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Abstract

:

In the last few decades, agricultural drought (Ag.D) has seriously affected crop production and food security worldwide. In Hungary, little research has been carried out to assess the impacts of climate change, particularly regarding droughts and crop production, and especially on regional scales. Thus, the main aim of this study was to evaluate the impact of agricultural drought on sunflower production across Hungary. Drought data for the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) were collected from the CARBATCLIM database (1961–2010), whereas sunflower production was collected from the Hungarian national statistical center (KSH) on regional and national scales. To address the impact of Ag.D on sunflower production, the sequence of standardized yield residuals (SSYR) and yield losses YlossAD was applied. Additionally, sunflower resilience to Ag.D (SRAg.D) was assessed on a regional scale. The results showed that Ag.D is more severe in the western regions of Hungary, with a significantly positive trend. Interestingly, drought events were more frequent between 1990 and 2010. Moreover, the lowest SSYR values were reported as −3.20 in the Hajdu-Bihar region (2010). In this sense, during the sunflower growing cycle, the relationship between SSYR and Ag.D revealed that the highest correlations were recorded in the central and western regions of Hungary. However, 75% of the regions showed that the plantation of sunflower is not resilient to drought where   SRAg .  D x    < 1. To cope with climate change in Hungary, an urgent mitigation plan should be implemented.
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1. Introduction


Climate change is one of the most challenging and complex issues facing the world today [1]. Over the last few centuries, the burning of fossil fuels and widespread deforestation have resulted in increased atmospheric greenhouse gas (GHG) concentrations, which have led to significant climate shifts across the planet [2]. Since 1750, the concentrations of GHGs such as methane (CH4), carbon dioxide (CO2), and nitrous oxide (N2O) have risen by 156%, 47%, and 23%, respectively [1,3]. Due to anthropogenic activities, the average temperature rose by 0.99 °C, in the first two decades of the 21st century (2001–2020), and according to predictions, by 2050, the temperature increase is expected to reach 1.5 °C, or perhaps even higher than the average temperature in the preindustrial period (1850–1900) [1]. This accelerated rise in temperature has caused a spike in droughts, floods, irregular precipitation patterns, heat waves, and other extreme climate events around the world [4,5].



According to the annual report of Weather, Climate, and Catastrophe Insight [6], natural disasters alone caused direct losses and damage totaling over USD 268 billion worldwide in 2020; on average, losses due to natural disasters and emergencies have exceeded USD 200 billion per year since 2016. Approximately 95% of these losses are linked to weather-related events, where hurricanes, floods and droughts are the major contributors and have a direct link to climate change [6]. Overall, the impact of climate change is extensive, but its effects are now clearly visible on the agricultural sector [7], on which the world’s food production and economy relies. It is also important to highlight that the world population is predicted to hit 9.7 billion by 2050 [8], which would increase the pressure on the agricultural sector to fulfill the growing food demands already impacted by climate change.



Among natural disasters caused by weather and climate change, drought is a unique issue; the global trend towards more or less frequent drought episodes is still a highly discussed topic [9,10,11,12,13,14]. This is attributed to the complicated characteristics of droughts, which usually develop slowly but can extend for months or even years [15,16]. Furthermore, the consequences can have a variety of effects on several sectors [17,18,19,20]. Additionally, the lack of a unified universal definition [21,22] and the wide range of indicators used to assess meteorological, agricultural, hydrological, and socioeconomic droughts [23] enhance the complexity.



Drought impacts all socioeconomic and environmental systems [24], with significant effects on anthropogenic fields including agriculture, forestry, water resource management, energy generation, and health [25]. Drought impacts can be divided into two categories: direct and indirect [25]. Direct effects include decreased crop production [26], increased numbers of forest fires [27], decreased water levels [28], and increased livestock mortality rates [29]. Indirect effects of drought include highly unstable food prices, which may be exacerbated by market effects in the agricultural sector [30]. As a result, estimating total costs and losses at the regional and national levels is difficult. Indirect losses are mostly greater than direct losses [31], although they are more difficult to link to a specific event.



In order to detect, monitor, and characterize drought events, many drought indices have been developed, such as the Palmer Drought Severity Index Standardized (PDSI) [32], Precipitation Index (SPI) [33], and the Standardized Precipitation Evapotranspiration Index (SPEI) [34]. Table 1 presents more details about the most commonly used drought indices in the literature.



In Europe, the accelerated warming in this region [42], in comparison with many other parts of the world, has intensified drought events for prolonged periods, accompanied by rising temperatures and low rainfall, particularly in the center of the continent (i.e., Hungary) [43,44].



Hungary, similarly to other European countries in the Carpathians, is affected by droughts and climate change [45,46]. Droughts have been common in Hungarian history, leading to reduced crops, animal devastation, and the risk of hunger and illnesses [47]. The frequency of drought events has also increased significantly in Hungary [47]. Generally, every two years, Hungary experiences a moderate drought, and every three years, it experiences a severe drought [48]; these drought conditions are projected to continue for the rest of the 21st century [45,49]. In this sense, little research has been conducted in Hungary to assess the impact of climate change on crop production, especially on a regional scale. Hence, our understanding of the direct impacts of different drought cycles on crop production is still limited. Thus, the main aims of this research were: (1) to track agricultural drought (Ag.D) evolution across Hungarian counties between 1960 and 2010 by using the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI); (2) to analyze the dynamic interaction between sunflower yield and drought cycles; and (3) to identify the counties most prone to drought. In this study, sunflower crops were chosen due to their economic importance, where it is considered one of the most important oil crops (550,000 ha) across Hungary.




2. Materials and Methods


2.1. Data Collection and Trend Analysis


Agricultural drought (Ag.D) data were collected from the CARBATCLIM database [50]. The CARBATCLIM platform provides researchers with necessary climate data between 1960 and 2010 for the whole Carpathian Region (44° N and 50° N, 17° E and 27° E). This project was supported by the European Commission, and the output is a climate atlas with spatial resolution 0.1° × 0.1° [51,52]. Within the CARBATCLIM database, Hungary is covered by 1045 grid points (Figure 1), where each point contains all climate variables. In this study, we downloaded the data for both the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) for six months (i.e., SPI-6, SPEI-6), as a proxy of Ag.D. Notably, homogeneity of the data and their quality were assessed by the CARBATCLIM team. Later on, gridded points were sorted into groups according to their Hungarian counties; then, the average of each group was calculated and adopted as a representative value of Ag.D (Figure 1).



The sunflower database was built using information from the Hungarian national statistical center (KSH) (https://www.ksh.hu/stadat_eng accessed on 6 May 2020). This database contains the planted area (ha), production (thousand tons) and yield (kg/ha), at a national scale (1990–2019), as represented in Figure 2. However, to address the specific study goals, available sunflower yield data were collected on a county scale from 2000 to 2019.



For trend analysis, Mann–Kendall (MK) [53] tests were performed and Sen slopes (β) [54] were calculated for the studied variables. Both the MK test and Sen slope (β) are non-parametric tests; MK is used to indicate trends (i.e., increase or decrease) in the studied time series, whereas the Sen slope computes the value of the change (slope).




2.2. Agricultural Drought Indices


To quantify drought characteristics (severity, spatial extent, duration, and frequency), several drought indices could be employed, which mainly depend on the research questions and data availability [55,56,57]. Many ecosystem elements such as rainfall, evapotranspiration, temperature, river discharge, soil moisture, and change in vegetation cover could be used as inputs for modeling and monitoring drought [58,59,60]. Scientifically, the Ag.D indicates a shortage in soil moisture, which inhibits soil from providing necessary amounts of water to attain optimal crop production requirements [56,61]. In this study, the SPI and SPEI in a six-month time scale were adopted as a proxy for Ag.D (1961–2010).



2.2.1. Standardized Precipitation Index (SPI)


The SPI [33] is one of the most common indices used for tracking and monitoring drought episodes [62], and is recommended by the World Meteorological Organization [55,63]. Monthly rainfall data are the only input for calculating drought in several time scales [33]. Through different transformations, from gamma distribution to normal distribution, the final equations for SPI can be drawn as follows:


  SPI = −  (  t −   2.515517 + 0.802853 t + 0.010328  t 2    1 + 1.432788 t + 0.189269  t 2  + 0.001308  t 3     )  f o r   0 < H  ( x )  ≤ 0.5                              



(1)






  SPI = +  (  t −   2.515517 + 0.802853 t + 0.010328  t 2    1 + 1.432788 t + 0.189269  t 2  + 0.001308  t 3     )    f o r   0 < H  ( x )  < 1                                  



(2)




where:


  H  ( x )  = q +  (  1 − q  )  G  ( x )   



(3)







More details about SPI calculation, (t, q,   G  ( x )   ), was presented in detail by McKee et al. [33]. Drought classifications according to SPI values are presented in Table 2.




2.2.2. SPEI


The SPEI [34] is a developed indicator from the same background as SPI [52]. Monthly rainfall and potential evapotranspiration are the main inputs for calculating the SPEI [34]. The final equation of SPEI could be drawn as follows:


  SPEI = W −    C 0  +  C 1  W +  C 2  W   1 +  d 1  W +  d 2   W 2  +  d 3   W 3       



(4)






  where   W =  {        − 2 l n    ( P )                          w h e n   P ≤ 0.5         − 2 l n    (  1 − P  )        w h e n   P > 0.5        



(5)







The equation constant (C0, C1…); and other mathematical approaches was presented in detail by Vicente-Serrano et al. [34]. Drought classifications according to SPEI values are presented in Table 2.



Despite the fact that both indices have the same background, the SPEI has been proven to be superior to SPI in drought monitoring and climate change assessments [33,52].





2.3. Impact of Agricultural Drought


2.3.1. Sequence of Standardized Yield Residuals (  SSYR  )


To address the impact of Ag.D on crop yield, the bias attributed to technological factors (i.e., pest control, fertilization, and high-yield varieties) should be removed. To do so, polynomial regression was calculated for observed yield (   Y  R    ( x )     ) on the county scale (2000–2019); then, the data were detrended (   Y  P    ( x )     ), and the residuals were calculated (i.e.,    Y  R    ( x )     −    Y  P    ( x )     ). Finally, the   SSYR   was computed using the following equation [64,65]:


  SSYR =    Y  P    ( x )    −  ∀  P    ( x )       ∂  P    ( x )       



(6)




where    Y  P    ( x )      is the potential yield (detrended),    ∀  P    ( x )      is the mean of    Y  P    ( x )     , and    ∂  P    ( x )      is the standard deviation    Y  P    ( x )     . The classifications of   SSYR   values are presented in Table 3. Additionally, the correlation coefficients (r) between   SSYR   and both the SPI and SPEI were calculated (2000–2010) on a monthly scale.




2.3.2. Yield Losses, Yloss Ag.D


The direct impacts of Ag.D on sunflower production and yield losses across the Hungarian counties were calculated using the approach suggested by Tigkas et al. [66]:


   Y  lossAg .  D     ( x )    =    Y   R     ( x )    −  Y   P     ( x )       Y   P     ( x )      × 100  



(7)




where    Y  l o s s A g . D    ( x )      is the yield loss due to agricultural drought,    Y  R    ( x )      is the recorded yield (observed),    Y  P    ( x )      is the potential yield (detrended), and x is the year.    Y  P    ( x )      refers to the development of crop production without any environmental constraints such as water shortages, heat waves, or other environmental factors [66].




2.3.3. Sunflower Resilience to Ag.D (SRAg.D):


The SRAg.D was calculated for each county in Hungary using the equation suggested by Sharma and Goyal [67]:


  SRAg .  D x  =    Y  R    ( x )   d     Y  P    ( x )   d                                             



(8)




where   SRAg .  D x    is the sunflower resilience to Ag.D in each county,    Y  R    ( x )   d    is the recorded yield in the driest year (2000–2010), and    Y  P    ( x )   d    is the potential yield. The SRAg.D ranged from >1 (resilient) to <0.8 (severely non-resilient). The classification of SRAg.D values are presented in Table 4.



For simplification, Figure 3 depicts a flowchart of the study steps.






3. Results


3.1. Trend in Ag.D across Hungarian Counties:


Hungary experienced Ag.D cycles several times, as can be seen in Figure 4. Figure 4a,d demonstrate that Ag.D episodes were more intense in western and central Hungary (i.e., ZA, VE, VA, and GY) compared with the eastern region of the country (i.e., HB, HE, JN, and SS). Notably, Ag.D cycles have become more frequent since 1990, when more negative values were recorded (Figure 4a,d).



Trend analyses by MK test and Sen slope also indicate that western Hungarian counties are more prone to Ag.D compared with other country regions (Table 5). In terms of SPI-6 (1960–2010), the majority of the counties (14 out of 20) exhibited a positive trend, which indicate less susceptibility to Ag.D. In fact, only four counties, HB, HE, JN, and SS, which are located in eastern Hungary, exhibited a significantly positive trend (p < 0.05) (Table 5).



For SPEI, most of counties exhibited a negative trend for SPEI-6 (1960–2010), except for HB, HE, JN, and SS. Nonetheless, significantly negative (p < 0.05) trends in SPEI-6 (1960–2010) were recorded in GY, SO, VA, VE, and ZA (western regions) (Table 5). Notably, both drought indices agreed on negative trends in each of the following counties: GY, SO, TO, VA, VE, and ZA, as shown in Figure 4b.



Despite the differences in identifying drought events between SPI-6 and SPEI-6 due to different inputs and mathematical equations, both indices highlighted the following years: 1962, 1968, 1972, 1983, 1986, 1990, 1992–1993, 2000–2003, and 2007 as drastic periods (SPI-6 and SPEI-6 values of less than −1.28) in terms of Ag.D (Figure 4a,d).



The lowest recorded values of SPI-6 and SPEI-6 (i.e., the highest recorded levels of drought) in each county are presented in Figure 4c. For SPI-6, the lowest values were recorded in CS (−3.33), GY (−2.96), VA (−2.95), and TO (−2.8). Unexpectedly, the lowest values of SPEI-6 were recorded in central and southern counties. For instance, the lowest value of SPEI-6 was recorded in Csongrád-Csanád (CS) (−4.71), which is located in southern Hungary, followed by BU (−4.21) (central), then GY (−4.04) (western) (Figure 4c).



As depicted in Figure 4c, the SPEI-6 (red line) represents higher Ag.D values than the SPI-6 (blue line); this can mainly be explained by the fact that the SPEI-6 employs both evapotranspiration and rainfall for drought computation, whereas the SPI-6 depends only on the monthly changes in rainfall. Notably, the conjunction of evapotranspiration and rainfall inflated the drought values in the study area.




3.2. Sequence of Standardized Yield Residuals (  SSYR  )


According to the MK tests and Sen slopes, sunflower yield (kg/ha) exhibited a positive trend across Hungarian counties between 2000 and 2019 (Table 5, Figure 5). The greatest increase in sunflower yield was observed in BO (+75.19 kg/ha, p < 0.05), followed by SS (+72.58 kg/ha, p < 0.05), then HB (+71.6 kg/ha, p < 0.05). Notably, these counties are located in eastern Hungary, and experienced positive but non-significant trends for both SPI-6 and SPEI-6 (Table 5, Figure 5).



Thus, to isolate the positive impact of human intervention which include, but are not limited to, the selection of new varieties, pest control, advance field irrigation technology, and precision agriculture, the sequence of standardized yield residuals (SSYRs) was applied.



The output of the SSYR analysis highlighted the yeEars 2000, 2010, and 2012 as the years most affected by Ag.D (  SSYR   ≤ −1) in terms of sunflower production, as shown in Figure 6. The lowest SSYR was recorded in HB (−3.2, extreme impact in 2010), followed by TO (−2.41, extreme impact in 2012), and VA (−2.34, extreme impact in 2010) (Figure 6).



During the growing cycle (April–October), a high correlation between   SSYR   and Ag.D was observed, especially in summer seasons (Figure 7 and Figure 8). For SPI-6, the highest correlation (Max. r SSYR vs. SPI-6) was recorded in VA (r SSYR vs. SPI-6 = 0.6, July, western Hungary) and BC (r SSYR vs. SPI-6 = 0.55, August, central Hungary) (Figure 7). Similarly, central and western counties exhibited the highest r values between SSYR and SPEI-6. For instance, the Max. r SSYR vs. SPEI-6 was obtained in PE (r SSYR vs. SPEI-6 = 0.63, July, central Hungary), BC (r SSYR vs. SPEI-6 = 0.59, July, central Hungary), and VE (r SSYR vs. SPEI-6 = 0.51, July, western Hungary) (Figure 8). However, both Ag.D indices indicate that drought cycles affected the sunflower yield during the summer months, where the western counties were classified as the most affected by drought.




3.3. Yield Losses Yloss Ag.D


Between 2000 and 2010, the loss of sunflower yield was distinguished in two different years, as depicted in Figure 9. In 2004, the highest Yloss Ag.D was recorded in VE (Yloss Ag.D = −38.32%, western Hungary), followed by HE (Yloss Ag.D = −33.95%, eastern Hungary) and then BE (Yloss Ag.D = −32.89%, central Hungary) (Figure 9). However, in 2008, all counties across Hungary experienced yield losses, where the highest losses were observed in NO (Yloss Ag.D = −42.03%, northern Hungary), JN (Yloss Ag.D = −33.49%, central Hungary), and SS (Yloss Ag.D = −29.37%, eastern Hungary).



By calculating the SRAg.D, the resistance of sunflower crops to drought events could be distinguished across Hungarian counties (Figure 10). The results showed that the crop yields in central and western regions were more prone to loss due to drought events. The SRAg.D value reached 0.74 (severely non-SRAg.D) in HE, and 0.79 (also severely non-SRAg.D) in PE. In contrast, the highest value was recorded in eastern Hungary (BE; 1.11).





4. Discussion


In the last few decades, drought cycles have become more intense and frequent all over the world due to rapid climate change [9,68,69,70]; for instance, in Brazil [71], Syria [63], Hungary [52], China [72], and southern Europe [73]. Subsequently, many industries have been affected either directly or indirectly, such as the agricultural sector [74,75,76,77,78,79], hydrology [80,81,82,83], the economy [76,84], human health [85,86,87], and tourism [88,89,90]. In this sense, our research shows a negative trend in agricultural drought episodes across Hungarian counties (Figure 4; Table 5). Additionally, the results emphasize the direct impact of Ag.D on sunflower production (Figure 6), where the yield losses reached 40% in some counties (Figure 9).



Many studies have been carried out across Europe for monitoring and assessing drought evolution, identifying a positive trend, especially in southern and central regions [73,91,92,93]. Hungary, which is in the center of the Pannonian basin (central Europe), suffers from drought episodes. For instance, Alsafadi et al. [52] reported an increase in drought trends in western Hungary comparing with the east; however, drought frequency was more intense in central Hungary. Mohammed et al. [49] indicated a positive strong correlation between Ag.D (SPI-3, SPI-6) and NDVI (Normalized Difference Vegetation Index). However, future climate projections indicate an increase in drought cycles due to changing future rainfall patterns (2071–2100) [45]. At the regional scale (county scale), drought evolution has been more intense in central and western Hungary than the east. Similar results were reported by Szabó et al. [94], where western Hungary was identified as being more susceptible to climate change. This issue could be explained by the fact that the central region receives less rainfall than other areas [52]; thus, the SPI and SPEI values are decreased, which directly lead to the evolution of drought. In this case, soil moisture will be decreased, and less water will be available for use on agricultural crops (i.e., sunflowers), which will lead to water stress and yield losses (Figure 6, Figure 9 and Figure 10) due to the inhibition of physiological functioning in some crops [69]. Interestingly, this phenomenon could affect all crops, especially maize, which is very sensitive [79]. In this sense, Adrienn and Janos [95] reported that agricultural drought is the main constraint for crop production across Hungary.



Both SPI and SPEI have drawbacks, which generates some uncertainty in the results. For SPI, using only monthly rainfall data without considering their temporal distribution could affect the interpretation of results, along with failure in predicting the exact times of the drought evolution cycle (i.e., start and end) [34,96]. For SPEI, heat waves can be misinterpreted as droughts in some areas [97]. Additionally, calculating evapotranspiration based only on temperature is not sufficient [98]. However, both indices are widely used all over the world, and their outputs can be used for monitoring drought [72,99,100,101].



The interaction between crop yield and drought indices during the growing cycle (April–October) could be linked to increasing crop evapotranspiration (crop-ET0) and temperature. In this sense, Stagge et al. [73] reported an increase in crop-ET0 and temperature. However, the resistance of sunflower to drought was tracked across Hungarian counties. The results also showed that crop yield in central and eastern Hungary was less resilient to drought, where the SRAg.D value reached 0.74 (severely non-SRAg.D) in Heves and 0.79 (severely non-SRAg.D) in Pest. However, the highest value was recorded in eastern Hungary (Bekes, 1.11). In fact, climate change has affected crop production for both irrigated and rainfed agricultural systems, where drought has significantly reduced crop yield [79,102,103]. Globally, temperature and rainfall directly influence crop production, where they behave nonlinearly [103,104,105,106]. Thus, any changes in these climate variables or even the interaction between them will affect agricultural production, not only for sunflowers, but for all crop types. Shortage of rainfall is linked to abnormal atmospheric circulation (at high pressure) that prevents clouds and precipitation from forming [68,107], or a change in the rain belt [68]. However, less cloud and precipitation lead to drier conditions, increased temperature, decreased humidity, and increased evapotranspiration demand, which amplify drought conditions [68]. Scientifically, drought causes a shortage in soil water content and leads to a water deficit which directly affects crop yields [65,79,108]. Unfortunately, most agricultural land across Hungary is cultivated as a rainfed agricultural system; thus, climate change (precipitation patterns), and especially drought, will negatively affect the agricultural sector and crop production [49].



There were some limitations to this study, such as drought trends being assessed based on the average of gridded point data that represent each county, instead of using the whole gridded points. Additionally, only 10 years were available as a record of sunflower yield across Hungarian counties, which used to calculate the direct impact of Ag.D on sunflower yields; more years would have been better for interpreting the relationship between drought and crop production. On the other hand, both SPI and SPEI have their own limitations in identifying drought cycles. In this context, for calculating drought by using SPI, we only need monthly rainfall data; other climate variables are neglected, which could affect the credibility of the SPI [52]. Even though SPEI involves more climate variables (rainfall and potential evapotranspiration (PET)), and is based on the Thorn Thwaite equation, other climate variables are not considered [52]. However, the output from our analysis is enough to draw the attention of decision makers to the evolution of drought and climate change in central Europe.




5. Conclusions


Drought is a multifaceted and complicated natural hazard, which slowly evolves in the ecosystem and is affected by a multitude of physical and biological factors. Hungary, which is located in central Europe (Pannonian basin), frequently suffers from drought events and climate change. However, little research has been conducted in Hungary to assess the impacts of climate change on crop production, especially on a regional scale. In this context, this study was designed to track the evolution of agricultural drought (SPI-6, SPEI-6) across Hungary (1960–2010), and to investigate the dynamic interactions between sunflower yield and drought cycles. The results showed that agricultural drought episodes were more intense in western and central Hungary (i.e., ZA, VE, VA, and GY) compared with the eastern region of the country. Nonetheless, the Ag.D cycles had become more frequent since 1990, where more negative values of Ag.D were recorded.



Sunflower production was badly affected by agricultural drought in 2000, 2010, and 2012, where SSYR ≤ −1. The lowest SSYR values were recorded in HB (−3.2, extreme impact in 2010), followed by TO (−2.41, extreme impact in 2012), and VA (−2.34, extreme impact in 2010). Notably, yield losses (Yloss Ag.D) were experienced in all Hungarian counties in 2004 and 2008 due to agricultural drought. The results also reveal that crop yield in central and western Hungary were more prone to yield loss due to drought events.



The outputs of this study will be of great interest to stakeholders and decision makers for formulating climate mitigation and adaptation plans for the agricultural sector in Hungary. However, more research to develop new varieties of sunflowers, which are tolerant to drought and other extreme climate events, is highly recommended. In our future research, we will involve other drought indices such as the Crop Moisture Index and Crop Specific Drought Index to highlight the impacts of drought on sunflowers and other strategic crops in Hungary.
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Figure 1. Map of Hungary: (a) Hungarian counties, and (b) distribution of 1045 gridded points across Hungary. 
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Figure 2. Evolution of sunflower cultivation across Hungary at a national scale (1990–2019): (a) harvested sunflower land between 1990 and 2019 (left graph); (b) production in tons across Hungary (middle graph); and (c) sunflower yield between 1990 and 2019 (right graph). 
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Figure 3. Flowchart of the study process from obtaining the data through to providing conclusions and recommendations. SPI, SPEI: drought indices. Trend: MK test.    Y  R    ( x )    :   observed yield (2000–2019),    Y  P    ( x )     : potential yield (detrended).   SSYR  : sequence of standardized yield residuals, Yloss Ag.D: yield losses,   SRAg .  D x   : sunflower resilience to Ag.D. 
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Figure 4. Ag.D evolution across Hungary (1960–2010): (a) Evolution of SPI-6 across Hungarian counties (1960–2010); (b) trends in SPI-6 and SPEI-6 based on MK tests and Sen slopes; (c) lowest recorded values of SPI-6 and SPEI-6 across Hungarian counties (1960–2010); (d) Evolution of SPEI-6 across Hungarian counties (1960–2010). 
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Figure 5. Sunflower yield in the studied Hungarian counties (2000–2019). (a) BA, (b) BC, (c) BE, (d) BO, (e) BU, (f) CS, (g) FE, (h) GY, (i) HB, (j) HE, (k) JN, (l) KE, (m) NO, (n) PE, (o) SO, (p) SS, (q) TO, (r) VA, (s) VE, (t) ZA. 
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Figure 6. Evolution of   S S Y R   in the studied Hungarian counties (2000–2019). (a) BA, (b) BC, (c) BE, (d) BO, (e) BU, (f) CS, (g) FE, (h) GY, (i) HB, (j) HE, (k) JN, (l) KE, (m) NO, (n) PE, (o) SO, (p) SS, (q) TO, (r) VA, (s) VE, (t) ZA. 






Figure 6. Evolution of   S S Y R   in the studied Hungarian counties (2000–2019). (a) BA, (b) BC, (c) BE, (d) BO, (e) BU, (f) CS, (g) FE, (h) GY, (i) HB, (j) HE, (k) JN, (l) KE, (m) NO, (n) PE, (o) SO, (p) SS, (q) TO, (r) VA, (s) VE, (t) ZA.



[image: Atmosphere 12 01339 g006]







[image: Atmosphere 12 01339 g007 550] 





Figure 7. Correlation values between   SSYR   and SPI during the sunflower growing cycle (2000–2010) (right table), and max correlation (Max. r) between the   SSYR   and SPI (left figure). 
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Figure 8. Correlation values between the   SSYR   and SPEI during the sunflower growing cycle (2000–2010) (right table), and max correlation (Max. r) between the   SSYR   and SPEI (left figure). 






Figure 8. Correlation values between the   SSYR   and SPEI during the sunflower growing cycle (2000–2010) (right table), and max correlation (Max. r) between the   SSYR   and SPEI (left figure).
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Figure 9. Sunflower resilience to Ag.D (SRAg.D) (right), and max yield losses (left). 
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Figure 10. Resilience of sunflower production to Ag.D across Hungarian counties (2000–2010). 
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Table 1. Common drought indices.






Table 1. Common drought indices.





	Index
	Definition
	Factor
	Calculation Time Scale





	PDSI [32]
	Palmer Drought Severity Index
	Precipitation, temperature, soil moisture and evapotranspiration
	Monthly



	CMI [35]
	Crop Moisture Index
	Mean temperature and precipitation
	Weekly



	CSDI [36]
	Crop Specific Drought Index
	Evapotranspiration
	Seasonal



	RI [37]
	National Rainfall Index
	Precipitation
	Annually and every century



	RDI [38]
	Reclamation Drought Index
	Level of river water, snowfall, stream flows, reservoirs level and temperature
	Monthly



	EPI [39]
	Effective Precipitation Index
	Precipitation
	Daily



	BMDI [40]
	Bhalme and Mooley Drought Index
	Precipitation
	Monthly, annually



	SPI [33]
	Standardized Precipitation Index
	Precipitation
	3-, 6-, 12-, 24- and 48-month periods.



	SPEI [34]
	Standardized Precipitation Evapotranspiration Index
	Precipitation, evapotranspiration
	Monthly



	SRI [41]
	Standardized Runoff Index
	Precipitation
	3-, 6-, 12-, 24- and 48-month periods.
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Table 2. Drought classes based on SPI and SPEI values.






Table 2. Drought classes based on SPI and SPEI values.





	SPI Value
	SPEI Value
	Ag.D Class





	>0
	>0
	NA



	−0.84–0
	−0.84–0
	Moderate Ag.D



	−1.28–−0.84
	−1.28–−0.84
	Severe Ag.D



	−1.65–−1.28
	−1.65–−1.28
	Extreme Ag.D



	>−1.65
	>−1.65
	Very extreme Ag.D
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Table 3. Classification of the sequence of standardized yield residual (  SSYR  ) values which ranged from normal conditions to extreme drought impacts.






Table 3. Classification of the sequence of standardized yield residual (  SSYR  ) values which ranged from normal conditions to extreme drought impacts.





	     SSYR    Value    
	Impacts of Ag.D





	−0.5 <    SSYR    ≤ 0.5
	Normal



	−1.0 <    SSYR    ≤ −0.5
	Mild



	−1.5 <    SSYR    ≤ −1.0
	Moderate



	−2.0 <    SSYR    < −1.5
	High



	  SSYR   ≤ −2.0
	Extreme
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Table 4. Classification of sunflower resilience to Ag.D (SRAg.D) values, which ranged from resilient to severely non-resilient.






Table 4. Classification of sunflower resilience to Ag.D (SRAg.D) values, which ranged from resilient to severely non-resilient.





	SRAg.D Value
	SRAg.D





	SRAg.D > 1
	Resilient



	0.9 < SRAg.D < 1
	Slightly non-SRAg.D



	0.8 < SRAg.D < 0.9
	Moderately non-SRAg.D



	SRAg.D < 0.8
	Severely non-SRAg.D
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Table 5. Trends in Ag.D indices (SPI-6, SPEI-6) and sunflower production (kg/ha) across Hungary.






Table 5. Trends in Ag.D indices (SPI-6, SPEI-6) and sunflower production (kg/ha) across Hungary.





	
County

	
Code

	
SPI-6

	
SPEI-6

	
Sunflower




	
MK and β

	
p

	
MK and β

	
p

	
MK and β

	
p






	
Bács-Kiskun

	
BC

	
0.0005

	
0.05

	
−5 × 10−5

	
0.83

	
+55.83

	
0




	
Baranya

	
BA

	
0.0002

	
0.32

	
−2 × 10−4

	
0.40

	
+48.04

	
0




	
Békés

	
BE

	
0.0005

	
0.05

	
6 × 10−5

	
0.79

	
+59.03

	
<0.0001




	
Borsod-Abaúj-Zemplén

	
BO

	
0.0005

	
0.06

	
7 × 10−5

	
0.75

	
+75.19

	
<0.0001




	
Budapest

	
BU

	
0.0003

	
0.28

	
−3 × 10−4

	
0.27

	
+70.28

	
0




	
Csongrád-Csanád

	
CS

	
0.0003

	
0.21

	
−1 × 10−4

	
0.55

	
+32.18

	
0.01




	
Fejér

	
FE

	
0.0001

	
0.67

	
−4 × 10−4

	
0.06

	
+47.99

	
0.01




	
Győr-Moson-Sopron

	
GY

	
0.0001

	
0.74

	
−5 × 10−4

	
0.03

	
+38.33

	
0.01




	
Hajdú-Bihar

	
HB

	
0.0006

	
0.01

	
2 × 10−4

	
0.46

	
+71.6

	
<0.0001




	
Heves

	
HE

	
0.0005

	
0.02

	
1 × 10−4

	
0.60

	
+71.34

	
0




	
Jász-Nagykun-Szolnok

	
JN

	
0.0007

	
0.00

	
2 × 10−4

	
0.44

	
+60

	
<0.0001




	
Komárom-Esztergom

	
KE

	
0.0003

	
0.21

	
−2 × 10−4

	
0.26

	
+58.06

	
<0.0001




	
Nógrád

	
NO

	
0.0003

	
0.24

	
−1 × 10−4

	
0.65

	
+65

	
0.01




	
Pest

	
PE

	
0.0003

	
0.16

	
−2 × 10−4

	
0.48

	
+65.15

	
0




	
Somogy

	
SO

	
−0.0004

	
0.07

	
−8 × 10−4

	
0.00

	
+61.46

	
0




	
Szabolcs-Szatmár-Bereg

	
SS

	
0.0008

	
0.00

	
3 × 10−4

	
0.15

	
+72.58

	
0




	
Tolna

	
TO

	
0.0000

	
0.94

	
−4 × 10−4

	
0.06

	
+53.54

	
0




	
Vas

	
VA

	
−0.0008

	
0.00

	
−1 × 10−3

	
<0.0001

	
+44.77

	
0




	
Veszprém

	
VE

	
−0.0001

	
0.69

	
−6 × 10−4

	
0.01

	
+56.57

	
0




	
Zala

	
ZA

	
−0.0007

	
0.01

	
−1 × 10−3

	
<0.0001

	
+50

	
<0.0001








* Gray and bold values indicate a significance level of 0.05 (p < 0.05). MK, trend; β, Sen slope.



















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file13.jpg
s
i

Max






media/file4.png
700

Harvested land (thousand hectares)

600 -

500 -~

400 -

300 -

200

(a)

y =0.0916x> + 6.1326x + 374.69
Rz=10.7042

R N I L AL I T T B
1990 1995 2000 2005 2010 2015 2020

2,400,000

2,000,000

1,600,000

1,200,000

800,000

400,000

Production (tons)

(b)
1 y=1327.4x> + 1061.6x + 661649
R? = 0.8604

U B A R L I N L B R BN B
1990 1995 2000 2005 2010 2015 2020

Yield (kg/hectare)

(c)

y = 1.817x*-13.234x + 1766.7
R*=0.7718

1,200

L L L J . B B A BN T
1990 1995 2000 2005 2010 2015 2020






media/file18.png
Max yield losses

e
i
=

T JBA B BC TTBE [ TBO B BU
B cs M FE [ 6y M HB [ HE

T ]JJN JKE N0 T]PE W SO

Yield losses (%a)
=

| | | | | | |
JBC BABE JBOBUCS FE |JGY HBHE 2000 2002 2004 2006 2008 2010

IN KE INOPE SO SSs ITO VAEVE ZA





media/file3.jpg
Tonaumr it v e

it
I






media/file19.jpg
SRAZD

| [[= SRAeD-SPEI_o SRAgD-SPI






media/file7.jpg





media/file10.png
BA

cs

IN

SS

3200
2800

2400

2000
16

2800
2600
2400
2200
2000
1800
1600

2000 2004

3200
2800
2400
2000
1600

00
2000 2004

2008 2012 2016

Year

FE

2008 2012 2016

Year

200
2000 2004 2008 2012 2016

3500
3000
2500
2000
1500
10

Year

00
2000 2004 2008 2012 2016

Year

3200
2800
2400
2000

600
2000 2004 2008 2012 2016

3600
3200
2800

2400 |

2000

Year

600
2000 2004 2008 2012 2016

3200
2800
2400
2000

Year

600
2000 2004 2008 2012 2016

3600
3200
2800
2400

Year

000
2000 2004 2008 2012 2016

Year

3000
2500

2000

1500

000
2000 2004 2008 2012 2016

3000

2500

2000

500
2000 2004 2008 2012 2016

3500
3000
2500
2000
1500

3200
2800
2400

Year

Year
Ll
o

000
2000 2004 2008 2012 2016
Year
()

(NN}
>

2000 k

600
2000 2004 2008 2012 2016

-
-
-

Year

3200
2800
2400
2000

1600 |y

1200

2000

3500
3000
2500

2000 |

1500

2000

3200
2800
2400
2000
1600

200
2000 2004 2008 2012

3200
2800
2400
2000
1600
1200

2000

2004 2008 2012 2016

Year

2004 2008 2012 2016

Year

2016

Year

2004 2008 2012 2016

Year

BU

HE

SO

ZA

3500
3000
2500
2000
1500
1000

2000

3200
2800
2400
2000

1600 |5

1200

2000 2004

3600
3200
2800
2400

20001

1600

2000

3600
3200
2800
2400
2000
1600

2000

2004 2008 2012 2016

Year

2008 2012 2016

Year

2004 2008 2012 2016

Year

®

2004 2008 2012 2016

Year





media/file14.png
T0

SS

SO

JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC

014 | -016 | 0.07 0.09 0.15 1) 0.03

021 | 003 | 026 | 026 | 036 | 022 | 015 | 010 | 021 | 029 | 020 | -025

033 | -036 036 | 0.04 004 | -0.04 | 002 [ 015 0.28 0.14

018 | 012 | 017 | 031 | - 028 | 027 | 018 | 031 | -025 | 011 | -017

027 [ 014 | 009 [ 028 | 028 [ 003 | 008 [ -004 | -0.09 [ 0.06 0.17 0.05
026 | 021 0.10 i

0.06 0.20 0.25 018 | 011 [ 0.10 019 [ 001 | -011 [ 016 | -0.03 | -0.19 |

0.25 024 | -003 | 020 [ 0.03 0.12 001 [ -030 | -034 | -028 | -037

027 | 037 | - 036 | 033 | 030 | 039 | -030 | -018 | -036

0.10 0.17 025 | 0.16 0.15 0.22 025 | 031 | o012 0.06 009 | -0.01

-0.33 : 0.03 0.17 0.16 0.28 0.22 0.10 0.09

011 | 006 | 005 | -0.05 | -020 | 0.04 0.08 002 [ -011 | -013 | -0.07 | -0.17

019 | 009 | 0.06 0.03 0.04 0.20 0.11 0.11 0.03 002 | -0.03 | -0.11

010 | 004 | 027 | 028 0.20 030 | 015 0.22 0.04

30 [ 0O 0. { 0.16 0.19 007 | 022 | 029 | 026 | -0.40

T 007 | 004 | 013 | 009 | -018 | -0.12 | -0.34

0 029 | 026 0.20 0.08 0.00 006 | -0.22

0.22 0.21 014 | -015

002 | -011 | -0.4
035 | -0.01






media/file11.jpg





media/file6.png
CARBATCLIM database (1961-2010) KSH database (1961-2010)

Production (ton) ]

SPI \ SPEI \ - A
unflower Area (h ]
20 counties [ 1960-2010 ] 20 counties LA LI ] [ ea (ha)
/
/ Yield (kg/ha) ]

o \ 4

Yioss Ag.D

[ Driest year

SRAg.D

‘h
|

Conclusion and
recommendations

/






media/file15.jpg
e
- HEEL uwumm LEE
e P R e
- E R R
B B e e el |
2 e
el
B e s |
Beec i
3| cl
14
1)
X






nav.xhtml


  atmosphere-12-01339


  
    		
      atmosphere-12-01339
    


  




  





media/file16.png
BO
TO
$S - 058
S0
GY
NO HB
KE HE

MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV
013 | 015 | 024
‘ 010 | 004 | 001 | -0.04 [ 007 | -0.01 |
015 | 001 | 006 | 001 | 026 | 035
0.07 011 | 010 | 006 | 019 | 0.08 | 0.02
003 | 011 | 013 | 0.04 | 003 | 010 | 013 | 015 | o022
031 | 002 | 039 | 033 | 036
031 | 031 | 001 | 019 | 029 | 010 | 002 | 000 | 0.09
011 | 007 | 011 | 016 | 005
014 | -0.06
035 | 028 | 031 5] 022 | 025 | 025
018 | 003 | 018 | 038 035 | 034
004 | 000 | 001 | 019 | 021 | 018 | 006 | 0.09 | 0.08
004 | 006 | 017 | 034 | 024 | 026 | 018 | 023 | 0.4
033 | 031 | 033 030 | 031
007 | 018 | 000 | 016 | 019 | 0.07
008 | 000 | 007 | 012 | 015 | 027 | 0.09 | 000 | 0.00
001 | 027 | 033 | 037 | 035 | 022 | 011 | 011 | 013
018 | 029 ' 015 | 032 | 0.4
034 018 | 005 | -0.02
|






media/file2.png
48°0'0"N

Z
= =
o o
S &
©
16°0'0"E
16°0'0"E 18°0'0"E 20°0'0"E 22°0'0"E
b | | |
'* \ (b)
|
= ‘
o4 | .
¢ - - o
2 | IR
©
\ ooooo-ooo.od-onoo.oooo-ooo-oo-oﬁoooo
| Seses L N R R R R Ty
| .....::::.;................... Cssesssssenesnnness
sees % ......'."'"""'OIoooo..oooo.oooooooo
@86scsvenencnnsccnnnsennss 000000 EE00000S
.....................'........‘.l.l....l.........
“ o-ooo-..ooIo.oo-oooo-o.u.oo-o.o.-Ooooo...........
Q::::.....'......"'"'00..-..‘...-...........-
J ......l!.ooou.oo.oo....oo..-.-........,........
o.-oo::::.I.....""'.Oio....ooooono-.ooo.oooo
L ....l.l....l......................
......-..-.l..-ll.....-.......‘............. ‘
::ooouo...,.o--o.ooo-o..ooooonllo..........
' ..::o..lo-*o.-..oo.-o-..oo.--.%............
.............................. esscssssses
......}...l..l....o-........l...l. 5 (:AJQPAJYSL”M
= Sesessssesssnnes "
S o Grided data z
: e ! ©
©
I =
1|
A I
20°0'0"E 22°0'0"E

|
48°0'0"N






media/file20.png
SRAg.D

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

m SRAg.D-SPEI O SRAg.D-SPI
L]
0
- L]
|Resi]ient | -
- =
- - - = | Slight non—SRAgD |
5 -—I-—.: i
| i i |
= - - |Moderate non- SRA |
| Severe non- SRAg.D -
= O
O A TORS S M Sa S v S
T ExmRROEFEESELUSEZSL IR






media/file5.jpg





media/file1.jpg





media/file12.png
2000 2005

BA
3
5] ()
N I]Hn” 00 0o
N | s . s
I H 01
2000 2005 2010 2013

Cs

3

14

e D_ H DH (=N Dan
1

1 H“D .

i 300t 0i0 0%
IN

3

L)

Joo [l

0

sl UDDD

220:00 ED:D:': "'Dl'D‘ ‘.D]L,
58

0 il

| e-_U0OO - I]

04p® arg=-

_1_[| 0 |:| |]|:| O |:| DD

JY S

2010 2015

e o e kS L
L L1

||||||

EBC
) ﬂ
o] gl
o-HDDU =|:||] U“H HI'IU 1%
14
2000 3005 2010 2013
FE
3
2_(5)
.
1ol L1
B
P oon 2005 010 a0
KE
L
.
U o R I EHH
J_HUDU 0 Hﬂﬂﬂ
2000 2005 3010 2015
TO
e
: |:: I:I DDU DDEI
N ”W”ﬂ
S I
2000 2005 2010 2015

EE
(e} |]
:H_DD D_DD=HDHD=
2000 2005 2010 2015

GY

)

o olll HH 1

e

2000 2005 2010 2013
NO
(o}
0 H _allD

i |

2010 2015

VA

(r)

9 lng log D0

_:Uﬂ” o ﬂ” [

||||||||||||||||||||

BO
11‘ _{d)
11 ol el
H ﬂ I
1-
>)000 2005 2010 3015
HE

1 2. Jos.

ﬂ- O D” =n”= -D o

Nl ﬂ

N

e 300r om0 ag
PE

T

1 -

| o ”DD H - ” a_
0 il - - -
T
2000 2005 2010 2013

VE
3
24 i=)
1 -

A Y
04a - 2
N gge 0 0 0Of ”ﬂ
20000 2005 2010 2015

ﬂ:(?_ﬂﬂn H 1K

1 'UUH“ I

L ] (=] [
1
——

-2 = T T T
2000 2005 2010 20135

||||||||||||||||||||||

2005 2010 2015

S0

5 | @)

3

.
E_DDDDH-DD”DHDH_DDDDD_
;-

2003 2010 2013

ZA
3

L@ |]

y I

ﬂ'-I:IEID_ D|:|I:|E| DDDDHI:IDUEI:I
1

“l000 3005 2010 2015





media/file9.jpg





media/file0.png





media/file8.png
(a) BA BC BE BO BU
4 # 4 4 4 ‘ 3
1 I
2 I J ¥ 2 I
1 |
0 0 0 0 0
-1 [—
2 = g | g H 2
1 ‘ | i N ‘ 2 i (! ! ZA _
-4 T T T T T - T T T T T T T T T T T T T T T T T T T T VE _
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 201C \-_\ _
cs r o s e 10 —
4 4 o | : i s — —
| |
. ‘ ~ . | S0 ——
! . PE I —
: : : : NO —
) 4 KE I
E i E a E z
P H ‘ ‘ 2| N IN I
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 201C I_IB —
n e ~o - s0 GY ——
3 4 3 3 3 FE I
: ‘ , R R ] | - J cs ——
; Y P 1 1 - 1 - BU I
0 0 0 0 0 BO I |
1 A = affH 1 — BE ||
2 . ) ! ‘ 2| LA 2 - 2 HH— BA [ ]
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 201C
Ss TO VA VE ZA
) - = - = 5 a5 N - 5 P - a5 & = Ay
3 3 3 o 4 it . N N ! - -Q:‘ N - 57 \ \id
N > ) 4 S = N _ o N ) 3 4 ) o N
L | | | . & & M T & F & & & F &S e
2 2 S o F F & F FHF F oy T o
1 — —— 1 1 — — » N 2 ‘ N Q N Q
0 0 0
-1 — A — 1 o
B sPl6 [ SPELG
2 i E : ! 2 }
-3 T T T T T T T T T T T T T T T T T T T T T T T T T
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 201(
EC
ZA BA
(d) BA BC BE BO BU
4 I 4 2 4 4
2 0 | 2
0 0 0
2 t 0
2t ! " II T | 20 =1 \‘ rl\l ' ! m'l l 2 1 l ,l’ |‘| t
4 | | ) -4 f E — i ' )
T T T T T -6 T T T T T -6 T T T T T T T T T T -6 T T T T T
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 201
(&) FE GY HB HE
2 4 4 | 4
0 Lidid] ik, 1 2 ) ‘
i "!
“re 0
g 2 ‘ 0 0
i : "N
‘ e i A : T
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 201
JN KE NO PE SO
4 J 4 ‘ 4 4 ‘
5 2 ) 5 2
0 0 0 0
- 2 + E 2
t ‘ll ‘l" [ '|”‘ T ’\‘] [ v!’v [\"‘
T T T T T - T T T T T -4 T T T T T T T T T T -4 T T T T T
1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 2010 1970 1980 1990 2000 201
Ss TO VA VE ZA
. - 4 4 4 4 4
KE 1 HE | | | | |
JIN 2 5 2 . )
0
0 0 0 0
2 = il
DSPI-@ DSPEI-ﬁ 'Z‘r‘ | A 2 1T |“ [ 4 - [ \ l ! ” | —2‘ I B ”| l ‘
T T -6 T T T T T -4 T T T T T -4 T T T T T






media/file17.jpg
Max yield losses






