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Abstract: Episodes with high air pollution and large amounts of aeroallergens expose sensitive
individuals to a health damaging cocktail of atmospheric particles. Particulate matter (PM) affects
the radiative balance and atmospheric dynamics, hence affecting concentrations of pollutants. The
aim of the study is to estimate feedback between meteorology and particles on concentrations of
aeroallergens using an extended version of the atmospheric model WRF-Chem. The extension, origi-
nally designed for PM and dust, concerns common aeroallergens. We study a birch pollen episode
coinciding with an air pollution event containing Saharan dust (late March to early April 2014),
using the model results, pollen records from Southern UK and vertical profiles of meteorological
observations. During the episode, increased concentrations of birch pollen were calculated over
the European continent, causing plumes transported towards the UK. The arrival of these plumes
matched well with observations. The lowest parts of the atmospheric boundary layer demonstrate a
vertical profile that favours long distance transport, while the pollen record shows pollen types that
typically flower at another time. The model calculations show that feedback between meteorology
and particles changes pollen concentrations by +30% and in some cases up to 100%. The atmospheric
conditions favoured meteorological feedback mechanisms that changed long distance transport of air
pollution and aeroallergens.
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1. Introduction

Allergic rhinitis (AR), caused by bioaerosols with allergenic contents, is estimated to
negatively affect 400 million people worldwide and more than 300 million from asthma [1].
Symptoms from AR negatively impact the quality of life [2,3] and patients with AR often
suffer from asthma or develop asthma later in life [4], formulated through the hypothesis
of one airway one disease [5]. Aeroallergens are just a fraction of bioaerosols [6] and
aeroallergens that typically have much lower atmospheric concentrations than traditional
air pollutants such as NOy and particulate matter (PM) [7]. The economic burden on society
from aeroallergens is substantial and in Europe it was estimated that just one aeroallergen,
ragweed pollen, costs Euro 7.4 billion annually [8].

Air pollutants are known to affect the potency of aeroallergens [9,10]. Many studies
indicate a need to consider both pollen species and standard air pollution for the epidemio-
logical evaluation of environmental determinants in respiratory allergies [10-12]. Large
geographical variations in allergenic potency were demonstrated [13,14]. Furthermore,
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pollen from urban areas and more polluted regions have higher amounts of allergens even
though the amount of pollen is the same [15]. High levels of chemical air pollution (e.g.,
SO;) and PM, e.g., from desert dust, have been observed along with long distance transport
(LDT) of aeroallergens [16]. LDT is generally episodic [17] and has been observed for many
different aeroallergens for a number of decades [18-20]. Similar, episodes with desert dust,
e.g., from Sahara, are also irregular. During such episodes, the atmospheric conditions
favour LDT of particles that are emitted into the air masses whether this is particulate
matter (e.g., PMjg) or bioaerosols (e.g., pollen). Tree pollen such as oak (Quercus) and
olive (Olea), dominate in southern Spain [21] in early April. In the UK, early April often
marks the start of the birch (Betula) pollen season [22], while oak usually peaks several
weeks later [23]. This suggests that during an air pollution episode with transport of desert
dust, the airstream may pick up pollen from different species during northwards transport.
Furthermore, desert dust episodes have been shown to cause a radiative feedback on
mesoscale meteorology [24] that intensify aerosol pollution [25]. A change in mesoscale
meteorology impacts air mass transport and hence LDT of particles. This suggests that
air pollution episodes, in particular those with high particulate matter associated with
transport of desert dust, could simultaneously coincide with LDT of several different
aeroallergens and impact mesoscale meteorology, significantly affecting the concentrations
of the aeroallergens involved. We test this hypothesis through the use of an atmospheric
model handling both air pollutants, bioaerosols and feedback, based on an extension of
WRF-Chem [26,27]. We do this by calculating the impact of feedback during a desert
dust episode 29 March-1 April 2014 and focusing on the United Kingdom. We identify
the existence of potential LDT transport of several bioaerosols by exploring all available
observations of allergenic pollen in central and southern England. Finally, we combine this
with an analysis of the atmosphere focusing on its vertical structure during the episode
using both observations and model calculations with and without feedback.

Commonly, the aerosol radiative feedback and properties are studied using observa-
tional in-situ and satellite data [28-30] as well as atmospheric dispersion models [31,32].
The usage of atmospheric dispersion models allows a separation of local and LTD com-
ponents of air pollutants but has rarely been conducted on bioaerosols (pollen). Using
WREF-Chem also provides an estimate of the aerosol radiative feedback effect on meteo-
rology and hence the LTD component of pollen concentrations. This, in turn, highlights
the advantage and necessity of our approach with respect to hypothesis testing. Finally, to
the author’s knowledge the study is the first ever attempt quantifying the effect of aerosol
feedback on pollen concentrations using atmospheric dispersion models.

2. Materials and Methods
2.1. Sites and Observation Methods of Pollen and Vertical Atmospheric Structure

The pollen observations in this study are obtained from five sites (Figure 1): Plymouth
(50.3544, —4.1199), Worcester (52.19670, —2.2421), the Isle of Wight (50.7111 —1.3009),
Cambridge (52.2116, 0.1349) and Ipswich (52.0561, 1.1984). Data from Plymouth, the Isle of
Wight, Cambridge and Ipswich are obtained from the background monitoring programme
operated by the UK Met Office. Meteorological observations are from the two sounding
sites, Herstmonceux (50.90" N, 0.32" E) and Camborne (50.22"' N, 5.32'" W), also shown in
Figure 1.
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Figure 1. Left (a) showing the geographical setup of the three model domains in the WRF-Chem extension with 108 km
(D01), 36 km (D02) and 12 km (D03) resolution (model results provided from the inner domain 3). Right (b) showing the UK
with the location of the 6 pollen monitoring sites (red dot and white background text) and the 2 sites with radio-soundings

(blue dots, grey background text) used in the study.

Both pollen monitoring sites and atmospheric sounding stations are located in southern
England (Figure 1) which is an area with limited elevation, typically 0-300 m [22]. Therefore,
this area has only limited impact on mesoscale meteorology caused by hills and mountains.
The area has substantial amounts of small woodlands with important pollen-producing trees
including Alder (Alnus), Birch (Betula) and Oak (Quercus) [22,33] To the South and East the
area is bordered by the North Sea and English Channel, with the European continent on the
other side. Pollen was recorded at all six sites using a Burkard volumetric pollen and spore
trap of the Hirst design [34], a method that has been used for decades in the UK monitoring
network [23]. Pollen is identified at the genus level according to Kédpyla and Penttinen [35],
here covering the eight trees Hazel (Corylus), Alder (Alnus), Willow (Salix), Birch (Betula),
Ash (Fraxinus), Elm (Ulmus), Oak (Quercus) and Plane (Platanus). Pollen measurements
are provided as daily mean concentrations (pollen/m?) according to international standard
recommendations [36]. We analyse the entire pollen record during the period 26 March—4
April 2014 (Table 1). Observations of the vertical structure of the atmosphere are obtained
through atmospheric soundings, which are provided by the on-line platform maintained by
University of Wyoming (Laramie, WY, USA) [37]. Here we extracted height above the surface
and vertical wind speed profiles for the central part of the episode: 29 March—1 April 2014. We
used all available wind speed observations from the surface and up to 3500 m, which typically
corresponds to 22-30 records. Observations are available at the main synoptic observational
time, i.e., 00 UTC.
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Table 1. Observed pollen concentrations in 2014 at the Isle of Wight (IoW), Worcester (Wor), Plymouth
(Ply), Cambridge (Cam) and Ipswich (Ips) for Betula (birch) and Quercus (oak).

Date Betula Sp. Quercus Sp.
25/3 Iow Wor Ply Cam Ips IoWw Wor Ply Cam Ips
26/3 1 0 0 5 27 0 0 0 0 0
27/3 3 1 0 1 63 0 0 0 0 0
28/3 1 4 0 6 319 0 0 0 0 0
29/3 21 24 1 27 326 0 0 0 0 0
30/3 113 310 21 330 76 0 1 1 0 0
31/3 27 330 24 149 432 0 0 1 0 0
1/4 8 147 1 142 1562 0 0 1 0 0
2/4 191 188 72 114 702 0 0 1 0 1
3/4 329 528 49 765 223 0 0 6 0 0
4/4 356 49 7 534 194 0 0 0 0 0
5/4 28 303 23 231 27 0 0 0 0 0

2.2. Geographical Setup of the Model Calculations and Choice of Parametrisations in WRF-Chem

The applied model is WRF-Chem [38,39] version 3.5 which was modified with a num-
ber of extensions (see next section). Here we applied the model using a polar stereographic
projection with 3 domains (Figure 1) of 108, 36 and 12 km resolution, respectively. This
geographical setup ensures that large-scale features leading to the transport of Saharan
dust are captured whilst the focus area (UK) has sufficient high geographical resolution, i.e.,
12 km. Previous studies in relation to pollen, atmospheric dynamics and emissions pro-
cesses identified 36 km as insufficient, while 12 km seems to work well in many cases [40,41].
The WRF-Chem model simulations start on the 23rd of March to ensure sufficient spin-up
(3 days) before the Saharan dust episode. The model is applied with two different scenarios:
with and without radiative feedback. The WRF part of the model has a similar setup as
Skjoth et al. [40] with 48 vertical layers and an increased number of layers near the surface.
Inputs to the model are daily sea surface temperatures and FNL (Final) global analysis data
maintained by the National Centre for Environmental Predictions (NCEP), having a spatial
resolution of 1° x 1° (longitude-latitude), a temporal coverage of 6 h, and a vertical resolu-
tion of 27 pressure levels. Each new layer is nudged into WRF-Chem. The most important
parameterisations are the following physical options: The rapid radiative transfer model
(RRTM) for longwave radiation [42], the Dudhia scheme for shortwave radiation [43] the
Kain Fritsch Scheme for cumulus parameterization [44] the Yonsei University scheme for
PBL physics [45] and the NOAH land-surface model [46]. This choice of parameterisations
follows the same setup of parameterisations as Skjeth et al. [40] which also corresponds to
well-tested studies using the WRF or WRF-Chem model [47,48] with the exception of the
Yonsei University scheme, which replaces the MYNN scheme [49] as the MYNN scheme
according to the WRF-Chem manual has not yet been extensively tested with the GOCART
aerosol module.

2.3. Extensions to the WRF-Chem Model

The GOCART (Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation
and Transport) module available in WRF-Chem v. 3.5 has been extended by adding
10 extra variables, complementing the existing bins in WRF-Chem. Each variable corre-
sponds to one of 9 different pollen types grouped at the genus level such as Betula sp.,
Quercus sp., Ambrosia sp. and Alnus sp., while the 10th variable is a duplicate of one of
the other variables with respect to physical properties, in this case Betula sp. This allows
for simultaneous runs of emission scenarios that can separate pollen sources (see next
section) and run the model along with both PM; 5, PM;( emissions as well as dust from
natural sources, in this case focusing on how the atmosphere transports pollen (and dust)
during a known Saharan dust episode. Dry and wet depositions of pollen particles in the
atmosphere are included in the WRF-Chem model by taking into account standard sizes
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of pollen grains with respect to the aerodynamic properties of spherical particles. In this
case we are focusing on birch, which has been given a particle diameter of 20 um and a
density of 1000 kg/m?3. Dry deposition in WRF-Chem contains both resistance analogy and
gravitational settling [50] here extended with the physical properties of the pollen. Wet
deposition uses the scavenging coefficient approach by Jung and Shao [51], which is both
relatively simple and provides similar results to other commonly applied schemes [51].
The wet deposition scheme takes into account collection efficiency of aerosol particles up to
40 um by different raindrop sizes up to 3000 pm. The original model code for wet deposi-
tion was obtained from the WRF-Chem v. 3.9 and was numerically optimised for efficient
runs in WRF-Chem and then extended with the 10 additional variables covering different
pollen types.

2.4. Emission to the WRF-Chem Model: PM and Pollen

Commonly, WRF-Chem emissions are based on external emission models and, in
the case of anthropogenic emissions, they are typically based on fixed emission factors.
In order to increase flexibility of the extensions and their geographical applicability, we
have taken a different approach by incorporating a pollen emission module that is directly
connected to the WRF Preprocessing System (WPS) and the hourly meteorological variables
in WRF/WREF-Chem. We added static maps to the WPS system such as tree cover, separated
into broadleaved and conifer trees and tree species maps that relate to either conifer or
broadleaved tree maps. The tree cover has been re-gridded to a global data set with
~0.017° resolution (a 40,320 x 16,354 lat-lon grid) obtained from a combination of the
Globcover data set [52] and CLC—Corine Land Cover [53]. We are here using the CLC
data set whenever possible as it provides the best representation of the two with respect
to smaller woodlands that are found in the UK and other European countries [22]. The
seasonal phenological model for birch flowering is the one described by Skjoth et al. [40],
originally developed for the Danish Eulerian Hemispheric Model [54] where it is calibrated
to the pollen season for Worcester 2014. Hourly pollen release is activated by sunlight
when it exceeds 1000 W/m? and deactivated during rain (0.5 mm/h) using an exponential
decrease that removes 20% of the available pollen mass/h during optimal conditions. This
pattern corresponds well to the typical increase in birch pollen concentrations as seen in
Northern Europe such as Worcester, London and Copenhagen, Denmark, where hourly
birch pollen concentrations typically increase rapidly after 9 AM (local time) due to local
emissions [55,56]. Pollen that is not being released during one day caused by unfavourable
conditions (e.g., during rainy days) is carried over to the following day and released if
conditions are favourable, in a similar way as the parameterisation in the atmospheric
model COSMO-ART [57]. Loss of catkins sometimes caused by rough weather can reduce
the expected pollen emission after the events. This process is neglected in our study. Such
simplification is primarily forced by limited knowledge but it is acceptable due to the focus
of the study. The emission factor that connects the amount of birch tree cover/m? with
pollen release is based on calibration runs in the same way as Hamaoui-Laguel et al. [58]
used the CHIMERE model. This is based on current recommendations on the use of
regional scale models [59,60] as current source maps for pollen generally need calibration
with pollen data for the study year at hand. Calibration was carried out for the entire
pollen season using a setup with only domain D01 and D02 in order to keep computational
costs low. After each run, the relative difference was calculated between modelled and
observed seasonal pollen integral, as defined by Galan et al. [36], and the emission factor
was correspondingly adjusted. After 3 calibration runs the difference between simulated
and observed pollen integral was less than 20% for Worcester and the emission factor was
accepted for use in the model runs with the three domains D01, D02 and DO03.

Anthropogenic emissions are global data sets providing annual emissions of PM; 5
and PM; from the EDGAR v 4.3 database [61] where all sources are lumped into one group.
Monthly, daily and hourly emissions are based on aggregated MACC emission variations
for PM; 5, with all sectors lumped together [62]. This is a simplification compared to
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air quality studies including both aerosols and chemical transformation. However, it is
sufficient as the focus of the study is emission and transport of natural emitted aerosols and
potential feedback mechanisms using the extended GOCART scheme. Natural emissions,
dynamically driven by meteorology, cover dust, sea-salt and pollen. Pollen emissions
in this study are divided into two groups: Birch pollen emission for Europe, which are
calculated by variable 1 in the GOCART extension and birch pollen emission for UK, which
are calculated by variable 10. The sum of the pollen emission therefore corresponds to total
emission, allowing the numerical separation into long distance transport and local (UK)
emissions by using the GOCART extension in WRF-Chem both with and without radiative
feedback from aerosols.

2.5. Evaluation of the Results

Model results are presented in a form of vertical profiles with wind speeds and are
compared with observations at the two sounding sites (Figure 2). This approach is often
used in modelling studies as an alternative to a more detailed post-processing method
involving interpolation of both model results and observations to a fixed set of pre-selected
heights [63]. Time series with daily mean concentrations of birch (Betula) pollen (with and
without feedback) are compared with observations at the 6 monitoring sites (Figure 3) series
with daily mean concentrations of birch (Betula) pollen (with and without feedback) and
compared with observations at the 6 monitoring sites (Figure 3). The pollen time series are
separated into emission sources into UK and emissions without UK. Maps (Figure 4) with
hourly mean concentrations of birch (Betula) pollen are produced with 12 h time intervals
during the central part of the episode (29 March—1 April) and the difference between the
scenario with and without radiative feedback is calculated for both Betula pollen (Figure 5)
and total accumulated dust (Figure 6). Total concentration of Betula pollen and dust pollen
with 6-h intervals are presented for detailed understanding. The difference in daily birch
pollen concentrations between the scenario with radiative feedback and without radiative
feedback is tested for significance (p = 0.05) assuming the difference between the two
variables is normally distributed. The results are presented in map-form with two possible
outcomes at each grid cell: significant difference or no significance.

Herstmonceux, 29th March Herstmonceux, 30th March Herstmonceux, 31st March Herstmonceux, 01st April

—e— WRF fe - rvations —e— WRF feed o—Observati —e—WRF feedh. —e— Observation: —o— WRF feet
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|
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Figure 2. Observed vertical profile of wind speed (red line) from the two atmospheric sounding sites
and calculated vertical profile of wind speed in the WRF model (domain03) with (blue line) and
without (grey line) radiative feedback. The upper panel corresponds to the Herstmonceux site, the
lower panel—to the Camborne site.
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Figure 3. Calculated birch pollen concentrations at the 6 sites, with and without radiation feedback, and splitting using two

scenarios: without the UK pollen sources and two scenarios with all pollen sources included. The calculated concentrations

are plotted versus the observations (red line). Note the y-axis is logarithmic in order to highlight differences at low

concentrations.
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Figure 4. Calculated birch pollen concentration (pollen/m3) without UK emission and without radiation feedback during
four days (a—h) 29 March-1 April 2014 with a 12-hour interval going from the top left to lower right.
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Figure 5. Calculated difference in birch pollen concentration (pollen/m?) between the two options with radiation feedback
and without radiation feedback during four days (a-h) 29 March—1 April 2014 with a 12-h interval going from the top left to

lower right. The results are based on the WRF-Chem calculations using the emission scenario without UK emissions.
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Difference (feedb. minus no feedb.) in dust, pg/m’, 3110312014, 00UTC Difference (foedb. minus no feedb.) in dust, ug/m’, 31/03/2014, 12UTC
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Figure 6. Calculated difference in dust concentrations (ug/m?) using the option with radiation feedback and without
radiation feedback during four days (a-h) 29 March-1 April 2014 with a 12-h interval going from the top left to lower right.

3. Results
3.1. Pollen Data and Expert Estimates, which Days the Pollen Data Suggest Long
Distance Transport

Unusual pollen events, that are indicative of LDT, occurred during the episode as follows
(Table 1): an unusually high Betula count of 1562 occurred at Ipswich on 1 April 2014. This
was the highest peak at this site since it started monitoring in 2011. Meanwhile, other sites had
high but relatively lower amounts of Betula pollen; Quercus pollen was found out-of-season at
Worcester, Plymouth and Ipswich throughout much of the period (Table 2). Other tree pollen
during that period are Corylus/Alnus (Table S1) and Salix/Fraxinus (Table S2).

Table 2. Observed pollen concentrations in 2014 at the Isle of Wight (IoW), Worcester (Wor), Plymouth
(Ply), Cambridge (Cam) and Ipswich (Ips) for Ulmus (elm) and Platanus (plane).

Date Ulmus Sp. Platanus Sp.
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Other pollen types were found by an expert palynologist at the Worcester site that are
also indicative of LDT. Firstly, an Ephedra sp. pollen grain was observed at 02:00 on 31st
March as part of routine counting. This pollen type is associated only with arid, desert
habitats and cannot grow in the temperate UK climate. Increased mineral material was
observed on the microscope slides at Worcester during the episode, notably from 09:00 on
29th March until 08:00 on 5th April, with a peak period of deposition occurring from 02:00
to 22:00 on 31st March. This period was subjected to additional microscope scanning to find
any other pollen types that could have arrived from the Saharan region. This additional
analysis revealed the following: Amaranthaceae (x1), Artemisia sp. (x1) and Paronychia
sp. (x2), all of which are found in arid regions. Although types of Amaranthaceae and
Artemisia can occur in the UK, their season is late summer, not early spring. Paronychia sp.
is a desert species and cannot grow in the UK.
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3.2. Vertical Structure of the Atmosphere: Observations vs. Model Calculations with and
without Feedback

The vertical profiles in wind speed (Figure 2) for Herstmonceux and Camborne,
covering the period 29 March-1 April, show a rapid increase in wind speed within the first
few hundred meters from the surface and for most of the period also a smaller decrease
again after 500-1000 m. The profile in WRF calculations is similar to the observed, but
generally overestimated with a few meters per second, i.e., less than 5 m/s for most profiles.
For most of the selected period there is limited impact from feedback in the horizontal wind
speeds and in most cases less than a few meters per second. Further exploration of the
vertical profiles (see supplementary information with all data) shows for many profiles an
increase in temperature and decrease in humidity within the lowest few hundred meters,
hence causing an inversion. This suggests that the air mass a few hundred meters up in
the atmosphere has a different origin compared to the surface and that this origin is likely
from Southern Europe. Additionally, strong dry winds in this air mass combined with an
inversion limits downwards turbulence and transport of material through the inversion
layer, which causes near ideal conditions for LDT of aerosols found in the dry air mass.

3.3. Observed and Simulated Birch Pollen Concentrations, Both Local (UK) and LDT

The model simulations show similar patterns in birch concentrations to the observa-
tions (Figure 3), here illustrated with a logarithmic scale to capture the full variability. The
results generally show that the pollen grains are observed one day earlier than in the model
simulations. The model simulations suggest a very large contribution from non-UK sources
during the episode for Plymouth and a smaller contribution to the Isle of Wight, whereas
the daily contribution from non-UK sources varies from day to at Worcester, Cambridge
and Ipswich (note that these three sites all are located further north than the three other
sites). For all the days the difference in birch pollen concentrations between simulation
with and without feedback is within £30%, except for five cases where there is an increase
of 52-104%.

3.4. Simulated Birch Pollen Concentrations, Both Local (UK) and LDT

The model simulations without UK contributions, i.e., local emissions turned off in
the model, (Figure 4) show that for only one of the 8 selected 12 h snapshots (Figure 4c),
during the period 29 March-1 April is there a considerable import from the continent,
while small areas of the most southern parts of UK have significantly influence on two
additional snapshots.

The difference in calculated birch pollen concentration (pollen/ m?) with and without
radiative feedback (Figure 5) and by excluding the UK sources, show that the impact in
most cases is less than 100 pollen/m? over the UK areas, while the source region (parts of
Belgium, Netherlands and France) experience differences up to 1000 grains/m?, noting
an almost checkerboard-based positive-negative pattern, potentially originating from a
spatial displacement of the pollen grains at the meso-beta scale (20 to 200 km), here using
the definition by Orlanski et al. [64].

Dust concentrations (Figure 6) show the impact of up to 5 pg/m? from feedback
mechanisms for the selected snapshots for the entire model domain, noting that most of
the dust source in this case is expected to originate from the Sahara.

Total simulated dust concentrations with 6 h intervals during the 31st of March
(Figure 7), show a plume reaching most of the UK. However, the daytime (12 and 18
UTC, Figure 7) snapshots show an added and significant contribution of pollen originating
from the continent. It should be noted that the pollen contribution is very small during
night-time (0 and 06 UTC).
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Figure 7. Calculated total dust concentrations (ug/m?) (a-d) and total birch pollen concentration (e-h) (pollen/m?3) (all
emissions included) and with radiative feedback during the central period of the episode the 31st of March 2014 with 6 h

intervals going from left to right (top: dust, bottom: pollen).

Overall contribution from feedback mechanisms on the daily mean concentrations
are statistically significant (p-value = 0.05) for nearly the entire model domain (Figure 8),
for each of the days, noting that hour to hour concentrations vary from 0 to more than

5000 grains/m? depending on the location and the time of the day (Figure 7).
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Calculated significance level (0.05) applying feedback the 29/03/2014 Calculated significance level (0.05) applying feedback the 30/03/2014

19 not significant N not significant
1 significant 1 significant

Calculated significance level (0.05) applying feedback the 31/03/2014 Calculated significance level (0.05) applying feedback the 01/04/2014

1 not significant W not significant
N significant W significant

Figure 8. Calculated significance (blue) and no significance (red) with respect to the difference in
daily mean pollen concentrations in applying radiative feedback vs. non-radiative feedback and
for each of the days (a-d) 29 March-1 April, going from left to right. The results are based on the
WREF-Chem calculations using the emission scenario without UK birch pollen emissions. The results
are statistically significant with p-value = 0.05.

4. Discussion and Conclusions

Our study reveals the importance of radiative feedbacks on pollen concentrations by
affecting meteorology. In most cases the difference was + 30% in pollen concentrations,
while increased concentrations with more than 100% were simulated. To the best of our
knowledge this is the first ever attempt at applying an online atmospheric dispersion
model, here WRF-Chem, to estimate the effect of the feedbacks on both local pollen and
long distance transport of pollen. In this case we focused on an event previously studied
with respect to chemical air pollution and PM [65], where it was found that increased
concentrations of PM arrived in two plumes to the UK, partly caused by anthropogenic
emissions and partly by Saharan dust. In our study we find that the impact from air
pollution on meteorology, through direct feedback processes, has a statistically significant
impact on pollen concentration and that the most important spring aeroallergen, birch
(Betula) pollen, showed unusually high concentrations during the air pollution episode
(Figure 3 and Table 1). This was complemented with import of pollen types that were
out-of-season for the UK, from Southern Europe and a few pollen types found only in
arid regions. This means that those that suffer from allergic rhinitis have been exposed
to a harmful cocktail of pollen and aeroallergens (e.g., Figure 7). Elevated air pollution
has previously been shown to exacerbate respiratory symptoms [66] among patients and
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air pollution has been shown to increase allergenic potency [9]. Now, with our study, air
pollution is shown to impact pollen concentrations through feedback mechanisms with
meteorology. Saharan dust, relevant for this episode, can have a significant impact on
meteorology when the conditions are favourable [67]. Feedback effects on meteorology
caused by intense air pollution events have previously been shown to have an important
impact on air pollution [32], both due to direct effects on radiation and indirect effects
on clouds. These feedback effects have been shown to systematically change forecasting
results [32]. Our findings are therefore consistent with these previous results and show that
large impacts are found in the areas with large emissions but may also have a statistically
significant effect throughout the entire study area.

We found that the model simulates levels of high pollen concentrations consistent
with observations during the episode studied, but that the model misses the arrival of
the first plume by a one day delay. Errors at this scale or larger are often found using
numerical transport models when simulating birch pollen concentrations [27,68]. The
reason for the late arrival is probably caused by lack of calibration of the source term in the
source area. This is an aspect previously highlighted by several authors [59,60] and for the
first part of the simulation most likely related to areas in Northern France, Belgium and
The Netherlands (e.g., Figure 7), consistent with findings by Vieno et al [65]. We also find
that for most of the episode, the majority of the birch (Betula) pollen is due to UK sources
(Figures 3 and 4). This suggests that a priority for UK based modelling should be on the UK
source term [69], supporting similar conclusions for Belgium [69]. The first plume of Birch
pollen is according to the model, entirely caused by LDT, an aspect previously found in
both Denmark [70] and Germany [71], here highlighting the usefulness of transport models
to predict the start of the season. Predicting the start of the birch pollen season accurately
is very valuable to hay fever patients sensitized to birch pollen, allowing them to mitigate
the impact of these aeroallergens. Our results suggest that WRF-Chem is a suitable tool for
predicting LDT to the UK from the continent.

The meteorological observations as well as the WRF-Chem model show a vertical
structure of the atmosphere that involves an inversion and strong dry winds (Figure 2)
which favours LDT but also suppresses transport to the surface, driven by turbulence. This
was found to be very important for the beginning of the episode keeping the Saharan dust
elevated above the surface [65]. In the case of pollen, the UK pollen record shows a range of
different pollen types, some of them in smaller quantities. The origin of these pollen could
be local but also could have a source in the Netherlands, Belgium, France or maybe even
Spain depending on the origin of the air mass. This is one explanation for the presence of
pollen in the UK record found outside its normal season. For example oak, which flowers
later in April or May would be able to reach UK as the air mass passing Spain and France
passed areas where this type was flowering [72]. Here the presence of the LDT component
in the pollen record in late March or the beginning of April contradicts the finding by Vieno
et al. [65] in which most air pollution was kept elevated and away from the surface. The
most likely reason is the relatively large settling velocity of pollen (~1 cm) compared to
the much smaller settling velocity for fine particulate matter [73] enabling a fraction of
the pollen grains to reach the surface. Here the complex pattern of the air masses with
Saharan dust enabled collection of pollen from countries to the south of the UK, typically
with an advanced pollen season compared to the UK. It also enabled capture of pollen
from areas to the east or northeast with later pollen seasons compared to the southern UK.
This suggests that during such episodes, there is a likelihood for arrival of a larger range of
pollen to arrive in the UK, augmenting the UK pollen concentrations, where the type of
pollen that arrives will depend on the seasonality in the source region.

Overall, during episodes of Saharan dust the atmosphere is in a state that favours
long distance transport of PM and aeroallergens from a large geographical region. The
high concentration of PM (Figure 5) affects the radiative balance which in turn significantly
affects pollen concentrations (Figure 8), increasing co-exposure of pollen and air pollutants.
The impact is in most cases statistically significant, but the largest impact, and hence
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clinically most important one, is found in the areas with considerable pollen emission
causing high concentrations (Figures 5 and 6). A number of studies have repeatedly
discussed the impact of emission on local pollen concentrations [59,74]. This underlines
that during such severe episodes, the impact of air pollution on meteorology should not be
neglected as it can be expected to have a significant contribution to pollen concentrations
in areas with pollen emission and to some extent on the long distance components.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12111376/s1. Table S1: Observed pollen concentrations in 2014 at Isle of Wight (IoW),
Worcester (Wor), Plymouth (Ply), Cambridge (Cam) and Ipswich (Ips) for Corylus (hazel) and Alnus
(alder). Unusual pollen counts are highlighted; Table S2: Observed pollen concentrations in 2014 at
Isle of Wight (IoW), Worcester (Wor), Plymouth (Ply), Cambridge (Cam) and Ipswich (Ips) for Salix
(willow) and Fraxinus (ash).
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