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Abstract: The objective calibration method originally performed on regional climate models is
applied to a fine horizontal resolution Numerical Weather Prediction (NWP) model over a mainly
continental domain covering the Alpine Arc. The method was implemented on the MeteoSwiss
COSMO (consortium for a small-scale modeling) model with a resolution of 0.01◦ (approximately
1 km). For the model calibration, five tuning parameters of the parameterization schemes affecting
turbulence, soil-surface exchange and radiation were chosen. A full year was simulated, with the
history of the soil included (hindcast) to find the optimal parameter value. A different year has been
used to give an independent assessment of the impact of the optimization process. Although the
operational MeteoSwiss model is already a well-tuned configuration, the results showed that a slight
model performance gain is obtained by using the Calibration of COSMO (CALMO) methodology.

Keywords: calibration; fine resolution; unconfined parameters

1. Introduction

Objective calibration of numerical weather prediction (NWP) models refers to a
systematic and automatic procedure to improve model quality and quantify sensitivity with
potential changes in the parameterization schemes. The need for an objective calibration
method stems from the common experience that the NWP model-simulated meteorology
exhibits high sensitivity to parameterization changes in certain respects but nonetheless
proves difficult to constrain in observations. Therefore, a common practice widely used
in state-of-the-art NWP models is tuning, using expert knowledge without following a
well-defined strategy [1–4]. This is also the case in the COSMO model [5], where ‘expert
tuning’ is typically made once during the development of the model, for a certain target
area, and for a certain model configuration, and is difficult, if not impossible, to replicate.

The calibration approach to substitute tuning relies on a procedure developed origi-
nally for global climate models by Neelin et al. [6] and implemented in the regional climate
model, COSMO-CLM, in the work of Bellprat et al. [7,8] The main idea of the specific
calibration approach is to approximate the model response resulting from parameter per-
turbations using a computationally efficient statistical regression model (metamodel). The
mathematical function at the core of the metamodel is constrained by a minimum set of
full model simulations over a time period long enough to represent the variability of the
atmospheric conditions. Once fully specified, the metamodel supports a fast sampling of
the parameter space to find an optimal combination of the model parameters since the
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metamodel is computationally efficient, and hence millions of parameter experiments can
be conducted. Using an automated approach reduces the risk of compensating errors, as it
considers simultaneously a large number of model parameters, observational datasets, and
sources of uncertainty.

Based on these works, the priority projects CALMO (Calibration of COSMO model),
and consequently CALMO-MAX (CALMO Methodology Applied on extremes), have
been integrated within the COSMO consortium, aiming at transferring this method to
calibrate the COSMO-NWP model applied in different resolutions [9,10]. A detailed
description of the procedure is available in Khain et al. and Voudouri et al. [11–13] At
the framework of CALMO-MAX, the results of which are presented here, the calibration
procedure has been applied to a fine horizontal resolution of 0.01◦ (approximately 1 km)
over a mainly continental domain covering the Alpine Arc, for an entire year and for
twenty-one meteorological fields. Calibration is performed using a set of five unconfined
model parameters. The selection of parameters is determined by the fields used in the
overall performance score, which should be sensitive to the chosen parameters and should
reflect the forecaster needs; and finally, the maximum score will indicate the optimal set of
parameters. There are several metrics to validate the performance of the NWP model with
respect to the model variables considered [14,15]. Validating and calibrating a model using
only one variable might be risky, as targeting the improvement of a specific variable (e.g.,
maximum temperature) might influence the performance of another one; therefore, the
selected measure should combine all the meteorological fields affected. The comparative
metric (performance score) chosen for this scope in CALMO-MAX was the Global Skill
Score called “COSI”, widely used by COSMO since 2007 to judge the long-term trend of the
models’ performance [16]. As the goal of the calibration was to improve the quality of daily
operational forecasts, the fields considered in the performance score are meteorological
quantities used by bench forecasters, such as 2 m temperature, precipitation, dew point
temperature and wind speed.

The steps followed in the present work, such as model setup, selection of parameters,
sensitivity experiments and performance score, are briefly described in Section 2, while
in Section 3 the results of CALMO-MAX applied over Switzerland are discussed. The
conclusions are summarized in Section 4.

2. Methodology
2.1. Model Setup and Observational Data

The NWP model used is the refactored version of COSMO 5.03, capable of running on
GPU-based hardware architectures [17], operationally used by MeteoSwiss. Simulations
have been performed for two independent years, 2013 mainly for the calibration and 2017
for the validation of the procedure. The model runs with a horizontal resolution of 0.01◦

(approximately 1 km) over a domain including the Alpine Arc (in particular the wider area
of Switzerland and Northern Italy), shown in Figure 1, in the hindcast mode. The grid
extends vertically up to 23.5 km (~30 hPa) with 80 model levels. Initial and boundary fields
for all tests are provided by the MeteoSwiss operational forecasting archive system. Note
also that the soil history is considered for all the CALMO-MAX simulations, and a prior
3 year soil spin-up has been computed using terra standalone (TSA). The model output is
constrained toward observations of daily minimum and maximum 2 m temperature, hourly,
6 h and 24 h accumulated precipitation. For temperature, the available measurements of
daily mean surface air temperature selected at the dense station network of MeteoSwiss
was used. For precipitation, observations over Switzerland were available through the
gridded MeteoSwiss radar composites corrected by rain gauges and interpolated to the
model grid. Over Northern Italy, observations interpolated to the model grid were used,
while over the rest of the simulation domain, the available observations from stations
are used (Figure 1). In addition, vertical model profiles at grid points near the sounding
locations were considered.
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2.2. Sensitivity Experiments

Description of physical processes is achieved through sophisticated parameterization
schemes existing in NWP models as COSMO, that often include many unconfined, or ‘free’
parameters, that constitute the list of potential candidates for calibration. These parameters
are related to sub-grid scale turbulence, surface layer parameterization, grid-scale cloud
formation, moist and shallow convection, precipitation, radiation and soil schemes [18,19].

In the framework of CALMO-MAX, an extended preliminary set of eleven parameters
covering turbulence, surface layer parameterization, grid-scale precipitation, moist and
shallow convection, radiation and the soil scheme have been tested. Several sensitivity
experiments have been performed by Avgoustoglou et al. [20] to define the subset of
the most ‘triggering’ parameters for calibration over the Swiss domain. The five model
parameters, chosen for CALMO-MAX, are: minimal diffusion coefficients for heat, tkhmin
(in m2/s), scalar resistance for the latent and sensible heat fluxes in the laminar surface
layer, rlam_heat (no units), factor in the terminal velocity for snow, v0snow(no units), the
parameter controlling the vertical variation of critical relative humidity for sub-grid cloud
formation, uc1 (no units) and the fraction of cloud water and ice considered by the radiation
scheme rad_fac (no units). Table 1 summarizes these parameters, while the third column
shows their default values (in bold letters) and related ranges (minimum and maximum
bound) determined by expert elicitation.

Table 1. Parameters used for calibration and their ranges. Default values in bold letters.

Acronym Parameter/Property Value

Tkhmin
(LTKHM minimum and

HTKHM maximum value)
Minimal diffusion coefficient for heat (0.1, 0.4, 1)

rlam_heat
(LRLAM minimum and

HRLAM maximum value)
Factor for laminar resistance for heat (0.1, 1, 2)

uc1
(LUC1 minimum and HUC1

maximum value)

Parameter controlling the vertical
variation of critical relative humidity

for sub-grid cloud formation
(0, 0.8, 1)

v0snow
(LV0SN minimum and

HV0SN maximum value)
Factor for vertical velocity of snow (10, 20, 30)

rad_fac
(LRADFAC minimum and

HRADFAC maximum value)

Fraction of cloud water and ice
considered by the radiation scheme (0.3, 0.6, 0.9)
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The selection of these unconfined parameters is based on their sensitivity with respect
to meteorological fields considered in the performance score, such as 2 m temperature,
wind speed and direction, precipitation needed for an everyday forecast, and was tested
also over a different domain [21]. Sensitivity of 2 m temperature (in ◦C) and dew point
temperature is expressed as the difference between the 2 m temperature using a test value
for a parameter (Ftest) minus the one using the default (proposed by model developers)
parameter value (Fdef).

S = Ftest − Fdef (1)

Figure 2 summarizes the monthly domain difference of the 2 m temperature for
each parameter, namely tkhmin (Figure 2a), rad_fac (Figure 2b), uc1 (Figure 2c), v0snow
(Figure 2d) and rlam_heat (Figure 2e). It should be noted that different scales are used;
thus, the graph with the largest scale range denotes the most sensitive parameter. The
red polygon refers to the zero sensitivity “axis”, where the test value of the parameter
gives the same 2 m temperature as the one gained using the default parameter value.
Blue and orange lines connect monthly 2 m temperature differences when the parameter
takes its minimum, denoted with L in front of the parameter acronym (e.g., LTKHM for
tkhmin) and maximum value with H, respectively (e.g, HV0SN for maximum v0snow). As
shown in Figure 2a–c, 2 m, the temperature is, as expected, mainly affected by turbulence
(represented by tkhmin), where the temperature difference within the parameter range
(blue and orange lines) reaches 0.4 ◦C for December, January and March and by radiation
(rad_fac and uc1 parameters) with up to 0.3 ◦C for April and May, parameterization
schemes. On the contrary a low sensitivity of 2 m temperature on grid scale precipitation
and surface parameterization scheme is evident, as changing v0snow (factor for vertical
velocity for snow) and scalar resistance for the latent and sensible heat fluxes in the laminar
surface layer (rlam_heat) gives a maximum temperature difference of 0.09 ◦C for August
(Figure 2d) and only 0.07 ◦C, for April, respectively (Figure 2e).

Sensitivity experiments on the effect of the five parameters throughout the year have
also been performed for several meteorological fields and these yearly sensitivities for
2 m temperature, dew point temperature, 24 h accumulated precipitation (kg m−2), 24 h
accumulated grid-scale snow (kg m−2) and hourly total cloud cover average (%) are
illustrated in Figure 3a–e, respectively. As in Figure 2, the red polygon refers to the zero
sensitivity “axis”. The sensitivities for each parameter are depicted with green bullets,
where H and L stand for maximum and minimum parameter values. The dashed polygon
line that connects the dots denotes optically the overall sensitivity for the considered
meteorological variable, especially to the degree that it is convex/concave and mainly
in reference to the zero-sensitivity red polygon. Different scales are used, as for 2 m
temperature, and dew point temperature sensitivities (calculated using Equation (1)) are
in ◦C, while for precipitation, snow and total cloud cover, sensitivities are expressed as a
percentage. Sensitivity values (S) on the spider graphs for precipitation, snow and total
cloud cover are defined as:

S(%) =
Ftest − Fdef

Fdef
100 (2)

where Ftest is the meteorological field value (precipitation, snow, total cloud cover) when a
test value of the parameter considered is used and Fdef represents its default parameter
value. Similarly to the monthly sensitivity shown in Figure 2, 2 m temperature, changes
up to 0.25 ◦C throughout the year and is affected mainly by tkhmin and rad_fac and uc1
(Figure 3a). Dew point temperature is less sensitive than 2 m temperature to these five
parameters (as the same scale is used), with higher differences being 0.05 ◦C for rlam_heat,
rad_fac and uc1 as shown in Figure 3b. Precipitation is affected by changes in rad_fac,
uc1 and also v0snow up to 8% (Figure 3c), while for v0snow, different values leverage,
as expected, with snow up to 20% (Figure 3d). Hourly average total cloud differs up to
14% when changing uc1, namely the parameter associated with sub-grid cloud formation
(Figure 3e).
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2.3. The Performance Score

Once the meta-model is fitted, it can be used as a surrogate to perform a large number
of simulations, testing several parameter values in order to find the optimum ones. The
goal is to use the meta-model to obtain the highest performance score, which indicates the
optimal set of parameters. Thus, the definition of a suitable metric (i.e., the performance
score) capable of overall validatation of the quality of the model output is a key element
in the calibration method. The performance score (PS) applied in this work is based on a
modification of COSMO Index (COSI) [16] to reflect changes in the model performance
associated with more meteorological fields rather than the ones originally used. The PS
used combines meteorological fields such as daily 2 m temperature, maximum (Tmax)
and minimum 2 m temperature (Tmin); 24 h accumulated precipitation (Pr), and sixteen
fields, whose observations can be provided by soundings, that is: Total column water vapor
(TCWV); Vector wind shear between the levels of 500 mb and 700 mb (WS1); Vector wind
shear between the levels of 700 mb and 850 mb (WS2); Vector wind shear between the
levels of 850 mb and 1000 mb (WS3); Temperatures at 500 mb (T500), 700 mb (T700) and
850 mb (T850) respectively; Relative humidity at 500 mb (RH500), 700 mb (RH700) and
850 mb RH850) respectively; East-west wind component at 500 mb (U500), 700 mb (U700)
and 850 mb (U850) respectively; South-north wind component at 500 mb (V500), 700 mb
(V700) and 850 mb (V850). The equation of the PS (already used in CALMO-MAX) has
been presented in Voudouri et al. [12] Negative PS is associated with a reduction in the
performance, while positive PS indicates an improvement in the performance of the model
attributed to the ‘optimum’ parameter values replacing the default ones.

3. Results and Discussion

In this section, the results obtained in the frame of CALMO-MAX are presented.The
MeteoSwiss COSMO-1 configuration at 0.01◦ resolution has been calibrated, selecting the
five model parameters described in Section 2, using a full year statistic, to demonstrate
the benefits of the methodology. The year 2013 has been chosen as climatologically rep-
resentative of the target area. A different year, that is 2017, has also been used to have an
independent assessment of the impact of the optimization process.

The minimum number of simulations for the N parameters to fit the meta-model is
according to Neelin et al. [6], 1 + 2N + N (N − 1)/2. Therefore, for 5 parameters 21 model
runs have been performed for 2013 to determine the optimum set of these parameters.
It should be noted that although the calibration is performed over the entire year, opti-
mum parameter values are extracted over sets of 10-day periods. An average for these
36 periods is then produced to extract the best optimum parameter set over the entire
year. The optimum parameter values were extracted as follows: tkhmin = 0.279 (m2/s),
rlam_heat = 0.929, v0snow = 18.95, rad_fac = 0.6775 and uc1 = 0.7686. The default parame-
ter values were replaced by these “optimal” values, and model simulations for 2013 have
been performed again to investigate the improvement in model performance. Additionally,
simulations for 2017 have been performed to examine whether the optimum parameter set,
calculated for the year of the calibration, is also beneficial for a different independent year.

The verification of simulations using default parameter values (tkhmin = 0.4 (m2/s),
rlam_heat = 1, v0snow = 20, rad_fac = 0.6 and uc1 = 0.8) (DEF) against the one using
optimum parameter set (BEST) for 2 m temperature, dew point temperature and 10 m wind
speed are presented in Table 2 for 2013 and 2017, over the entire simulation domain. More
specifically, statistical measures such as mean error (ME), root mean square error (RMSE),
minimum (MINMOD) and maximum (MAXMOD) model values, minimum (MINOBS) and
maximum (MAXOBS) observed values are shown. According to the statistics of Table 2,
BEST configuration allows a decrease in dew point temperature and 10 m wind speed for
2013 and 2017, while there is a small increase of 2 m temperature in 2013. However, there
is an overall balance between the minimum and maximum modeled temperature values
compared to the observed ones, which is 0.1 ◦C closer to the observed minimum when
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using default parameter values and is equally close to the maximum observed temperature
when using the optimum ones.

Table 2. Statistics of selected meteorological fields for 2013 and 2017.

Parameter T2 m (◦C) Td (◦C) 10 m Wind Speed (m/s)
Year 2013 2017 2013 2017 2013 2017

Measure/Simulation DEF BEST DEF BEST DEF BEST DEF BEST DEF BEST DEF BEST
ME 0.01 0.04 0.18 0.09 0.06 −0.01 −0.029 −0.029 0.13 0.11 0.115 0.104

RMSE 2.07 2.07 2.22 2.21 2.31 2.33 2.37 2.36 1.9 1.9 1.955 1.954
MINOBS −30.7 −29.6 −73 −54.8 0 0

MINMOD −28.6 −28.5 −30.2 −30.0 −37.48 −38.67 −44.41 −45.47 0.007 0.001 0.0012 0.0013
MAXOBS 40.8 42 39 41.2 46 40.1

MAXMOD 42.7 42.6 44.03 43.38 25.24 25.77 24.86 25.00 29 29 28.19 28.04

In addition, a comparison of the daily cycle (averaged over the entire year and entire
model domain) of 2 m temperature ME when using the default (blue line) and optimum (red
line) parameter values for 2013 are shown in Figure 4. An improvement is evident, as there
is a decrease in ME of 0.1 ◦C during daytime when substituting default parameter values
with the optimum ones. The maximum and minimum dew point temperature calculated
using the optimum parameter set is closer to the observed ones for 2013 and 2017.
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Figure 4. Daily cycle (averaged over the entire year and entire model domain) of 2 m temperature ME when using default
(blue line) and optimum (red line) parameter values for 2013.

A decrease in the ME of the 2 m temperature is observed when using the optimized
configuration, which is 0.09 ◦C instead of 0.18 ◦C for 2017, as shown in Table 2. This is
also the case for 10 m wind speed, with ME equal to 0.104 m/s against 0.115 m/s, while
the dew point temperature ME remains stable and there is also a small improvement
of approximately 0.01 ◦C in RMSE of 2 m temperature for 2017. Thus, the calibration
procedure objectively provides a value of a ‘free’ parameter other than the one subjectively
defined by the model developers that gives equally good model results and also slightly
improves the model performance.

4. Conclusions

The implementation and consolidation of an objective calibration method on the fine
resolution COSMO model over the MeteoSwiss operational domain has been examined
at the framework of the CALMO-MAX project. A limited number of parameters that
are associated with the main parameterization schemes affecting turbulence, soil-surface
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exchange and radiation has been used for the calibration. The impact of the optimization
process on 2 m temperature, dew point temperature and 10 m wind speed has been
investigated not only for the base year of the calibration, but also for a different year to
have an independent assessment. Although the results presented showed only a slight
model performance gain obtained using the specific methodology, the fact that the chosen
model configuration is based on the operational model of MeteoSwiss should be considered.
The specific model configuration is close to the DWD configuration, an already well-tuned
configuration by model developers. In addition an improvement is evident for the year 2017
and is used for the independent assessment, indicating that the determined as optimum
parameter values for 2013 are also valid for 2017.

It should be noted that this objective calibration methodology could have a signifcant
impact on the future development of NWP models. More specifically, once the computa-
tional cost is reduced, the developed methodology could be used by any NWP model to
define an optimal calibration over the target area of interest, for re-calibration after major
model changes (e.g., different horizontal and/or vertical resolution) and for an unbiased
assessment of different modules (e.g., parameterization schemes), as well as for optimal
perturbation of parameters when run in ensemble mode.

Furthermore, a better understanding of the sensitivity of the model quality associated
with a specific parameter value, as provided by the meta-model, could benefit the quan-
tification of the flow-dependent model forecast and could clarify the impact of a specific
parameter on the overall model performance.
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