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Abstract: The major organic compositions from biomass burning emissions are monosaccharide
derivatives from the breakdown of cellulose, generally accompanied by small amounts of straight-
chain, aliphatic, oxygenated compounds, and terpenoids from vegetation waxes, resins/gums, and
other biopolymers. Levoglucosan from cellulose can be utilized as a specific or general indicator
for biomass combustion emissions in aerosol samples. There are other important compounds,
such as dehydroabietic acid, syringaldehyde, syringic acid, vanillic acid, vanillin, homovanillic
acid, 4-hydroxybenzoic acid, and p-coumaric acid, which are additional key indicators of biomass
burning. In this review, we will address these tracers from different types of biomass burning and
the methods used to identify the sources in ambient aerosols. First, the methods of inferring biomass
burning types by the ratio method are summarized, including levoglucosan/mannose, syringic
acid/vanillic acid, levolgucosan/K+, vanillic acid/4-hydroxybenzoic acid, levoglucosan/OC, and
levoglucosan/EC to infer the sources of biomass burning, such as crop residual burning, wheat
burning, leaf burning, peatland fire, and forest fire in Asia. Second, we present the source tracer ratio
methods that determine the biomass combustion types and their contributions. Finally, we introduce
the PCA (Principal component analysis) and PMF (Positive matrix factor) methods to identify the
type of biomass burning and its contributions according to emission factors of different species in
various plants such as softwood, hardwood, and grass.

Keywords: biomass burning emissions; PCA; PMF; tracers; sources; STR; ratio

Highlights

1. Key tracers from different biomass burning emissions are introduced in this review.
2. Methods applied to identify biomass burning types are introduced, and their advan-

tages and disadvantages are also concluded.
3. The details of PMF to infer biomass burning types and source contributions are

also included.

1. Introduction

Biomass burning such as wildfire, agricultural open-burning, residential biofuel com-
bustion, forest fire, grass burning, and peatland fire can produce and release substantial
amounts of pollutants into the atmosphere [1,2]. Aerosols released from biomass burning
have a serious influence on climate change, the ecosystem, regional/global air quality,
visibility, and human health, which had drawn global concern all over the world [3,4].
Biomass burning contributes much greater carbonaceous aerosol emissions in regions with
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intense fires [5,6]. These emissions can be transported over long distances and affect areas
far away from the source region [7–10]. Previous assessments of biomass burning emis-
sions using combustion by-products as tracers have studied the following: (1) pollutants
containing volatile, gaseous carbonaceous compounds such as CO, CO2, CH4, C2H4, HCN,
HCO2H, CH3CO2H, CH3CN, and aerosols, especially organic carbon and black carbon;
(2) macromolecular smoke particles in the form of soot or charcoal; (3) solvent-soluble
organic compounds isolated from smoke particulate matter such as polynuclear aromatic
hydrocarbons (PAH); and (4) the source of biomass burning in aerosols based on different
methods such as the ratio of tracers [11–13]. Thus far, there is a lack of relative complete
information about biomass burning emissions, especially using unique tracers to identify
the source. In order to better understand biomass burning, comprehensive information
about biomass tracers of different combustions and methods to infer burning types are
illustrated in this review. For example, Figure 1 showed that the biomass burning sources,
transport and deposition in environment and atmosphere. Furthermore, our future work
is also displayed.
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Figure 1. Schematic of the sources, transport, and deposition of biomass burning emissions [14].

1.1. Biomass Burning Process

The process of biomass burning is briefly described as follows. When biomass fuels
are heated, with the increase of temperature, the compositions gradually begin to hy-
drolyze, oxidize, dehydrate, and pyrolyze, forming combustible volatile products, tarry
substances, and highly active carbonaceous char [15]. At the ignition temperature of the
tarry substances and volatiles, combustion reactions begin. As for complete combustion,
carbon continues to be formed until no solid fuel remains in the ash and no combustion
gas in the smoke. For incomplete combustion, there is still residual fuel in the smoke. The
emissions produced by the combustion of fuels are directly dependent on the chemical
composition of the fuel and the combustion conditions.

1.2. Organic Compounds from Biomass Burning

Due to the unique signatures of organic molecular tracers in the atmosphere, they play
an important role in identifying biomass fuel combustion [16,17]. Cellulose, hemicellulose,
lignin, sporopollenin, and suberin are important units of biomass fuels, and their pyrolysis
products are widely used as unique tracers of biomass burning in the atmosphere [18,19].
Simoneit et al. identified a series of tracers in aerosols that are influenced by biomass burn-
ing, including alkane homologs, polycyclic aromatic hydrocarbons, pineic acids, sugars in
cellulose, and methoxyphenols in lignin by Gas chromatography-mass spectrometry/mass
spectrometry (GC-MS/MS) as shown in Figure 2 [14,16,17,19,20].



Atmosphere 2021, 12, 1401 3 of 19

Atmosphere 2021, 12, x FOR PEER REVIEW 4 of 20 
 

 

grass mainly releases p-anisic acid, p-anisaldehyde, and minor amounts of other 
p-coumaryl, vanillyl, and syringyl-type lignin pyrolysis products such as p-coumaric 
acid, 4-hydroxybenzoic acid, and syringic acid [12,17]. The grasses include all kinds of 
phenolic moieties of lignin precursor alcohols. Therefore, the thermal decomposition 
products are not representative tracers for grass burning, except for p-coumaric acid and 
4-hydroxybenzoic acid, which are not prevalent in hardwood and softwood [12,33]. 
Therefore, the relative proportion of these compounds can also be used to identify grass 
burning. 

1.2.2. Cellulose 
The combustion process of cellulose and hemicellulose has been studied extensively 

in the past [15,34–36]. Cellulose decomposes via two alternative pathways when heated 
or exposed to an ignition source. At first, it is decomposed at 300 °C and then begins to 
bond, cleave, undergo fission and disproportionation, and produce tar anhydrous sugars 
and volatile products by transglycosylation. The second pathway produces molecular 
tracers from a specific source such as levoglucosan, the furanose isomer, and dianhy-
dride. It is reported that L-glucan is present as fine particles from the burning of resi-
dential wood [37,38]; it is very stable in the atmosphere and has no chemical reaction af-
ter being exposed to sunlight and environmental conditions for 8 h [39–42]. Furthermore, 
L-glucan can have large-scale impacts on the chemical composition of atmospheric aer-
osols on a regional to global scale. Due to its water-solubility, levoglucosan contributes to 
water-soluble organic carbon in aerosols and significantly enhances the hygroscopic 
properties of atmospheric aerosols [43]. In addition, it is reported that levoglucosan exists 
in pyrolysis products of peat wood and lignocellulose burnings [44,45]. Mannosan and 
galactosan, isomers of levoglucosan, are produced by pyrolysis of cellulose and hemi-
cellulose and can also be regarded as biomass burning tracers [17,46]. 

  

Figure 2. Chromatographic separation of biomass burning tracers using GC-MS/MS [17]. 

1.3. LC-MS/MS 
Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is utilized to 

quantify aromatic acids such as biomass burning tracers, is pretty effective, and has 
simplified the pretreatment of samples without needing derivatization of biomass burn-
ing products like vanillic acid, isovanillic acid, homovanillic acid, and syringic acid. For 
example, Hoffmann et al. developed and validated an HPLC-APCI-MS/MS 
(high-performance liquid chromatography-atmospheric pressure chemical ioniza-
tion-tandem mass spectrometry) method for measuring biomass burning tracers [47,48]. 

Figure 2. Chromatographic separation of biomass burning tracers using GC-MS/MS [17].

1.2.1. Lignin Products

Lignin is an essential biopolymer of wood, which is derived primarily from three
aromatic alcohols, which are named sinapyl, coniferyl, and p-coumaryl alcohols. The degra-
dation products produced by lignin burning were mainly three kinds of compounds [14,21].
The proportions of these molecular markers vary greatly among different plant species. For
example, lignins of hardwoods (angiosperms) are abundant products of sinapyl alcohol,
whereas lignins of softwoods (gymnosperms) have a relatively high proportion of products
from coniferyl alcohol, with a lesser composition from sinapyl alcohol; whereas grass
products are dominantly from p-coumaryl alcohol [12,22]. The lignin combustion usually
produces phenols, aldehydes, ketones, acids, and alcohols, which retain the components
on the original benzene ring, such as hydroxyl and methoxy. During combustion, both soft-
wood and hardwood can produce guaiacol derivatives such as 2-methodyphenol, but hard-
wood also can produce high levels of sryingol derivatives like 1,3-dimethoxyphenol [23,24].
Hawthorne et al. identified that guaiacol derivatives are potential tracers of wood-burning,
while syringyl derivatives are indicators for hardwood burning [23,24]. Most woody plants
are abundant in lignans, which are critical dimers of sinapyl, p-coumaryl, and coniferyl
alcohols [25,26]. They provide supportive fillers, toxins, and other uses for plants [26].

Softwood Lignin

Methoxyphenol is the main compound produced by softwood lignin decomposition.
Vanillic acid is derived from coniferyl alcohol, which is the main aromatic alcohol monomer
unit in gymnosperm lignin and is a specific tracer of conifers [21]. For example, pine
wood burning releases mainly vanillic acid and vanillin and lesser amounts of other
pyrolysis compounds, syringic acid, syringaldehyde, and p-anisic acid. The diterpenoid
dehydroabietic acid is determined in all samples and is the main product of resin acids,
which are source-specific [21,27].

Hardwood Lignin

A series of methoxyphenols are also produced from the burning of hardwood lignin.
These compounds are derived from syringyl alcohol, which is enriched in hardwood lignin
and primarily includes syringyl acetone, acetosyringone, syringic acid, and the dimer
species of disyringyl. Angiosperm lignin contains high levels of the coniferyl and sinapyl
alcohol subunits, which are the precursors of oxidation and pyrolysis products of syringol
and methoxyphenol [28]. For example, hardwoods, such as oak, have rich quantities of
syringic acid and syringaldehyde in their smoke. There are different amounts of sinapine-
type and other pyrolysis products, which are consistent with angiosperm lignin as the
source, as well as a small amount of vanillin-type products. Hawthorne et al. and Simoneit
et al. concluded that the syringyl molecular markers are indicators in smoke produced
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by angiosperm fuels burning [21,29,30]. The molecular biomarkers, including ursana-2,
12-dien-18-oicacids, oleana-2, and 12-dien18-oic are the thermal degradation products
from ursolic acids and oleanolic, respectively, and the major triterpenoids in angiosperm
mucilages and gums [31,32].

Grass Lignin

In order to have a good knowledge of organic tracers released from grass burning,
previous studies collected aerosol samples from the smoke of mixed ryegrasses consisting
dominantly of n-alkanoic acids, levoglucosan, and phenolic compounds, including syringyl
acetone, catechol, guaiacyl acetone, dimethoxyphenol, syringic acid, vanillyl acetic acid,
and vanillic acid [17]. However, other studies have found that the burning of grass mainly
releases p-anisic acid, p-anisaldehyde, and minor amounts of other p-coumaryl, vanillyl,
and syringyl-type lignin pyrolysis products such as p-coumaric acid, 4-hydroxybenzoic
acid, and syringic acid [12,17]. The grasses include all kinds of phenolic moieties of lignin
precursor alcohols. Therefore, the thermal decomposition products are not representative
tracers for grass burning, except for p-coumaric acid and 4-hydroxybenzoic acid, which
are not prevalent in hardwood and softwood [12,33]. Therefore, the relative proportion of
these compounds can also be used to identify grass burning.

1.2.2. Cellulose

The combustion process of cellulose and hemicellulose has been studied extensively
in the past [15,34–36]. Cellulose decomposes via two alternative pathways when heated
or exposed to an ignition source. At first, it is decomposed at 300 ◦C and then begins to
bond, cleave, undergo fission and disproportionation, and produce tar anhydrous sugars
and volatile products by transglycosylation. The second pathway produces molecular
tracers from a specific source such as levoglucosan, the furanose isomer, and dianhydride.
It is reported that L-glucan is present as fine particles from the burning of residential
wood [37,38]; it is very stable in the atmosphere and has no chemical reaction after being
exposed to sunlight and environmental conditions for 8 h [39–42]. Furthermore, L-glucan
can have large-scale impacts on the chemical composition of atmospheric aerosols on a
regional to global scale. Due to its water-solubility, levoglucosan contributes to water-
soluble organic carbon in aerosols and significantly enhances the hygroscopic properties of
atmospheric aerosols [43]. In addition, it is reported that levoglucosan exists in pyrolysis
products of peat wood and lignocellulose burnings [44,45]. Mannosan and galactosan,
isomers of levoglucosan, are produced by pyrolysis of cellulose and hemicellulose and can
also be regarded as biomass burning tracers [17,46].

1.3. LC-MS/MS

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is utilized to quan-
tify aromatic acids such as biomass burning tracers, is pretty effective, and has simplified
the pretreatment of samples without needing derivatization of biomass burning prod-
ucts like vanillic acid, isovanillic acid, homovanillic acid, and syringic acid. For example,
Hoffmann et al. developed and validated an HPLC-APCI-MS/MS (high-performance liq-
uid chromatography-atmospheric pressure chemical ionization-tandem mass spectrometry)
method for measuring biomass burning tracers [47,48]. The analysis time is short (only
15 min), the detection limit is low, and the recovery rate is high, which is suitable for
the identification and quantification of aromatic acids in aerosol or other samples. More
recently, in the research of Zangrando [8]., an effective and rapid HPLC-(-)-ESI-MS/MS
(high-performance liquid chromatography-(-)-electrospray ionization-tandem mass spec-
trometry) analytical method was reported for quantitative determinations of aromatic
acids, such as biomass burning tracers. An example of a total ion chromatographic analysis
is shown in Figure 3 [12,49]. In addition, this approach shows considerably low limits of
detection for vanillic acid and syringic acid. In our previous study, a fast and effective
HPLC-MS/MS method was developed and validated, and 20 kinds of biomass burning
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tracers in aerosol samples were successfully determined, with low limits of detection and
high accuracy in 10 min analyses. The preparation of aerosol samples is a single-step
derivation saving more time than before. The details of this method and aerosol sample
preparation can be obtained in [50,51].
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2. Determination of Biomass Burning Types

Lignin pyrolysis products are an important component of the fine aerosol particles
from wood and biomass burning [21,52]. However, the presence of individual syringyl,
coumaryl, or vanillyl-type compounds in an aerosol or smoke sample cannot be a unique
indicator for the original sources of biomass burning, but the relative proportions of such
tracers can be used to distinguish the type of burned fuels. At present, there are many
methods to determine biomass burning types, such as tracer ratios, principal component
analysis, source tracer ratio, positive matrix factor analysis, etc. The following describes
the advantages and disadvantages of these methods. Because of complex atmospheric
processes like photochemical aging, phase-separation/partition and deposition, and varied
chemical lifetimes, characteristic tracers and specific ratios have constraints in targeting
transported pollution sources and classifying the contributions of the respective biofuels.
Therefore, we select stable, long-lifetime compounds as biomass burning tracers to improve
the results of identifying biomass burning types.

2.1. The Ratios of Tracers to Identify the Type of Biomass Burning

The most common and basic method for identifying the type of biomass burning in
the atmosphere is the ratio method. In previous studies, the ratio method was divided
into four types, including the ratios of levoglucosan to mannosan [53], levoglucosan to
OC [54,55], levoglucosan to potassium, vanillic acid to syringic acid, and syringic acid to
4-hydroxybenzoic acid [56].

2.1.1. Levoglucosan/K+

Previous studies used the levoglucosan/potassium (Levo/K+) ratio to distinguish
specific types of biomass burning in ambient aerosols [57]. For forest fire aerosols, the ratio
of Levo/K+ is typically above zero; for example, the ratio in Amazon forest fire smoke
is 0.38–22.0, and the ratio in U.S. forest fire smoke is 4.35–58.8 [58–60]. Incineration of
agricultural wastes is typically found to have a relatively low ratio of Levo/K+ because
potassium fertilizer is a large K+ contributor. For example, Cheng et al. reported that
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the burning of crop residuals such as wheat straw, rice straw, and corn straw had a
Levo/K+ ratio that was higher during the winter (0.51 ± 0.15) compared with the summer
(0.21 ± 0.16), while the Levo/K+ ratio averaged 0.11 ± 0.06 during the biomass burning
period in Beijing aerosols [1,61]. The Mkoma study reported lower Levo/K+ ratios with an
average value of 0.37 ± 0.1 ranging from 0.82–0.57 in PM2.5 and 0.38 ± 0.2 ranging from
0.16–0.87 in PM2.5 during wet days, suggesting that the sampling site in Tanzania may be
impacted by emissions of K+ from the burning of plants and from the soils that contain a
high abundance of K+ [62]. In addition, the lower ratio of Levo/K+ was 0.25 ± 0.7 ranging
from 0.14–0.36 in PM2.5 and was 0.23 ± 0.06 ranging from 0.14–0.36 in PM10 dry burning
days, which indicates that Tanzania burned agricultural crop residuals [62]. Several studies
on crop burning residue in Asia have reported the Levo/K+ ratio as ranging from 0.1 to
1.2 [61–64]. In the latest research conducted in the Chiang Mai Basin, due to the burning of
crop residuals, the ratio of Levo/K+ in PM10 ranged from 0.51–0.56 in the dry season [65].
In a study by Thepnuan et al., the ratio of Levo/K+ was 0.92 ± 0.35, indicating that the
ambient aerosols in Chiang Mai during the dry season in 2016 were influenced by burning
forest and agricultural crop residuals, such as rice straw, maize, and sugar cane [56].

2.1.2. Levoglucosan/Mannosan

Galactosan and mannosan are isomers of levoglucosan and products of hemicellulose
thermal decomposition, while levoglucosan is a product of cellulose thermal decomposi-
tion [17]. Hardwood contains a higher amount of cellulose than hemicellulose; therefore,
the ratio of levoglucosan to mannosan (L/M) can also be used to distinguish the type
of biomass burning [66] (i.e., softwood vs. hardwood) [17,67,68]. Previous studies have
found that L/M ratios of burned crop residues are often > 40 [69], while the L/M ratios of
burning hardwood are within the range of 15–25, and the L/M ratio of burning softwood is
3–10 [64,68,70]. For example, a high L/M ratio of biomass combustion aerosols produced
by burning straw (40–42) was calculated [64]. In the North China Plain, aerosols are concen-
trated in the mountains, from severe levels of wheat straw burning (40–46) [70]. In a study
by Fu et al. [71], the L/M ratios varied from 25 to 35, which were similar during sampling
periods at the Hetian site, and the L/M ratios ranged from 33 to 60 and 23 to 59 in TSP
and PM2.5 samples, respectively, at the Tazhong site. Therefore, high L/M ratios ranging
from 23 to 60, found in their study, indicate that crop residues, hardwood, and herbaceous
plants are the main fuel types for biomass burning in the Taklimakan region [71]. In the
research of Thepnuan et al., the L/M ratios are in the range of 15.7–37.6, with an average
of 20.4 ± 4.1, which was much higher than the values calculated from softwood burning
(2.6–5.0) [64,67]. Similar to those calculated from hardwood burning (13–32) [60,64], Asian
crop residue burning was 12–55, and corn straw burning was 19.5 ± 3.4 [1,56,61,64]. In
Tanzania, East Africa, in 2011, during wet and dry seasons, it was found that the L/M ratios
were fairly high, ranging from 10 to 13 in PM2.5 and from 9 to 13 in PM10. Such a high
proportion indicates that the biomass burned in this land is dominantly hardwood and
crop residues [62]. In Zhu’s study, higher monthly average L/M ratios (38.9) in November–
January suggest that the burning substrate is primarily hardwood, a mixture of softwood
and hardwood, or a mixture of softwood and plant straws in MNA [66]. The low L/M
ratios (2.1–4.8) in May–June, however, indicate that the aerosol in Okinawa is influenced
by the burning of softwood [66]. Finally, the lower L/M ratios in Kang’s study (average
4.2) suggested that the aerosols were mainly associated with the burning of softwood in
the marine atmosphere over the East China Sea [72]. See Table 1 for more research on L/M
identification of biomass combustion types.
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Table 1. Ratios of anhydrosaccharides in source test emissions from lignite and biomass burning [46].

Sample Type L/M L/(M + G) Data Source

Lignite
Jsp11 31 31 Fabbri et al. (2009) [46]
S6s 92 92 Fabbri et al. (2009) [46]
Lst6 40 40 Fabbri et al. (2009) [46]

Average 54 54
Hardwoods 22 17.6 Nolte et al. (2001) [73], Fine et al. (2002) [74]

13–24 Fine et al. (2004) [59]
14.5–14.6 8.5–9.9 Schmidl et al. (2008) [53]
13.8–32.3 4.5–14 Engling et al. (2006) [75]

3.3–8.4 1.5–2.1 Oros and Simoneit (2001b) [76]
Softwoods (conifer) 4 3.6 Nolte et al. (2001) [73], Fine et al. (2002) [74]

3.9–6.7 Fine et al. (2004) [59]
2.6–5.0 2.4–5.0 Engling et al. (2006) [75]
3.6–3.9 1.8–2.8 Schmidl et al. (2008) [53]

0.6–13.8 0.4–6.1 Oros and Simoneit (2001a) [77]
Charred pine wood 2.5 2.0 Otto et al. (2006) [78]
Charred pine cone 0.3 0.2 Otto et al. (2006) [78]
Forest fire smoke 4.8–5.6 3.2–3.9 Ward et al. (2006) [79]

Grasses 2.0–33.3 1.7–9.5 Oros et al. (2006) [80]
Green hardwood litter 4 2 Medeiros and Simoneit (2008) [81]
Green softwood litter 3.6 2.1 Medeiros and Simoneit (2008) [81]

Atmospheric aerosols 3.5–75 3.2–14

Pashynska et al. (2002) [82], Yttri et al. (2005) [82],
Ward et al. (2006) [79], Simoneit et al. (2004b,c) [83,84],
Medeiros et al. (2006) [85], Zdra’hal et al. (2002) [86],

Sandradevi et al. (2008) [87]

There are many studies regarding the identification of biomass burning type by using
levo/K+ and L/M ratios separately. However, as shown in [61], these two ratios are
typically combined to infer potential sources of biomass burning. For example, in Thailand,
the L/M ratios were approximate to those gained from leaf litter in dry dipterocarp forest
and maize residues with an average of 19.0 ± 3.5 and 24.2 ± 12.3, respectively, while the
Levo/K+ ratio is about the available leaf litter in mixed deciduous forests, with an average
of 0.90 ± 0.88. The results of these two ratios indicated an origin from agricultural waste
burning and forest fires, which was presented in Figure 4 [56].

In addition, Jung et al. reported that hardwood combustion has a relatively high
ratio of L/M and Levo/K+, with average values of 26 and 28, respectively, and variation
ranges of 2.2–195 and 11–146 [88]. The Levo/K+ ratios from the burnings of softwood
were similar to those from the burnings of hardwood, with an average of 46 and a range
of 4.6–261. The L/M ratios from the burnings of softwood were, however, much lower
than those from the burnings of hardwood, with an average of 4.3 and a range of 2.5–6.7.
The L/M ratios from the burning of Asian crop residue were similar to those from burning
hardwood, with an average of 29 and a range of 12–55, whereas the Levo/K+ ratios from
burning Asian crop residue were much lower than those from burning hardwood and
softwood, with a value of 0.53 and a range of 0.1–1.2. In their study, Jung et al. reported
aerosol samples collected from 5–8 November that showed a very low concentration of
mannosan [88]. The Levo/K+ ratio of this sample was similar to other data, while the L/M
ratio was much higher. Therefore, the elevated L/M ratio in this aerosol sample could
be explained by elevated emissions from burnings of crop residue, grass, or hardwood.
The Levo/K+ ratios calculated in this study were similar to those from burnings of grass
and Asian crop residue, whereas the L/M ratios were similar to those obtained from the
burnings of leaf and softwood. Calculated data in their study were located between the
leaf/softwood cluster and the Asian crop residue/grass cluster; therefore, the tracers of
biomass burning collected in their study might be a mixture of aerosols produced by
burning grass, crop residue, leaf, and softwood, which was shown in Figure 5 [11,88].
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2.1.3. Levoglucosan/OC or Levoglucosan/EC

The ratios of biomass burning tracers to OC and EC concentrations have also been used
to identify various types of biomass burning [89]. Figure 6 shows a map of levoglucosan to
OC ratios (Levo/OC ratios) and levoglucosan to EC ratios (Levo/EC ratios) from different
types of biomass burning according to previous studies [53,55,60,63,68]. In the research of
Jung et al. [88], the Levo/OC ratios and Levo/EC ratios suggested indicate the tendency
of burning leaves and grass. Besides, the increasing trend was within the variability of
crop residue burning in Asia [55,63]. Therefore, this study showed that grass, leaves, and
crop residues were the main sources of biomass burning in the Daejeon air during the
rice harvest season. Finally, this method of identifying the biomass burning types was
similar to the previously reported method of burning agricultural residue during the fall
rice harvest in Korea [90].



Atmosphere 2021, 12, 1401 9 of 19

Atmosphere 2021, 12, x FOR PEER REVIEW 9 of 20 
 

 

[53,55,60,63,68]. In the research of Jung et al. [88], the Levo/OC ratios and Levo/EC ratios 
suggested indicate the tendency of burning leaves and grass. Besides, the increasing 
trend was within the variability of crop residue burning in Asia [55,63]. Therefore, this 
study showed that grass, leaves, and crop residues were the main sources of biomass 
burning in the Daejeon air during the rice harvest season. Finally, this method of identi-
fying the biomass burning types was similar to the previously reported method of 
burning agricultural residue during the fall rice harvest in Korea [90]. 

 
Figure 6. Scatter plots of levoglucosan to OC ratios versus levoglucosan to EC ratios of (a) different types of bio-
mass-burning emissions and (b) average of the Asian crop residue, grass, and leaf burnings [88]. 

2.1.4. Vanillic Acid/Syringic Acid 
The concentration of each tracer in an aerosol depends on the combustion condi-

tions, amounts, and biomass burning type. For example, a low concentration of syringic 
acid may result from a lower amount of hardwood in burning emissions, while a higher 
concentration of p-hydroxybenzoic acid suggests a dominance of herbaceous plants [33]. 
Moreover, for the same quantity of different types of biofuels, the ratio of two bio-
mass-burning tracers can be characteristics of the biomass, and it is more accurate than 
the single concentration. Therefore, concentration ratios of different aromatic acids are 
regarded as more important indicators to infer the type of biomass burning [21,33]. Re-
cently, the ratio of vanillic acid/syringic acid (VA/SyA) has been used for identifying the 
biomass burning source in aerosols [1,17,33,59,91]. Figure 7 summarizes typical VA/SyA 
ratios of different potential sources (softwood, hardwood, herbaceous plants, grass, and 
other biomass burning sources) over the world. Briefly, the VA/SyA ratios ranged from 
0.12 to 4.00 for hardwood burning and ranged from 8.57 to 11.9 for softwood burning, 
whereas the ratios of grass or herbaceous plants are between the hardwood burning and 
softwood burning, with values ranging from 0.40–5.03. The SA/VA ratios for burning 
woody angiosperms (hardwood) and non-woody angiosperms (herbaceous plants) were 
1.90–2.44 and 0.10–2.00, respectively, while SA/VA ratios of burning gymnosperms (0.01) 
and non-woody gymnosperms (0.03–0.24) were much lower [22,33]. Therefore, if the 
proportions overlap, it is difficult to distinguish the type of biomass burning, especially 
when there are more than two emission sources. For example, Wan et al. reported 
VA/SyA ratios in aerosols collected in Lumbini, South Asia, ranging from 0.39 to 2.56 
with a mean of 1.28 ± 0.50, which indicated herbaceous plants (crop residue) and hard-
wood as likely sources [92]. A previous study reported that the VA/SyA ratio was 1.70 ± 

Figure 6. Scatter plots of levoglucosan to OC ratios versus levoglucosan to EC ratios of (a) different types of biomass-burning
emissions and (b) average of the Asian crop residue, grass, and leaf burnings [88].

2.1.4. Vanillic Acid/Syringic Acid

The concentration of each tracer in an aerosol depends on the combustion conditions,
amounts, and biomass burning type. For example, a low concentration of syringic acid may
result from a lower amount of hardwood in burning emissions, while a higher concentra-
tion of p-hydroxybenzoic acid suggests a dominance of herbaceous plants [33]. Moreover,
for the same quantity of different types of biofuels, the ratio of two biomass-burning tracers
can be characteristics of the biomass, and it is more accurate than the single concentration.
Therefore, concentration ratios of different aromatic acids are regarded as more impor-
tant indicators to infer the type of biomass burning [21,33]. Recently, the ratio of vanillic
acid/syringic acid (VA/SyA) has been used for identifying the biomass burning source
in aerosols [1,17,33,59,91]. Figure 7 summarizes typical VA/SyA ratios of different poten-
tial sources (softwood, hardwood, herbaceous plants, grass, and other biomass burning
sources) over the world. Briefly, the VA/SyA ratios ranged from 0.12 to 4.00 for hardwood
burning and ranged from 8.57 to 11.9 for softwood burning, whereas the ratios of grass or
herbaceous plants are between the hardwood burning and softwood burning, with values
ranging from 0.40–5.03. The SA/VA ratios for burning woody angiosperms (hardwood)
and non-woody angiosperms (herbaceous plants) were 1.90–2.44 and 0.10–2.00, respec-
tively, while SA/VA ratios of burning gymnosperms (0.01) and non-woody gymnosperms
(0.03–0.24) were much lower [22,33]. Therefore, if the proportions overlap, it is difficult to
distinguish the type of biomass burning, especially when there are more than two emission
sources. For example, Wan et al. reported VA/SyA ratios in aerosols collected in Lumbini,
South Asia, ranging from 0.39 to 2.56 with a mean of 1.28 ± 0.50, which indicated herba-
ceous plants (crop residue) and hardwood as likely sources [92]. A previous study reported
that the VA/SyA ratio was 1.70 ± 0.36 in Malaysia, while Indonesian peat-land fires period,
which was approximately three times higher than the VA/SyA ratio (0.59 ± 0.27) on normal
days, which provided a good indicator of the impact from the Indonesian peatland fires [93].
In aerosol samples from Beijing and Godavari, the SA/VA ratios were 2.21 (2.05–2.48) and
0.71 (0.62–0.96), respectively, suggesting that hardwood and grass (including agricultural
residue) were more likely to be the sources for the biomass burning aerosols in these two
regions [94]. In addition, the ratios of vanillin (VAN) and syringaldehyde (SyAH) were
further applied to identify the sources of aerosol samples [49].
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2.1.5. Vanillic/p-hydroxybenzoic Acid

The ratio of vanillic/p-hydroxybenzoic acid (VA/p-HBA) is also applied to identify
types of biomass burning [1,95–97]. For example, the content of vanillic acid produced
by burning conifers is higher than that of p-hydroxybenzoic acid, resulting in a higher
VA/p-HBA ratio [88,98,99]. The VA/p-HBA ratio produced by pinewood in Europe is
8.75 [97], while the VA/p-HBA ratio after burning ponderosa pine was 19.75 [1,98]. In
contrast, burning herbaceous plants contributes higher yields of p-HBA than VA, and
Iinuma found that peat fires produced more p-HBA than VA [96]. In addition, P-HBA with
almost no VA was released by grassland fires in the North American tundra [98,100]. In
Gao’s study, the ratio of VA to p-HBA was determined as 0.51 in PM10 samples from Beijing
and 0.70 in PM2.5 samples from Godavari, South Asia. Such low values indicate that
agricultural residue is substantially burned for cooking or heating for the residents of the
North China Plain and South Asia [94]. The ratio of VA/p-HBA in aerosol samples collected
in Washington, D.C. is 0.35, which indicates that the burning of herbaceous plants in this
area is greater than that of conifers [94]. It should be noted that the relative abundance
of aromatic acids in the environment is not only controlled by emission characteristics
but also affected by possible transformations in the atmosphere (such as photochemical
degradation). Therefore, the ratios of VA/p-HBA close to the source area of biomass
combustion may be more reliable than that far away from the receptor area.

2.1.6. K+/EC, char-EC/soot-EC, FLU/(FLU + PYR) and IP/(IP + BgP)

There are many other methods to identify biomass burning sources such as K+/EC,
char-EC/soot-EC, PAH, and others. Here we briefly introduce three ratio methods.

First, K+/EC can be used to identify biomass burning. For example, in Cao et al.’s
study, they examined aerosols during biomass burning periods. A strong positive correla-
tion was observed among K+, OC, EC, and WSOC during the biomass burning episodes,
indicating an important contribution of crop residues burning to carbonaceous aerosols
during this biomass burning period. The ratios of OC/EC, K+/OC, K+/EC, and WSOC/OC
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for the agricultural-residue burning emissions were evaluated as 10.4 ± 0.5, 0.054 ± 0.006,
0.57 ± 0.07, and 0.48 ± 0.01, respectively [95]. The OC/EC ratio of 10.4, calculated in that
study, was much higher than that for the wheat-residue burning (3.0) but similar to the
previously reported ratio in paddy-residue burning (10.6) [96].

Second, the soot-EC/char-EC ratio depends on a mixture of different sources: motor
vehicle emissions and possibly grass burning result in higher soot-EC/char-EC ratios,
while wood combustion, particularly biomass burning by smoldering at low temperature,
produces lower soot-EC/char-EC ratios [97,98]. In coal combustion, this ratio can be very
low or high, depending on the type of coal [99]. In Lim’s study, the EC2 + 3/EC1 ratio of
1.25 in summer was comparable to the ratio of 1.67 for motor vehicle exhaust [97,100].

Finally, a FLU/(FLU + PYR) > 0.5 indicates coal and biomass burning. While a ratio of
IP/(IP + BgP) > 0.6 represents plant burning [101].

2.2. Principal Component Analysis
2.2.1. Introduction of PCA

The basic idea of principal component analysis is described in [102]. Briefly, a few
principal components are derived from original variables, and the information of the
original variables is retained as much as possible, though they are not related. It does not
require information on the source component spectrum, but one principal component may
contain multiple sources.

2.2.2. Application of PCA

In the field of aerosols, PCA is usually used to identify pollution sources. For example,
Wang et al. collected aerosol samples with a large capacity sampler in the Yellow Sea. Then,
the ions and metals were quantified by ICS-3000 and ICP-MS, and the combustion source of
light oil combustion, sea salt, SOA (secondary organic aerosol), and soil/metal melting was
determined by PCA [103]. Xu et al. collected PM10 aerosol samples in Fuzhou with a high
volume sampler. Ions were quantified by ICS-3000, and a mixture of secondary inorganic
aerosols, marine aerosols, and traffic sources were identified by PCA [104]. Thepnuan
et al. collected PM2.5 aerosol samples in Chiang Mai Province, Thailand, using a mini
volume air sampler. ICS-5000 and ICS-3000 were used to quantify the ions and sugar
alcohols and sugars in samples. Then PCA was applied to identify the sources of pollutants
in this field. Five factors, such as biomass burning of agricultural wastes, traffic-related
emission, photochemical formation of SO2 generated by traffic/industrial activity, biomass
burning, dust, and sea salt [56]. However, there is no research on using PCA to identify
the types of biomass burning, such as softwood, hardwood, grass, peat wood, and seed oil
combustion. If sufficient data are available, PCA can be applied to identify these different
types of burn products. The advantage of PCA is that before PMF analysis, PCA can
be selected to preliminarily determine the sources of pollution in the studied area. The
disadvantages are that there must be enough samples and that one sample may contain
more sources of pollution.

2.3. Source Tracer Ratio
2.3.1. Introduction of Source Tracer Ratio

The source tracer ratio method assumes that there is a fixed emission ratio between
the compound emitted from a certain source and the tracer of the source and that the
ratio will not change during the transmission process. Through the emission ratio and
the concentration of the tracer, the contribution ratio of the compound from this primary
source can be calculated as follows [105]:

[Compound] = [Compound]pri + [Compound]other + [Compound]bg (1)

[Compound]other = [Compound]− [Compound]pri − [Compound]bg
= [Compound]− ER × [tracer]− [Compound]bg

(2)
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In the formula, [Compound], [Compound]pri, [Compound]bg represent the measured
concentration of the compound, the concentration from the primary source, and the con-
centration from other sources, respectively. ER is the ratio of this compound to the tracer,
that is, the emission ratio.

The emission ratio was determined through observation data. The specific calculation
method assumes that ER is a known value, and then [Compound]other can be obtained
according to Equation (2) by subtracting the primary emission concentration and the
background concentration from the measured concentration. Because [Compound]other
has nothing to do with the selected discharge, there should be no correlation between
[Compound]other and [Compound]pri. By testing different ER values within a certain range,
the square correlation coefficient r2 of [Compound]other and [Compound]pri corresponding
to different ERs can be obtained. The ER corresponding to the lowest value in this series of
r2 is considered to be the actual emission ratio.

2.3.2. Application of Source Tracer Ratio

When applying the source tracer ratio method to determine the type of biomass
burning, each term in the formula can be defined by itself. For example, in our previous
study [106], SO2 was selected as the tracer for coal burning, and then the concentration of
levoglucosan was divided into two parts (Equation (3)): the concentration of levoglucosan
from coal burning ([Levoglucosan]coal) and the concentration of levoglucosan from other
types of biomass burning ([Levoglucosan]other). The enhancement ratio (ERs) can be
determined when the r2 between the concentration of levoglucosan from other biomass
burning and the concentration of SO2 is the minimum. Finally, the contribution of coal
burning to levoglucosan is calculated to be 15%, indicating that the types of biomass
burning include coal, such as peat and lignite burning.

[Levoglucosan] = [Levoglucosan]coal + [Levoglucosan]other

= ER ×
(
[SO2]− [SO2]bg

)
+ [Levoglucosan]other

(3)

The application of the source tracer ratio method is not prevalent. According to its
principle, appropriate tracers can be selected to identify the type of biomass burning, such
as peat, lignite, tobacco, etc. At the same time, the contribution of corresponding biomass
burning to the total biomass burning can be determined. The advantage of using the ratio
of source tracer is that it is simple and requires less data, but the disadvantage is that it
relies too much on the choice of tracers.

2.4. PMF
2.4.1. Introduction of PMF

Positive matrix factor analysis is an effective technique for source analysis, which
estimates the composition of pollution sources and their contribution to the environmental
concentration based on measured data at the receptor site. There is no need to require
source component spectrum information. Therefore, it is more suitable for areas where the
pollution sources are not very clear. The data matrix X with m rows and n columns (m and
n are the number of samples and the number of species, respectively) is decomposed into
the product of two matrices G (m multiplied by p) and F (p multiplied by n), and adding a
residual matrix E:

xij =
p

∑
k=1

gik fkj + eij (4)

in which Xij is the concentration of species j in sample i, p is the number of sources, g is the
contribution of the source, f is the mass ratio of the species to the source, and e is the residual.
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The PMF’s G and F are derived by minimizing the objective function Q as follows:

Q =
n

∑
i=1

m

∑
j=1

[
eij

uij

]2

(5)

The US EPA PMF 5.0 software is used for analysis. In the input data, The uncer-
tainty matrix uij of the sample is calculated according to the recommended method in the
operation manual: 1© If the concentration of the substance in the environmental sample
is lower than or equal to the detection limit of the analytical method, the uncertainty
Unc = (5/6) × MDL, where MDL is the detection limit of the analytical method; 2© If the
concentration of the substance in the environmental sample is higher than the detection
limit of the analytical method, the calculation formula of the uncertainty is:√

(ErrorFraction × Concentration)2 + (0.5 × MDL)2 (6)

In order to obtain reliable simulation results, the species are screened according to
the data quality. In the calculation, PMF models can decrease uncertainty by operating
a bootstrap from −1 to 1, and the conditions are continuously optimized until obtaining
excellent results.

2.4.2. The Application of PMF

In previous studies, PMF was also used to identify the sources of pollutants in the atmo-
sphere [107–110]. For example, Sowlat et al. collected the quantity and size of atmospheric
particles in the range of 14–760 nm (mobility diameter) by using a scanning mobility particle
sizer (SMPSTM, TSI Model 3081) and particles in the range of 0.3–10 µm (optical diameter)
were measured using an optical particle sizer in the University of Southern California’s (USC)
park campus [111]. Then, PMF was applied to analyze the sources of organic compounds. Six
sources, including nucleation, traffic 1, traffic 2, urban background aerosol, secondary aerosol,
and soil/road dust, were determined during the sampling period.

However, only two studies have used PMF to determine the type of biomass burning.
Bari et al. applied the PMF method to identify the sources of pollution from November
2005 to March 2006, and six source types were determined, including hardwood burning,
softwood burning, light oil burning, traffic, road dust, and other, as shown in Table 2 [89].
The contrition of each source was 43.1%, 5.8%, 13.4%, 7.2%, 8.2%, and 21.5%, respectively.
PMF was also used to study the type of biomass burning in Nanjing aerosols in the year
2016. In this study, the contribution of hardwood burning, softwood burning, and grass
burning to the total biomass burning in four seasons was calculated, and factor profiles,
time-series variation of contribution, and contribution of each type of biomass burning
in four seasons are given in Figures 8 and 9 [51]. PMF can not only identify the type of
biomass burning but also calculate the contribution of each burning source in a time series.
The disadvantage is that the quantity of data required is large; at least 90 samples should
be analyzed, and the more data, the more accurate it is.

Table 2. Organic compound mass fractions (%) of the six identified source factor mass concentrations and contribution (%)
of each source to the mass concentration of the determined organic compounds in residential areas [89].

Compounds Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Anthracene (Ant) 0.03 1.02 0.16 0.52 0.34 0.00
Retene (Ret) 1.27 2.02 0.00 0.85 0.32 0.30

Fluoranthene (Flut) 0.80 0.18 10.61 4.80 0.61 0.00
Pyrene (Py) 0.75 3.03 8.89 1.51 3.94 0.23

Chrysene (Chr) 0.37 1.30 2.90 1.77 3.35 0.95
Benzo[a]anthracene (BaA) 0.66 0.31 3.42 2.86 4.17 1.39

Benzo[k + b]fluoranthene (B[k + b]F) 0.54 1.82 2.11 1.33 3.88 1.60
Benzo[a]pyrene (BaP) 0.21 1.63 2.77 0.88 3.64 1.29
Benzo[e]pyrene (BeP) 0.42 1.21 1.94 1.44 3.07 0.98
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Table 2. Cont.

Compounds Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Perylene (Prl) 0.92 1.29 0.23 1.56 0.00 0.00
Dibenzo[a,h]anthracene (DBahA) 0.05 0.80 0.00 1.17 0.61 0.01

Indeno[1,2,3-cd]pyrene (IP) 0.32 1.53 0.62 1.05 2.40 1.36
Benzo[ghi]perylene (BghiP) 0.19 1.78 1.11 2.80 2.84 1.83

Syringaldehyde 18.84 1.44 0.00 0.00 0.00 6.53
Acetosyringone 52.54 1.46 0.00 0.00 0.00 29.92

Propionylsyringol 9.87 1.19 0.00 0.57 0.00 6.73
Sinapylaldehyde 21.98 8.34 0.00 0.00 0.00 1.35

Vanillin 0.19 1.57 0.00 0.00 0.00 1.28
Acetovanillone 1.13 1.72 0.00 0.00 0.00 0.35

Guaiacylacetone 5.27 5.73 0.00 0.00 0.00 1.66
Coniferylaldehyde 1.15 2.65 0.00 0.00 0.05 0.66

Levoglucosan 34.80 51.41 0.00 0.00 0.00 3.76
Dehydroabietic acid 6.29 29.65 0.00 0.00 0.00 0.93

Biomass burning types Hardwood Softwood Light oil Traffic Road dust Others
Contribution (%) 43.1 5.8 13.4 7.2 8.2 21.5
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3. Summary and Perspectives

In this review, we introduced various types of biomass burning, including Asian crop
residuals, wildfire, peatland, leaf, forest, grass, herbaceous plants, hardwood, softwood,
wheat, oil, and lignite, as well as the main components released. First, different tracers of
biomass burning were introduced. Levoglucosan is a common tracer of biomass burning in
the atmosphere. Methoxyphenols such as p-hydroxybenzoic acid, vanillic acid, isovanillic
acid, syringic acid, p-coumaric acid, ferulic acid, and homovanillic acid are unique trace
molecular markers of biomass burning in atmospheric aerosols. 1,6-anhydro-2-acetamido-
2-deoxyglucose is regarded as a specific marker for chitin in biomass burning emissions;
wax esters are regarded as unique tracers for this source. Nicotine is a tracer of tobacco
burning in aerosol samples.

Second, comprehensive methods to infer sources of biomass burning were illustrated.
Single tracers cannot readily identify the source of biomass burning because hardwood
and softwood can release the same tracers. However, the relative proportion of tracers
is different in various plant species. To distinguish the types of biomass burning, five
proportion methods have been adopted in this field, levoglucosan to K+, levoglucosan
to mannosan, levoglucosan to OC, levoglucosan to EC, vanillic acid to syringic acid, and
vanillic acid to 4-hydroxybenzoic acid. Other simple methods introduced include K+/EC,
char-EC/soot-EC, and characteristic ratios of PAHs.

Finally, this paper summarizes three other methods, including source tracer ratio,
principal component analysis, and the positive matrix fraction method. Both advantages
and disadvantages are shown in this review, as well as the limitations of the ratio method
to identify sources. Therefore, in the future, PCA, STR, and PMF, combined with the ratio
method, will play a dominant role in the identification of biomass burning sources.
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