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Abstract: Recent research work shows that there are four procedures that can be used to calculate the
electromagnetic fields from a current source. These different procedures, even though producing
the same total field, give rise to field components that differ from one procedure to another. This
has led to the understanding that the various field terms that constitute the total field cannot be
uniquely determined. In this paper, it is shown that all four field expressions can be reduced to a
single field expression, and the various field terms arising from acceleration, uniformly moving,
and stationary charges can be uniquely determined. The differences in the field terms arising from
different techniques are caused by the different ways of summing up the contribution to the total
electric field coming from the accelerating, moving, and stationary charges.

Keywords: dipole fields; radiation; induction; electrostatic; velocity fields; Coulomb fields; field
components; lightning; return stroke

1. Introduction

The students of electromagnetic theory are introduced, as a standard, to electromag-
netic fields generated by an electric dipole when they are taught about the electromagnetic
radiation [1]. It is shown that the dipole electric fields can be separated into electrostatic,
induction, and radiation terms, even though one cannot assign any clear physical sig-
nificance to these field terms except for the radiation. An interesting question that one
can raise in this context is the following: Are these field components non-unique, or is
there another way to express the total fields so that the physical processes that give rise
to the dipole fields become apparent? A similar problem exists in the case of calculating
the electromagnetic fields of more complex sources, for example, the return strokes in
lightning flashes.

In lightning research, return stroke models are utilized to estimate the electromagnetic
fields at different distances generated by return strokes. These return stroke models specify
the spatial and temporal variation of the charge and current associated with the return
stroke. Once this information is specified, it is possible to calculate the electromagnetic
fields using Maxwell’s equations (e.g., [2–7]). However, once the spatial–temporal distribu-
tions of the return stroke charge and current are specified, there are several ways that the
Maxwell’s equations can be utilized in calculating the electromagnetic fields. At present,
there are four methods developed in the literature to evaluate the electromagnetic fields
once the spatial and temporal distribution of the current are given [8,9]. These are known as
the dipole (Lorentz) technique, the continuity equation technique, and two versions of the
procedures based on moving and accelerating charges. All these techniques give rise to the
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same total field, but the various components that constitute that total field are apparently
different in each technique. On the other hand, the processes that generate different field
components in an electromagnetic field are clearly specified in classical electrodynamics.
For example, the electric and magnetic fields generated by any time-varying spatial dis-
tribution of currents and charges can be separated into two parts [1]: the radiation fields
and the Coulomb fields. The radiation fields are generated by accelerating charges, and
the Coulomb fields are generated by stationary and uniformly moving charges. In the case
of uniformly moving charges, the Coulomb field has to be modified to take into account
the charge movement, and these modified Coulomb fields are known as velocity fields.
Given these clear specifications as to the cause of electromagnetic fields, it is interesting
to investigate why the various field components associated with the total fields differ
from each other in different techniques, whereas the physical processes that generate the
electromagnetic fields are the same irrespective of which technique is used in extracting
the electromagnetic field. For this reason, we have decided to take a closer look at this
problem, and the results of this investigation are presented here. Even though the presented
derivations and the associated discussion concern the specific case of lightning-generated
fields, the results of the paper can be extended to any type of source.

2. Electric Fields Evaluated Using Standard Techniques

In this section, we will review the various expressions for the electric fields from a
vertical lightning channel obtained using standard techniques. We will concentrate only
on the electric fields, but the conclusions to be made in this study are also valid for the
magnetic fields.

Thottappillil et al. [7] described two independent approaches to calculate the electro-
magnetic fields from a lightning channel. They also described two other procedures, but
the resulting field expressions obtained using these two other procedures can be shown
to be analytically equivalent to the two former procedures. For this reason, those field
expressions are not considered in the current study.

Here, we consider a return stroke located over a perfectly conducting ground plane.
The effect of the ground plane on the electromagnetic fields is taken into account using the
concept of images. The geometry relevant to the field expressions to be introduced is given
in Figure 1. The return stroke channel is assumed to be straight and vertical. The spatial
and temporal distribution of the current flowing along the return stroke channel is specified
as follows: the current flowing at a point located at a height z along the channel is given
by i(z,t). The point P, located over the perfectly conducting ground, is the reference point
where the field expressions for the electromagnetic fields are given. The z-axis is directed
out of the ground plane, and the electric fields directed along the z-axis are considered
positive. The speed of propagation of the return stroke front at height z is denoted by uz
which, in general, is a function of z.
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Figure 1. Geometry relevant to the calculation of electromagnetic fields from a return stroke.
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2.1. Lorentz Condition or Dipole Procedure

As outlined in [8], this method involves the following steps in deriving the expression
for the electric field:

(i) The specification of the current density J of the source.
(ii) The use of J to find the vector potential A.
(iii) The use of A and the Lorentz condition to find the scalar potential ϕ.
(iv) The computation of the electric field E using A and ϕ.

In this technique, the source is described only in terms of the current density, and the
fields are described in terms of the current. The final expression for the electric field at
point P based on this technique is given by

Ez(t) = 1
2πε0

L∫
0

2−3 sin2 θ
r3

t∫
tb

i(z, τ′)dτdz + 1
2πε0

L∫
0

2−3 sin2 θ
cr2 i(z, t′)dz

− 1
2πε0

L∫
0

sin2 θ
c2r

∂i(z,t′)
∂t dz

(1)

The three terms in (1) are the well-known static, induction, and radiation components.
In the above equation, t′ = t− r/c, τ′ = τ − r/c, tb is the time at which the return stroke
front reaches the height z as observed from the point of observation P, L is the length of the
return stroke that contributes to the electric field at the point of observation at time t, c is
the speed of light in free space, and ε0 is the permittivity of free space. Observe that L is
a variable that depends on time and on the observation point. The other parameters are
defined in Figure 1.

2.2. Continuity Equation Procedure

This method involves the following steps as outlined in [8]:

(i) The specification of the current density J (or charge density ρ of the source).
(ii) The use of J (or ρ) to find ρ (or J) using the continuity equation.
(iii) The use of J to find A and ρ to find ϕ.
(iv) The computation of the electric field E using A and ϕ.

The expression for the electric field resulting from this technique is the following.

Ez(t) = −
1

2πε0

L∫
0

z
r3 ρ(z, t′)dz− 1

2πε0

L∫
0

z
cr2

∂ρ(z, t′)
∂t

dz− 1
2πε0

L∫
0

1
c2r

∂i(z, t′)
∂t

dz (2)

3. Electric Field Expressions Obtained Using the Concept of Accelerating Charges

Recently, Cooray and Cooray [9] introduced a new technique to evaluate the electro-
magnetic fields generated by time-varying charge and current distributions. The procedure
is based on the field equations pertinent to moving and accelerating charges. According to
this procedure, the electromagnetic fields generated by time-varying current distributions
can be separated into static fields, velocity fields, and radiation fields. In that study, the
method was used to evaluate the electromagnetic fields of return strokes and current pulses
propagating along conductors during lightning strikes. In [10], the method was utilized to
evaluate the dipole fields and the procedure was extended in [11] to study the electromag-
netic radiation generated by a system of conductors oriented arbitrarily in space. In [12],
the method was applied to separate the electromagnetic fields of lightning return strokes
according to the physical processes that give rise to the various field terms. In a study
published recently, the method was generalized to evaluate the electromagnetic fields from
any time-varying current and charge distribution located arbitrarily in space [13]. These
studies led to the understanding that there are two different ways to write the field expres-
sions associated with any given time-varying current distribution. The two procedures
are named as (i) the current discontinuity at the boundary procedure or discontinuously
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moving charge procedure and (ii) the current continuity at the boundary procedure or
continuously moving charge procedure [13]. The field expressions resulting from these
two procedures are given in the next two subsections.

3.1. Current Discontinuity at the Boundary or Discontinuously Moving Charge Procedure

Assume, as before, that the return stroke channel is straight and vertical. The vertical
direction coincides with the z-axis. Consider a channel element dz located at height z from
ground level. One can visualize the current propagation in this element as follows: The
current is initiated at the bottom of the element and, after propagating along the element,
it is terminated at the other end of the element. The current and the return stroke speed
remain the same as it propagates along the channel element. The changes in the current
or speed as a function of height are taken into account at the boundary of the adjacent
elements. That is, the current that is being terminated in one element and the speed of
propagation along that element are slightly different to the current and the speed that are
being initiated in the adjacent element located above. In other words, the change in the
current and speed is visualized to take place at the boundaries of the channel elements.
By making the size of the elements infinitesimal, it is possible to take into account the
continuous variation of current and speed along the channel. This procedure is depicted
in Figure 2I. With this picture, one can write down the field terms resulting from the
current initiation and termination. By treating the whole channel as a sum of small current
elements, the total field can be obtained by integrating the field terms corresponding to
the current elements along the channel. The resulting field equations were derived by
Cooray and Cooray [12], and the resulting electric field separated into radiation, velocity
and static terms is given by

Ez,rad(t) = −
L∫

0

dz
2πεoc2r

{
∂i(z,t′) sin2 θ

∂t

}
+

L∫
0

dz
2πεoc2r

{
2uz sin2 cos θ
r(1− u

c cos θ)
i(z, t′)

}
−

L∫
0

dz
2πεoc2r

{
u2

z sin4 θ

rc(1− uz
c cos θ)2 i(z, t′)

}
+

L∫
0

dz
2πεoc2r

{
uz cos θ sin2 θ
(1− uz

c cos θ)
i(z, t′)

} (3a)

Ez,vel(t) =
L∫

0

i(z, t′)dz

2πεor2
[
1− uz

c cos θ
]2{cos θ

uz
− 1

c

}[
1− u2

z
c2

]
(3b)

Ez,stat(t) = −
L∫

0

dz
2πεor2

{
−cos2 θ

c
i(z, t′) +

cos θ

uz
i(z, t′)

}
+

L∫
0

dz
2πεor2


{

3 sin2 θ − 2
}

r

t∫
0

i(z, τ′)dτ

 (3c)

In the field expressions, the first term (Equation (3a)) is the radiation field coming
from accelerating charges, the second term (Equation (3b)) is the velocity field, and the
third term (Equation (3c)) is the field term resulting from stationary charges.

3.2. Current Continuity at the Boundary or Continuously Moving Charge Procedure

Consider again the channel element dz. In this procedure, the current crossing the
boundary of the element is continuous, and changes in the current take place inside the
channel element. This procedure is depicted in Figure 2II. If the source is such that there is
a current discontinuity at a boundary (i.e., at the point of initiation of a return stroke or at
the end of the channel), then it has to be treated separately. If the current and the speed do
not vary with height, then there is no charge accumulation or charge acceleration taking
place inside this channel element. On the other hand, if the current and the speed vary
within the element, then the charge accumulation and acceleration or deceleration take
place inside the volume. Accordingly, this element will contribute to the static, the velocity,
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and the radiation field terms. The expression for the electric field of the return stroke based
on this procedure and separated again into radiation, velocity, and static terms is given by

Ez,rad = −
L∫

0

sin θdz

2πεoc2r
[
1− uz cos θ

c

][uz
∂i(z, t′)

∂z
− ∂i(z, t′)

∂t
+ i(z, t′)

∂uz

∂z

]
− i(0, t′)uz(0)

2πεoc2d
(4a)

Ez,vel =

L∫
0

dzi(0, t′)
{

1− u2
z

c2

}
2πεor2

[
1− uz

c cos θz
]2 [cos θ

uz
− 1

c

]
(4b)

Ez,stat =

L∫
0

dz cos θ
t∫

0

[
∂i(0,t′)

∂z − 1
uz

∂i(0,t′)
∂t

]
dτ

2πεor2 (4c)
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Note that in this procedure, the current across the boundary of each element is con-
tinuous, with the possible exceptions, as mentioned earlier, of the lower boundary of the 
channel element at the ground and the upper boundary of the last channel element. This 
discontinuity in the current has to be taken into account separately in the derivation, and 

Figure 2. The difference between the two procedures to evaluate the electromagnetic fields using
the field expressions for accelerating and moving charges. Each subfigure shows two adjacent
channel elements. In procedure (I), called the current discontinuity at the boundary procedure
or the discontinuously moving charge procedure, the changes of current and velocity take place
at the boundary of the two elements, while they remain constant within each volume. In this
procedure, charges are accumulated at the boundary of the two elements if the current changes in
space. In procedure (II), which is called the current continuity at the boundary procedure or the
continuously moving charge procedure, the current and velocity change as they pass through the
element but remain continuous at the boundary. Thus, no charges are accumulated at the boundary.
Adapted from [13].

Note that in this procedure, the current across the boundary of each element is con-
tinuous, with the possible exceptions, as mentioned earlier, of the lower boundary of the
channel element at the ground and the upper boundary of the last channel element. This
discontinuity in the current has to be taken into account separately in the derivation, and it
will give rise to an additional radiation term. The last term in Equation (4a) is the radiation
field resulting from any discontinuity at ground level (this term is also referred to as the
turn-on term [14]. A discontinuity at the top of the return stroke channel would result in a
similar expression). In this expression, uz(0) is the return stroke speed at ground level and
d is the horizontal distance from the strike point to the point of observation.

Observe that even though the field terms were separated purely based on the physical
processes that gives rise to them, the radiation, velocity, and static terms given above
appear different to the corresponding field expressions obtained using the discontinuously
moving charge procedure.
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4. Electromagnetic Field Expressions Corresponding to the Transmission Line Model
of Return Strokes

In the analysis to follow, we will discuss the similarities and differences of the different
techniques described in the previous section by adopting a simple model for lightning
return stroke, namely the transmission line model [15]. The equations pertaining to
the different considered techniques presented in Section 3 will be particularized for the
transmission line model.

In the transmission line model, the return stroke current travels upwards with constant
speed and without attenuation. This model selection will not compromise the generality of
the results to be obtained because, as we will show later, any given spatial and temporal
current distribution can be described as a sum of current pulses moving with constant
speed without attenuation and whose origins are distributed in space and time. Let us now
particularize the general field expressions given earlier to the case of the transmission line
model. In the transmission line model, the spatial and temporal distribution of the return
stroke is given by

i(z, t) = 0 t < z/v

i(z, t) = i(0, t− z/v) t ≥ z/v
(5)

In the above equation, i(0,t) (for brevity, we write this as i(t) in the rest of the paper) is
the current at the channel base and v is the constant speed of propagation of the current
pulse. One can simplify the field expressions obtained in the continuity equation method
and in the continuously moving charge method by substituting the above expression for
the current in the field equations. The resulting field equations are given below. However,
observe, as we will show later, that the field expressions corresponding to the Lorentz
condition method or the discontinuously moving charge method remain the same under
the transmission line model approximation.

4.1. Dipole Procedure (Lorentz Condition)

The expression for the electric field obtained using the dipole procedure in the case of
the transmission line model is given by Equation (1) except that i(z,t) should be replaced by
i(t − z/v). The resulting equation with t′ = t− z/v− r/c is:

Ez(t) =
1

2πε0

L∫
0

2− 3 sin2 θ

r3

t∫
tb

i(τ′)dτdz+
1

2πε0

L∫
0

2− 3 sin2 θ

cR2 i(t′)dz− 1
2πε0

L∫
0

sin2 θ

c2R
∂i(t′)

∂t
dz (6)

4.2. Continuity Equation Procedure

In the case of the transmission line model [8,16] ρ(z, t′) = i(0, t′− z/v)/v. Substituting
this in the field expression (2) and using straightforward trigonometric manipulations,
we obtain

Ez(t) = − 1
2πε0

L∫
0

cos θ
r2

i(t′−z/v)
v dz− 1

2πε0

L∫
0

cos θ
crv

∂i(t′−z/v)
∂t dz

− 1
2πε0

L∫
0

1
c2r

∂i(t′−z/v)
∂t dz

(7)

Note that all the field terms are now given in terms of the channel-base current.

4.3. Discontinuously Moving Charge Procedure

In the case of the transmission line model, the field equations pertinent to this proce-
dure can be written as follows.

Ez,rad(t) = −
L∫

0

dz
2πεoc2r

{
∂i(t′) sin2 θ

∂t

}
+

L∫
0

dz
2πεoc2r

{
2v sin2 θ cos θ
r(1− v

c cos θ)
i(t′)

}
−

L∫
0

dz
2πεoc2r

{
v2 sin4 θ

rc(1− v
c cos θ)2 i(t′)

}
+

L∫
0

dz
2πεoc2r

{
v cos θ sin2 θ
(1− v

c cos θ)
i(t′)

} (8a)
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Ez,vel(t) = −
L∫

0

i(t′)dz

2πεor2
[
1− v

c cos θ
]2{cos θ

v
− 1

c

}[
1− v2

c2

]
(8b)

Ez,stat(t) = −
L∫

0

dz
2πεor2

{
− cos2 θ

c i(t′) + cos θ
v i(t′)

}
+

L∫
0

dz
2πεor2

{
{3 sin2 θ−2}

r

t∫
tb

i(τ′)dτ

} (8c)

4.4. Continuously Moving Charge Procedure

In the case of the transmission line model, it is a simple matter to show that the field
expressions reduce to

Ez,rad = − i(t′)v
2πεoc2d

(9a)

Ez,vel =

L∫
0

dzi(t′ − z/v)
{

1− v2

c2

}
2πεor2

[
1− v

c cos θ
]2 [cos θ

v
− 1

c

]
(9b)

Ez,stat = 0 (9c)

Note that in the case of the transmission line model, the static term and the first three
terms of the radiation field reduce to zero.

5. Discussion

Based on the Lorentz method, the continuity equation method, the discontinuously
moving charge method, and the continuously moving charge method, we have four ex-
pressions for the electric field generated by return strokes. These are the four independent
methods of obtaining electromagnetic fields from the return stroke available in the lit-
erature. These expressions are given by Equations (1)–(4a–c) for the general case and
Equations (6)–(9a–c), respectively, for a return stroke represented by the transmission line
model. Even though the field expressions obtained by these different procedures appear
different from each other, it is possible to show that they can be transformed into each
other, demonstrating that the apparent non-uniqueness of the field components is due to
the different ways of summing up the contributions to the total field arising from the
accelerating, moving, and stationary charges.

First consider the field expression obtained using the discontinuously moving charge
procedure. The expression for the total electric field is given by Equation (8a–c). In this
expression, the electric fields generated by accelerating charges, uniformly moving charges,
and stationary charges are given separately as Equation (8a–c), respectively. This equation
has been derived and studied in detail in [10,12], and it is shown that Equation (8a–c) is
analytically identical to Equation (6) derived using the Lorentz condition or the dipole
procedure. Actually, this was proved to be the case for any general current distribution
(i.e., for the field expressions given by Equations (1) and (3a–c)) in these publications. How-
ever, when converting Equation (8a–c) into (6) (or (3a–c) into (1)), the terms corresponding
to different underlying physical processes have to be combined with each other, and the
one-to-one correspondence between the electric field terms and the physical processes is
lost. Moreover, observe also that the speed of propagation of the current appears only in
the integration limits in Equation (1) (or (6)), as opposed to Equation (8a–c) (or (3a–c)), in
which the speed appears also directly in the integrand.

Let us now consider the field expressions obtained using the continuity equation
procedure. The field expression is given by Equation (7). It is possible to show that this
equation is analytically equivalent to the field expression given by Equation (9a–c). This
derivation is given in Appendix A.

The results discussed above show that the four field expressions given in the previous
section can be reduced to two field expressions given either by Equations (6) and (7) or
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(8) and (9). In the latter set, the total field is separated into the field terms generated by
accelerating charges, moving charges, and stationary charges while, in the former set, i.e.,
Equations (6) and (7), this connection is lost. Now, let us consider Equations (8a–c) and
(9a–c). Both these equations are derived by analyzing the electromagnetic fields generated
by accelerating and uniformly moving charges. Since the same charge and current distribu-
tion is assumed in both cases, one might wonder why the field equations contain different
expressions for the radiation, velocity, and the static terms in the two procedures. Indeed,
one would expect the same expressions for the different field components obtained using
the continuously moving and discontinuously moving charge procedures. Actually, as
shown in Appendix B, despite the apparent differences, Equation (8a–c) are identical to
Equation (9a–c).

The results presented above show that the field terms arising from accelerating charges,
uniformly moving charges, and static charges pertinent to a given charge and current
configuration can be uniquely identified. Once these field components are given, either
directly or indirectly, there are many different ways to sum up these contributions and this
gives rise to various techniques of electromagnetic field calculations. During this summing
up procedure, the one-to-one relationship between the physical processes that give rise to
the different field components is lost. Thus, different ways of summing up the contributions
produce different field components giving rise to the notion of non-uniqueness of the field
components arising from different techniques. In this paper, we have shown that the field
components resulting from different techniques can be converted to each other, illustrating
that it is the same field components but presented in a different way by combining various
terms together. For example, in the dipole fields, the various field terms are combined
according to the way in which the field strength is decreasing with distance. In the process,
radiation, velocity, and static fields are combined with each other, and the resulting field
equations do not have any resemblance to the original field terms used in the construction.
A typical example for this is that of Equations (6) and (8a–c).

It is important to point out that our discussion is based on the results obtained for the
transmission line model, which is a rather simple description of the spatial and temporal
distribution of the return stroke current. However, any arbitrary charge and current
distribution can be described as a collection of current pulses behaving exactly as in the
transmission line model but displaced both spatially and in time. In order to illustrate this,
consider the case in which a current pulse is moving upwards with constant speed, and
it is terminated at height z. The same scenario can be obtained by assuming that when
the current pulse reaches that point, an identical current pulse of opposite polarity will
start at height z and move upwards with the same speed. Thus, we will have two current
pulses moving upwards with constant speed, but the total current remains zero above
the height z. The same technique will work if the speed of the current pulse is changed
at height z. In this case, we have to initiate two current pulses at height z: one moving
upwards with the reduced speed and the other moving upwards with the initial speed
but with opposite polarity. This shows that any arbitrary spatial and temporal variation
of the return stroke current can be described as a sum of transmission line-type currents
having different speeds, polarity, and current amplitude initiated at different locations and
at different times. This makes it possible to extend the results obtained here to any arbitrary
current and charge distributions.

6. Conclusions

In the literature, there are four techniques to calculate the electromagnetic fields from
lightning. These four techniques result in four expressions for the electromagnetic fields.
We have shown that the field components extracted using these four techniques can be
reduced to one single field expression with the total field separated into field terms arising
from accelerating charges, uniformly moving charges, and stationary charges. We conclude
that the non-uniqueness of the different field terms arising from different techniques is
only an apparent feature.
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As long as the use of the different techniques for the field calculation is concerned, one
can adopt the one that suits best the considered application (in terms of ease of application,
computation time considerations, etc.), since all of them provide the same results for the
total electromagnetic fields. On the other hand, if the objective is to provide insight into the
underlying physical processes, the accelerating, uniformly moving, and stationary charge
field components are recommended. Indeed, these components are directly related to the
physical processes generating the field, and therefore, they are uniquely defined in a given
reference frame.
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Appendix A. Similarity of Field Expressions Given by Equations (7) and (9a–c)

The aim of this appendix is to show analytically the equivalence between the field
equations pertinent to the transmission line model derived using the continuity equation
and the field equations derived using the continuously moving charge procedure. Let us
start with the field equations pertinent to the continuity equation procedure. These are
given by Equation (7) as

Ez(t) = −
1

2πε0

L∫
0

z
r3

i(t′)
v

dz− 1
2πε0

L∫
0

z
cr2v

∂i(t′)
∂t

dz− 1
2πε0

L∫
0

1
c2r

∂i(t′)
∂t

dz (A1)

with t′ = t− z/v−
√

z2+d2

c .
Let us combine the last two terms of the above equation to obtain

Ez(t) = −
1

2πε0

L∫
0

z
r3

i(t′)
v

dz− 1
2πε0

L∫
0

{
z

cv(z2 + d2)
+

1

c2(z2 + d2)1/2

}
∂i(t′)

∂t
dz (A2)

Now, considering t′ = t− z/v−
√

z2+d2

c we find that

∂t′

∂z
=

{
−1

v
− z

c
√

z2 + d2

}
(A3)

Let us rewrite the expression for the electric field as follows

Ez(t) = −
1

2πε0

L∫
0

z
r3

i(t′)
v

dz− 1
2πε0

L∫
0

{
z

cv(z2 + d2)
+

1

c2(z2 + d2)1/2

}
∂i(t′)

∂t
dz

− 1
2πε0

L∫
0

∂
∂z

i(t′)

[
z

cv(z2+d2)
+ 1

c2(z2+d2)1/2

]
[
− 1

v−
z

c
√

z2+d2

]
dz

+ 1
2πε0

L∫
0

∂
∂z

i(t′)

[
z

cv(z2+d2)
+ 1

c2(z2+d2)1/2

]
[
− 1

v−
z

c
√

z2+d2

]
dz

(A4)
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Note that we have added and subtracted the same term from the equation. Recalling
that L = vt− rv/c, we can solve the integration resulting in

− 1
2πε0

L∫
0

∂

∂z

i(t′)

[
z

cv(z2+d2)
+ 1

c2(z2+d2)
1/2

]
[
− 1

v −
z

c
√

z2+d2

]
dz= − 1

2πε0c2 vi(t− d/c) (A5)

Thus, the expression for the electric field can be written as

Ez(t) = − 1
2πε0

L∫
0

z
r3

i(t′)
v dz− 1

2πε0

L∫
0

{
z

cv(z2+d2)
+ 1

c2(z2+d2)
1/2

}
∂i(t′)

∂t

+ 1
2πε0

L∫
0

∂
∂z

i(t′)

[
z

cv(z2+d2)
+ 1

c2(z2+d2)1/2

]
[
− 1

v−
z

c
√

z2+d2

]
dz− 1

2πε0c2 vi(t− d/c)
(A6)

The next step is to expand the third term into the resulting components. Let Λ
represents the third term in the above expression for the field. This can be written as

Λ = 1
2πε0

L∫
0

 ∂i(t′)
∂z

[
z

cv(z2+d2)
+ 1

c2(z2+d2)1/2

]
[
− 1

v−
z

c
√

z2+d2

]
dz

+ 1
2πε0

L∫
0

i(t′) ∂
∂z

[
z

cv(z2+d2)
+ 1

c2(z2+d2)1/2

]
[
− 1

v−
z

c
√

z2+d2

]
dz

(A7)

Using the relationship
∂t′

∂z
= −1

v
− z

c
√

z2 + d2
(A8)

One can write

Λ = 1
2πε0

L∫
0

{
∂i(t′)

∂t′

[
z

cv(z2+d2)
+ 1

c2(z2+d2)
1/2

]}
dz

+ 1
2πε0

L∫
0

i(t′) ∂
∂z

[
z

cv(z2+d2)
+ 1

c2(z2+d2)1/2

]
[
− 1

v−
z

c
√

z2+d2

]
dz

(A9)

Substituting this into the expression for the field, we obtain

Ez(t) = − 1
2πε0

L∫
0

z
r3

i(t′)
v dz+ 1

2πε0

L∫
0

i(t′) ∂
∂z

[
z

cv(z2+d2)
+ 1

c2(z2+d2)1/2

]
[
− 1

v−
z

c
√

z2+d2

]
dz

− 1
2πε0c2 vi(t− d/c)

(A10)

In order to limit the number of expressions to be written, let us write the above
equation as

Ez(t) = −
1

2πε0

L∫
0

F1dz+
1

2πε0

L∫
0

F2dz− 1
2πε0c2 vi(t− d/c) (A11)
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In the above equation, F1 = i(t′) cos θ
vr2 and the function F2 is given by

F2 = −i(t′) cos θ
cvr

v2

(1− v
c cos θ)

2
1
cr
(
1− cos2 θ

)
+ i(t′)

c2r
v2

(1− v
c cos θ)

2
1
cr
(
1− cos2 θ

)
− i(t′)

cvr2

(
1− 2 cos2 θ

) v
(1− v

c cos θ)
− i(t′) cos θ

vr2
v

(1− v
c cos θ)

(A12)

Now, multiplying up and down of the second and the fourth term given above by
(1− v cos θ/c), multiplying F1 up and down by (1− v cos θ/c)2 and combining the terms,
we obtain

− F1 + F2 = i(t′)
1
v
(1− v2

c2 )
1

r2
(
1− v

c cos θ
)2 (cos θ − v

c
) (A13)

So, the expression for the electric field reduces to

Ez(t) =
1

2πε0v

(
1− v2

c2

) L∫
0

i(t− z/v− r/c)
(
cos θ − v

c
)

r2
(
1− v

c cos θ
)2 dz− 1

2πε0c2 vi(t− d/c) (A14)

This expression for the field is identical to the expression derived using the continu-
ously moving charge method.

Appendix B. Similarity of the Field Expressions Given by Equations (8a–c) and (9a–c)

In order to prove that the field terms in Equations (8a–c) and (9a–c) are identical to
each other, it is necessary to go back to the original derivation of Equation (8a–c). First of all,
observe that the velocity terms are the same in both equations, and we only have to prove
the identity of the radiation and static fields. Of course, there may be a straightforward
way to show that the field terms are identical, but we were unable to find that shortcut.
Equation (8a–c) was derived by evaluating the electric field produced by a channel element
using the charge acceleration equations and then summing the contribution from all the
channel elements. Let us now follow the steps necessary in this derivation.

Appendix B.1. Electromagnetic Fields Generated by a Channel Element

Divide the channel into a large number of small elements of length dz. Consider the
channel element located at height z along the channel. An expanded view of this channel
element together with the geometry necessary for the mathematical derivation is depicted
in Figure A1. Then, the first step is to estimate the electromagnetic fields generated by the
said channel element. We consider the transmission line model of the return stroke and,
hence, we represent the current flowing along the channel element by i(t− z/v). In writing
down the equations corresponding to the field components, we treat the current flow along
the element in such a way that it is initiated at the bottom of the channel element and is
absorbed at the upper end. Thus, the current that appears at the bottom of the channel
element at any time t will appear at the top of the channel element after a time delay given
by the ratio of the length and the speed, dz/v.

The electromagnetic fields generated by the channel element can be divided into
different components as follows: (a) the electric and magnetic radiation fields generated
at the initiation and termination of the current at the end points of the channel element
due to charge acceleration and deceleration, respectively; (b) the electric and magnetic
velocity fields generated by the movement of charges along the channel element; (c) the
static field generated by the accumulation of charges at the two ends of the channel element.
Let us consider these different field components separately. In writing down these field
components, we will depend heavily on the results published previously by Cooray and
Cooray [10,12].
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Figure A1. Geometry, angles and unit vectors pertinent to the evaluation of electromagnetic fields
generated by a channel element. The unit vector in the direction of the positive z-axis is denoted
by az. The unit vectors in the radial directions r, r1 and r2 are denoted by ar, ar1 and ar2 respectively.
The unit vectors aθ , aθ1 and aθ2 are defined as ar × (ar × az), ar1 × (ar1 × az) and ar2 × (ar2 × az),
respectively. Note that the point P can be located anywhere in space.

Appendix B.1.1. Radiation Field Generated by the Charge Acceleration and Deceleration at
the Ends of the Channel Element

The electric radiation field generated by the initiation of the current at the bottom
of the channel element and by the termination of that current at the top of the channel
element is given by

derad =
v

4πεoc2

 i(t− z/v− r1/c) sin θ1

r1

[
1− v cos θ1

c

] aθ1 −
i(t− z/v− dz/v− r2/c) sin θ2

r2

[
1− v cos θ2

c

] aθ2

 (A15)

Appendix B.1.2. Electrostatic Field Generated by the Accumulation of Charge at A and B

As the positive current leaves point A, negative charge accumulates at A, and when
the current is terminated at B, positive charge is accumulated there. The static Coulomb
field produced by these stationary charges is given by

destat(t) = −
i(z)
4πεo


t∫

z/v−r1/c
i(τ − z/v− r1/c)dτ

r2
1

ar1 −

t∫
z/v−dz/v−r1/c

i(τ − z/v− dz/v− r2/c)dτ

r2
2

ar2

 (A16)

Appendix B.2. Electromagnetic Fields Generated by the Lightning Channel

The radiation and static terms in Equation (8a–c) follow directly from the above
two equations A15 and A16 once the equations are reduced for the condition that dz is
infinitesimal and summing up the contribution from all the channel elements by performing
the integration along the channel. However, let us keep the above equations in the current
form and replace the integration along the channel by a summation. Let us consider the
radiation field. When we take the summation starting from the first element located at the
bottom of the channel, one can see directly that the radiation coming from the top of the
first element will be cancelled off with the radiation coming from the bottom of the second
element, the radiation coming from the top of the second element will be cancelled off with
the radiation coming from the bottom of the third element, etc. As a result, at any point
in space, only the radiation term coming from the bottom of the first element will survive
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during the summation. Thus, the radiation field at the surface of a perfectly conducting
ground is given by

erad = − v
2πεoc2

i(t− z/v− d/c)
d

az. (A17)

Observe that in the above case, r1 → D , sin θ → 1 and aθ → −az . This is identical
to the radiation field in Equation (9a–c). Now, let us consider the static term. As in the
radiation field, when you take the summation, only the term corresponding to the bottom
of the first element will survive. However, when we take into account the fact that the
lightning channel is located above a perfectly conducting ground, this static term will
cancel off with the corresponding term associated with the image of the element in the
perfectly conducting ground plane. Thus, the total static field will become equal to zero.
That is,

estat = 0. (A18)

This analysis shows that all the terms of Equation (8a–c) are identical to the corre-
sponding terms in Equation (9a–c) and that these two equations are identical to each other.
Just to illustrate this further, we have calculated the electric field at 100 m distance from a
lightning channel using Equations (8a–c) and (9a–c). The different components and the
total field obtained from Equations (8a–c) and (9a–c) are depicted in Figure A2. Note that
as illustrated above, the three field terms are identical in both formulations.
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Figure A2. Plot of the field components associated with (a) Equation (8a–c) and (b) Equation (9a–c).
The electric field is calculated at 100 m from the strike point of a lightning return stroke simulated
by the transmission line model. The current at the channel base is represented by the analytical
expression given by Nucci et al. [17] to represent subsequent return strokes. The return stroke speed
used in the calculation is 1.5 × 108 m/s.
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