with a building length scale: for a
Froude number lower than 1, an atmospheric flow bypasses an obstacle [40], but, even
for a very stable meteorological case, such as a weak wind with a speed of 1 m·s−1 and a
vertical gradient of potential temperature of 0.03◦·m−1, the Froude number Fr is equal to
1.59 for an obstacle of height h = 20 m, such as Parisian buildings (Fr = 0.31 for h = 100 m).
It is therefore convenient to use α coefficient close to 1 in order to calculate the flow around
buildings in urban areas.
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Table 5. Comparative statistics between observed and computed hourly average concentration of NO2 and PM10 in µg·m−3—Config 1 corresponds to the initial parametrization of PMSS
and background concentration extracted on Paris cell in the regional modelling; Config 1 Upwind background corresponds to the same parametrization of PMSS, but with background
concentration extracted upwind Paris cell in the regional modelling; Config 2 corresponds to the parametrization of PMSS with a correction on the stability coefficient, and with background
concentration extracted from the upwind Paris cell in the regional modelling; 5 months and 5 days corresponds, respectively, to the large period modelled initially, and to the sub list of 5
days used afterward.

Period 5 Months 5 Days

Obs Model Config 1 Model Config 1 Upwind
Background Model Config 1 Model Config 2

Mean Mean RMSE Bias r Mean RMSE Bias r Mean RMSE Bias r Mean RMSE Bias r

NO2_AUT 81.6 124.4 77.2 43.7 0.34 103.4 69.2 31.4 0.35 127.3 93.6 53.2 −0.02 88.5 31.1 15.7 0.62
NO2_BONAP 48.5 67.7 22.2 12.1 0.65 44.8 19.9 −0.2 0.60 74.8 28.1 21.3 0.84 55.5 14.2 5.0 0.82
NO2_CELES 58.7 81.7 26.1 18.6 0.80 55.8 19.9 6.6 0.77 71.5 24.6 19.3 0.80 58.9 14.2 6.5 0.77
NO2_ELYS 47.5 73.1 36.5 25.9 0.54 57.6 30.1 13.7 0.48 70.1 33.0 24.9 0.52 66.2 29.4 21.2 0.72

NO2_HAUS 51.6 66.3 28.1 15.1 0.66 51.5 23.0 2.9 0.63 82.3 41.4 32.5 0.51 63.8 25.8 14.0 0.58
NO2_OPERA 64.9 99.9 47.5 35.5 0.66 81.9 39.5 23.4 0.63 104.7 54.5 43.3 0.56 94.6 45.1 33.5 0.68
NO2_PA04C * 39.3 46.9 17.9 7.8 0.61 33.8 16.7 −4.3 0.55 54.2 23.1 15.2 0.47 33.2 11.6 −6.3 0.78
NO2_PA07 * 34.8 51.1 29.4 16.4 0.35 37.6 25.8 4.2 0.28 57.9 31.5 25.7 0.67 36.3 18.1 3.9 0.61
NO2_PA12 * 38.2 40.8 17.1 3.0 0.58 28.2 19.1 −9.2 0.53 46.3 13.4 8.7 0.81 26.2 13.7 −11.4 0.87
NO2_PA13 * 35.8 38.4 16.2 3.0 0.58 26.1 18.7 −9.2 0.52 41.2 13.0 5.8 0.73 25.1 13.7 −10.5 0.82
NO2_PA18 * 41.5 34.9 14.6 −5.2 0.72 26.7 23.2 −17.4 0.64 35.3 9.2 −1.8 0.80 19.2 22.0 −17.7 0.68
PM10_AUT 37.2 51.0 29.9 14.3 0.44 44.7 27.1 10.1 0.43 53.1 35.5 18.4 0.31 38.8 19.2 4.4 0.45
PM10_ELYS 31.0 36.6 16.1 5.3 0.55 31.7 14.7 0.9 0.54 35.1 21.9 8.9 0.43 32.0 18.3 5.7 0.47

PM10_HAUS 30.6 34.4 15.1 4.0 0.56 29.7 13.9 −0.2 0.53 37.1 18.4 8.5 0.72 30.5 13.1 1.7 0.71
PM10_OPERA 29.7 41.0 19.0 11.7 0.63 35.7 16.1 7.5 0.61 41.8 24.3 14.2 0.64 37.0 20.2 9.4 0.60
PM10_PA04C * 21.3 28.9 16.3 7.9 0.48 24.7 14.5 3.7 0.42 28.7 19.2 10.4 0.69 21.6 13.2 2.9 0.67
PM10_PA18 * 21.1 17.9 8.4 −2.5 0.76 23.5 11.4 −6.7 0.67 15.9 6.4 −1.5 0.81 9.2 12.7 −8.3 0.51

* background stations.
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Over the 5 months modeling period, 5 days were selected by including cases with
good and bad scores, and recalculated with α = 1. Accumulation zones have significantly
decreased. Scores from the initial setup (called Config 1) limited to the 5 days are available
in Table 5 next to the scores obtained with the α coefficient correction and the choice of
the background concentration value in the upwind cell of Paris (named Config 2). Config
1 scores, limited to the 5 days, are generally worse than those for the 5-month period.
The choice of 5 days is therefore rather penalizing. Over these 5 days, RMSE, bias, and
correlation are improved between Config 1 and Config 2, except at the background stations
PA_12, PA_13 and PA_18 for NO2, and at PA_18 for PM10. Low scores recorded at the
Auteuil station are significantly improved. This station located on the edge of the ring road
is not in the vicinity of a building. Nevertheless, it is close to a slope, the ring road there
being located in a 10 m recessed zone. Modification of the α coefficient can therefore have
an impact on the calculation of the flow in this area.

Another issue that was observed through the analysis of the hourly average concen-
tration maps is the noisy appearance of the values with horizontal gradients from one cell
to the other, even in open areas. Emissions might have been not well discretized because of
the number of Lagrangian particles being too low. The calculation time constraint limits
this number. Possible improvements include the use of the Kernel method [38] for the
computation of concentrations from particles, as well as the optimization of the number
of particles emitted by each road section. In the setup used for the Paris forecast system,
all the strands emit the same number of particles, even if they emit different amounts of
pollutants. On the setup presented in the next section, this distribution, according to mass
rate, has been implemented and optimized. It allows the balance between computation
time and noise in concentration fields to be improved.

Finally, another issue was observed on the hourly average concentration maps: concen-
tration levels on some major roads appear to be potentially very high (exceeds 1000 µg·m−3

in NO2 some days). These roads are associated with rather fast traffic and rather open
areas, which are too wide to experience canyon effects (for example Grande Armée Avenue
in Neuilly-sur-Seine or Paris Ring Road). The noise, due to the number of lagrangian
particles being too low, could explain some of these high values, but it seems also that the
impacted zones depend on the wind direction: particle accumulation along the road axis is
maximized when the wind is aligned with the axis. One possibility for improvement could
be to consider the turbulence induced by the traffic of these road axes, as already done in
the canyon type streets (see Section 1), but with a formulation that would be adapted to
less-confined areas.

3.2. Antony Forecast System
3.2.1. Context and Model Setup

A forecasting system for the city of Antony, located in the south suburbs of Paris,
was operated between the 15 October 2019 and the 16 April 2020 in the framework of the
“Numerical Challenge POC & Go on Air Quality”. The extent of the computational domain
of the PMSS model is 4300 m × 4800 m. The horizontal spatial resolution is constant, and
is equal to 4 m. The vertical resolution is equal to 1.5 m between the ground, and the first
20 m then decreases gradually up to the calculation ceiling, located at 500 m. The mesh is
composed of approximately 3.48 × 107 cells.

The computation chronology allows for calculation of the 24 h of the following day
overnight. The chain provides hourly concentrations. Meteorological forcing of PMSS is
driven by a forecast made with the WRF model, which, itself, is forced by the NCEP/GFS
global forecast. Background concentration forecasts are extracted from the forecast of the
COPERNICUS Atmosphere Monitoring Service (CAMS) implemented by ECMWF.

3.2.2. CPU Time Performance and Optimization

No reference station of air quality measurement is included in the domain. The
validation of the pollutant concentration forecasts could not be done. Nonetheless, this
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case remains interesting for the optimization aspect of the computational time. The forecast
chain has indeed been operated with a machine which has a limited computation capacity:
one node of 12 cores. In order to obtain forecasts results on time (the targeted CPU time is
5 h for 24 modelled hours), the number of particles that discretize the dispersion in PSPRAY
has been optimized. The particles emission time step, and the number of particles emitted
per source (here, per section of road), were adjusted. By default, this number is identical
for all sources, even if they have different pollutant mass rates. Some particles therefore
have, with this configuration, a more important weight, which can lead to very noisy
concentration fields. PSPRAY enables, though pre-processing or internally, to modulate the
numbers of emitted particles according to the mass rate of the pollutant. A pre-processing
adjustment was applied to the case of Antony, whose domain includes high traffic highways
and low traffic residential lanes.

4. CPU Demand Analysis and Estimation

This section summarizes the computation times for the modelling described previously.
Only the dispersion part (calculated by PSPRAY) is detailed because it is predominant
in this type of application. For the meteorological part with PSWIFT, the optimization
of the computation time could be done by the choice of the number/sizes of tiles (i.e.,
subdomains). However, this has not been carried out on the different cases. Computation
times of PSPRAY can be found in Table 6, in hour and hour.core. They are given for the
modelling of a day of physical time. Three of the cases were performed on the EOS server
at the CALMIP computing center. Different servers were used for the two other cases.
Part of the computing times variability can thus come from the variability of machine
performances, but this has not been quantified.

Table 6. Modelling setup parameters, effective CPU demand for dispersion part with PSPRAY model, and estimation
through a simple linear fit. The CALMIP calculation center server used is EOS. It is constituted of nodes with Intel IvyBridge
@2.80 GHz (20 logical cores per node). The server1 and server2 are internal calculation servers, respectively constituted of
two intel Xeon E5-2640 V4 @2.40 GHz (40 logical cores) and two Intel Xeon X5680 @3.33 GHz (12 physical cores without
hyperthreading). The two last lines give estimations of CPU based on input parameters and a simple linear fit.

Paris Coastal
City Grenoble Antony Rome

Variable Short Name Unit

Domain X-axis dimension Lx km 10 3.6 1.7 4.3 12
Domain Y-axis dimension Ly km 13 4.6 1.8 4.8 12

Horizontal resolution dx m 3 3 3 4 4
Number of tiles 120 9 1 9 36

Number of line sources per unit area nblin km−2 327.7 1078.6 260.8 454.4 513.9
Number of emitted particles is function

of mass rate no no no yes yes

Kernel method no no no no yes
Emission time step dtmin s 2 10 1 10 100

Synchronisation time step dtsync s 6 5 5 10 5
Number of cores 480 240 30 10 180

Machine CALMIP CALMIP Server 1 Server 2 CALMIP
CPU time for 24 h (PSPRAY only) hour 6.0 1.4 6.9 5.0 3.0

Number of hour·core for 24 h hour·core 2880 333 208 50 540
Number of hour·core per day and per km2 CPU_cost hour·core. km−2·day−1 22.2 20.1 68.0 2.4 3.8

CPU_cost estimation =
f(nblin/dtmin/dtsync/dx2) CPU_cost_estim1 hour·core·km−2·day−1 22.8 18.0 43.5 2.1 0.5

CPU_cost estimation =
f(nblin/dtmin/dtsync/) CPU_cost_estim2 hour·core·km−2·day−1 22.4 17.7 42.8 3.7 0.8

To compare the different cases, it is firstly assumed that the computation time increases
linearly with the extent of studied area—the table thus provides CPU times per area unit.
The resulting values range from 2.4 to 68 h·core·km−2.

Other parameters that seem to significantly affect the computation time are provided:
the number of emission sources, normalized by area, in order to compare sites of different
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sizes; emission time step and synchronization time step (the synchronization time step
in PSPRAY allows recording of the position of particles at a regular frequency, which,
apart from these moments, move with their own time steps); whether or not the Kernel
method was used for the computation of concentrations. The latter takes more time for the
concentration calculation, but can allow the number of particles that need to be transported
to be reduced (see the larger emission time-step for the Rome study).

The table only provides a sample of five sites, and the number of parameters influenc-
ing the computation time is maybe too large to perform a multi-regression. However, a
rough approximation of computation time by unit area (conjecturing the CPU time linearity
with the calculation domain area) was done, assuming linearity with: (1) the emission
sources number; (2) the inverse of the emission time step; (3) the inverse of synchronization
time step; and possibly (4) the inverse of the square of the horizontal resolution. These
rough approaches underestimate CPU times for the cases of Grenoble and Rome, but
are satisfying for the three other cases. In the Rome study, the Kernel method was used,
making this case special compared to others.

The goal of these estimates is to quantify, in principle, the CPU cost for a new site, in
order to design the required size for the computing machines.

5. Discussion

The different sites presented in the paper provided both validation scores and valuable
feedback to improve the modelling and its CPU cost. The scores’ quality appears to be
disparate between the sites, but also for the same site: modelling air quality at local
scale means dealing with different configurations, even in the same city (narrow canyon
streets, complex crossroads, half-buried highways, skyscraper zones, streets with complex
emission distribution due to the presence of tramway lanes).

An overestimation tendency seems to be observed. Even if the possible origins are
numerous, an underestimation of the turbulence due to road traffic could be one. This
effect could be considered in the 3D turbulence fields, or, more simply, by enlarging the
emission volumes.

The long-term results analysis has shown some patterns, and provides feedback that
has led to model improvements, especially for making the Rockle approach more robust in
more geometrical configurations.

The long-term calculations were also useful to analyze the performances of two
methods used to improve the CPU cost:

- Classification with SOMs method to reduce the number of days to be considered.
The study provides the quantification of the classification effect on annual average
concentration and, more challengingly, on percentiles;

- Kernel method to compute concentration fields from particle clouds. The obtained
CPU times during the BEEP project are attractive. The method, already implemented
in other LPDM, such as FLEXPART [41] and LAPMOD [42], should be tested on
other sites.

The CPU time of the different sites have been compared, and a tentative estimation
has been made from input parameters and characteristics, such as the area, the number of
roads, and particle emission time steps. The limited number of sites does not allow a true
multi-regression to be calculated, so only a raw linear law is set. The CPU time database
should be fed by all the impact studies performed with PMSS, but these values are not
available because they are not stored by default.

The 3D approach presented in the paper allows access to detailed 3D concentration
fields that open perspectives about health impact and exposure. Exposure, which is the
integration of both concentration and population density, is usually performed based
on a 2D raster method. The results provided with PMSS can be used differently: as the
buildings are seen explicitly, the exposure can be computed by building. The concentration
for each building could be the average and maximum concentration around it, for example.
Moreover, the exposure can be computed level by level, quantifying the vertical gradient
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between the first and last floors. During the FAIRCITY project, a first attempt has been
made on an area of Grenoble, with ATMO AURA showing some significant gradients
(10% reduction between the ground and 18 m.a.g.l. for the NO2 concentration), but no
observation was available to validate the results. Observations in wind tunnel experiments
are available [43], but might miss some of the processes present in a real street, such as
traffic-induced turbulence, or convective flows due to the thermal and radiative effects
of buildings. Having a field campaign with sensors at different heights on the façades of
buildings, as is described in [44–46], would open a great validation perspective.
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