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Abstract: Commercially available low-cost air quality sensors have low accuracy. The improved
accuracy of low-cost PM2.5 sensors allows the use of low-cost sensor systems to reasonably inves-
tigate PM2.5 emissions from industrial activities or to accurately estimate individual exposure to
PM2.5. In this work, we developed a new PM2.5 calibration model (HybridLSTM) by combining
a deep neural network (DNN) optimized in calibration problems and a long short-term memory
(LSTM) neural network optimized in time-dependent characteristics to improve the performance of
conventional calibration algorithms of low-cost PM sensors. The PM2.5 concentrations, temperature
and humidity by low-cost sensors and gravimetric-based PM2.5 measuring instrument were sampled
for a sufficiently long time. The proposed model was compared with benchmarks (multiple linear
regression model (MLR), DNN model) and low-cost sensor results. The gravimetric measurements
were used as reference data to evaluate sensor accuracy. For root-mean-square error (RMSE) for
PM2.5 concentrations, the proposed model reduced 41–60% of error when compared with the raw
data of low-cost sensors, reduced 30–51% of error when compared with the MLR model and reduced
8–40% of error when compared with the MLR model. R2 of HybridLSTM, DNN, MLR and raw
data were 93, 90, 80 and 59%, respectively. HybridLSTM showed the state-of-the-art calibration
performance for a low-cost PM sensor. In other words, the proposed ML model has state-of-the-art
calibration performance among the tested calibration algorithms.

Keywords: machine learning; deep learning; calibration; air quality; low-cost sensors; exposure
assessment

1. Introduction

Air pollution caused by industrialization and urbanization is causing serious envi-
ronmental and health problems. For example, fine particulate matter (PM) is generated
from various emission sources of industrial activities such as industry, transportation and
combustion. In particular, fine dust with a diameter of less than 2.5 µm (PM2.5) causes
various diseases, such as cardiovascular diseases, asthma, and neurotoxicity, because it
is directly exposed to the lungs and circulatory system. Therefore, it is very important to
obtain the data for regulation on industrial emission by monitoring the PM2.5 concentration
generated by the emission activity [1].

In South Korea, a gravimetric-based PM2.5 measuring instrument has been used as
a national reference method (NRM) to monitor the PM2.5 concentrations. However, it
is expensive to install NRM equipment at the sampling location for each close distance
(>USD 10,000) [2]. This limits obtaining PM2.5 information from the NRM method at the
community level.

Light-scattering low-cost PM2.5 sensors are paradigm to solve the cost problem. Since
the low-cost sensor can obtain the PM concentration in real-time, it has been used in
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various studies such as personal exposure assessment [3,4], indoor exposure estimation [5]
and outdoor monitoring [6–8]. However, low-cost sensors are sensitive to environmental
variables such as temperature and humidity due to their light scattering method. Badura
et al. [9] conducted a validation test to evaluate the reliability of the low-cost sensors in an
outdoor field over a long period using the national standard measuring equipment. Above
80% relative humidity, raw data by low-cost sensors observed an apparent overestimation
of PM2.5 concentration measurements.

Vogt et al. [10] performed the comparison of three models of low-cost PM2.5 sensors
(Plantower 5003, Sensirion SPS 30 and Alphasense OPC-N3) against the gravimetric device
in outdoor field. The SPS 30 sensor has higher accuracy and high correlation compared to
other low-cost sensors. However, it has still been shown that the low-cost sensor has lower
accuracy than the national standard measurements due to the limitations of the physical
characteristics of the sensor.

Zusmana et al. [11] developed metropolitan region-specific calibration models based
on the multi-linear regression method (MLR) and the time-series data by various low-cost
sensors (PM2.5, temperature and humidity) and the NRM network equipment (PM2.5) to
solve the sensitivity problem driven by environmental variables. The calibration model
confirmed the possibility of applying a low-cost sensor at the community level by solv-
ing the accuracy degradation caused by the physical characteristics of low-cost sensor.
However, the metropolitan region-specific calibration model still showed low accuracy
(R2 = 0.67–0.84) in a specific data period.

Si et al. [12] introduced machine learning approaches to improve the accuracy problem
of the linear regression method for the low-cost sensor calibration. They compared the
PM2.5 data calibrated by the simple linear regression (SLR), the multiple linear regression
(MLR), the tree-based machine learning algorithm (XGboost) and deep neural networks
(DNN) against PM2.5 data by the Synchronized Hybrid Ambient Real-time Particulate
(SHARP) monitor. They showed the machine learning methods have superior calibration
performance compared to the linear regression methods. Among the calibration algorithms,
DNN showed the best performance for PM2.5 calibrations (person R = 0.85, root-mean-
square error = 3.91). However, the calibration performance of low-cost sensors can be still
improved because various machine learning algorithms can be fused for the purpose of
solving them.

In this study, we propose a state-of-the-art PM2.5 calibration model (HybridLSTM) by
combining the deep neural network (DNN) optimized in calibration problems and a long
short-term memory (LSTM) neural network optimized in time-dependent characteristics to
improve the performance of conventional calibration algorithms (DNN, MLR) of a low-cost
PM sensor. This work develops a low-cost calibration machine learning (ML) model and
compares it with the previous state-of-the-art model (DNN) and conventional MLR model.

The process of this study is shown in Figure 1. First, low-cost Sensirion SPS 30 and
NRM equipment were collocated to develop the ML model. If high concentrations of PM2.5
are not sampled, incorrect performance evaluation results may be found [11]. Therefore,
the experiment is carried out until more than 50 µg/m3 of PM2.5 samples are obtained.
HybridLSTM, DNN and MLR models are developed based on the obtained data sample
(training set), and model performance is compared using the other independent data not
used for model development (test set). The MLR and DNN are used as a benchmarks for
evaluating the newly developed calibration HybridLSTM model.

The novelty of this study is as follows: improvement of the calibration performance
against the calibration model (MLR and DNN) by using a new machine learning algorithm
(HybridLSTM). As far as we can tell, this paper is the first report to propose the new
approach of calibration of low-cost PM2.5 sensors by using the HybridLSTM algorithm.
It is very important because it does not only provide reliable community-level monitoring,
but can also help exposure assessment in epidemiological studies.
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Figure 1. Research flow chart. This work is performed in two steps: (a) data collection for PM2.5, temperature and humidity 
by low-cost sensor and PM2.5 by gravimetric instrument with high accuracy. (b) Machine learning model development 
based on the collected dataset. Calibration performance from the developed model is compared with raw data by low-
cost sensor and calibration results by benchmark method (multi-linear regression method, DNN). 
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2. Methods 
2.1. Data Sampling to Develop Calibration Machine Learning (ML) Model 
2.1.1. Air Quality Measurement Instruments 

In general, the ML algorithm functions as the relationship between input variables 
and output variables. In this study, input variables were set as PM2.5 by Sensirion low-cost 
SPS 30 (<USD 50) and temperature and humidity by Sensirion SHT85 (<USD 30) to model 
the complex relation between environmental variables and PM2.5 of the light-scatter 
method. 

It is very important to have consistent precision among low-cost sensors in order to 
build a monitoring sensor network system by the ML model. Because the low-cost Sensi-
rion SPS 30 has excellent inter-sensor precision with coefficients of determination above 
0.9 [10], the ML model based on SPS 30 has the possibility of maintaining consistent per-
formance even with new sensors. Therefore, the PM2.5 measurement results by the SPS 30 
sensor are set as the input variable based on previous literature [10]. Environmental vari-
ables such as temperature and humidity have an effect on decreasing the accuracy of a 

Figure 1. Research flow chart. This work is performed in two steps: (a) data collection for PM2.5, temperature and humidity
by low-cost sensor and PM2.5 by gravimetric instrument with high accuracy. (b) Machine learning model development
based on the collected dataset. Calibration performance from the developed model is compared with raw data by low-cost
sensor and calibration results by benchmark method (multi-linear regression method, DNN).

2. Methods
2.1. Data Sampling to Develop Calibration Machine Learning (ML) Model
2.1.1. Air Quality Measurement Instruments

In general, the ML algorithm functions as the relationship between input variables
and output variables. In this study, input variables were set as PM2.5 by Sensirion low-
cost SPS 30 (<USD 50) and temperature and humidity by Sensirion SHT85 (<USD 30)
to model the complex relation between environmental variables and PM2.5 of the light-
scatter method.

It is very important to have consistent precision among low-cost sensors in order
to build a monitoring sensor network system by the ML model. Because the low-cost
Sensirion SPS 30 has excellent inter-sensor precision with coefficients of determination
above 0.9 [10], the ML model based on SPS 30 has the possibility of maintaining consistent
performance even with new sensors. Therefore, the PM2.5 measurement results by the SPS
30 sensor are set as the input variable based on previous literature [10]. Environmental
variables such as temperature and humidity have an effect on decreasing the accuracy of
a low-cost sensor based on the light-scatter method [13]. Therefore, two environmental
variables were also set as input conditions to model the complex physical characteristics
among PM2.5, temperature and humidity.

The target variable is PM2.5 concentration measured from the gravimetric instrument.
The quality of target variable plays an important role in developing the ML model with
high calibration performance. The gravimetric method is based on TEOM (tapered element
oscillating microbalance) technology, which intakes the atmospheric air through a filter,
heats it, continuously measures the filter weight, and calculates the mass concentration
of PM in near real time. Therefore, TEOM has high accuracy in field tests compared with
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the various air-quality devices. It has been used in many countries to monitor PM2.5
concentrations in the field [14].

2.1.2. Dataset for Calibration Machine Learning (ML) Modeling

A dataset is required to develop and test the ML model. The dataset includes the la-
beled time series type by the aforementioned input variables (PM2.5 of SPS 30, temperature
and humidity of SHT 85) and target variables (TEOM). In general, the dataset is divided
into a training set for estimating the ML model parameters and a test set for evaluating the
ML model’s calibration performance.

For validating the accuracy performance of ML model, the test set should have other
combinations of variables that were not utilized in the training set. In addition, the
ML model must consider adequate design space between training set and test set. For
example, if a variable with a higher concentration range than the training set used for
model development is input into the developed ML model, the calibration performance has
the possibility of deterioration [15]. In other words, the training set must contain a wide
enough range of concentration of PM2.5. Additionally, a dataset with a small concentration
range of PM2.5 may give incorrect evaluations of certain metrics, such as R2 [11]. In this
study, low-cost Sensirion SPS30, SHT85 and NRM equipment were collocated to develop
the ML model, as shown Figure 2.
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2.2. Machine Learning Algorithm

The measured PM2.5 concentration and environmental variable data (temperature and
humidity) have time-series characteristics. That is, air-quality data have a time-dependent
characteristic, which is a relationship between past data and current data. Among machine
learning algorithms, the long short-term memory (LSTM) neural network is an algorithm
optimized for the time-dependent characteristics. In this study, in order to calibrate the
low-cost PM2.5 sensors, we develop a new PM2.5 calibration model by customizing the
deep neural network (DNN) optimized in calibration problems and a LSTM optimized
in time-dependent characteristics. The overall system architecture of the HybridLSTM
algorithm is shown in Figure 3.



Atmosphere 2021, 12, 1306 5 of 14

Atmosphere 2021, 12, 1306 5 of 14 
 

 

2.2. Machine Learning Algorithm 
The measured PM2.5 concentration and environmental variable data (temperature 

and humidity) have time-series characteristics. That is, air-quality data have a time-de-
pendent characteristic, which is a relationship between past data and current data. Among 
machine learning algorithms, the long short-term memory (LSTM) neural network is an 
algorithm optimized for the time-dependent characteristics. In this study, in order to cal-
ibrate the low-cost PM2.5 sensors, we develop a new PM2.5 calibration model by customiz-
ing the deep neural network (DNN) optimized in calibration problems and a LSTM opti-
mized in time-dependent characteristics. The overall system architecture of the Hy-
bridLSTM algorithm is shown in Figure 3. 

 
Figure 3. Example of HybridLSTM model architecture. 

(Step 1) PM2.5, temperature and humidity of the low-cost sensor data described in 
Section 2.1 are input into the network in the form of a time series including historical 
trends for 24 h. Values entered with historical data provide time-dependent properties 
between time-series data through LSTM cells. 

The LSTM cell computes a non-linear mathematic relation from an input sequence x 
= (x1, …, xT; x is PM2.5, temperature and humidity by low-cost sensor) to an output se-
quence y = (yT; y is PM2.5 by gravimetric instrument) by considering the historical trend 
using the following equations iteratively from t = 1 to T [16,17]: 𝑖 = σ(𝑤 𝑥 + 𝑤 𝑚 + 𝑤 𝑐 + 𝑏 ) (1)𝑓 = σ(𝑤 𝑥 + 𝑤 𝑚 + 𝑤 𝑐 + 𝑏 ) (2)𝑐 = 𝑓 × 𝑐 + 𝑖 × g(𝑤 𝑥 + 𝑤 𝑚 + 𝑏 ) (3)𝑜 = σ(𝑤 𝑥 + 𝑤 𝑚 + 𝑤 𝑐 + 𝑏 ) (4)𝑚 = 𝑜 × ℎ(𝑐 ) (5)𝑥 = φ(𝑤 𝑚 + 𝑏 )  (6)

where T represents the labeled time, W terms denote learning parameter matrices (e.g., 
Wix is the matrix of weights from the input gate to the inputs), Wic, Wfc, Woc are diagonal 
learning parameter matrices for peephole connections, the b terms represents bias vectors 
(bi is the input gate bias vector), σ is the sigmoid function, and i, f, o and c are respectively 
the input gate, forget gate, output gate and cell activation vectors, all of which are the 
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(Step 1) PM2.5, temperature and humidity of the low-cost sensor data described in
Section 2.1 are input into the network in the form of a time series including historical trends
for 24 h. Values entered with historical data provide time-dependent properties between
time-series data through LSTM cells.

The LSTM cell computes a non-linear mathematic relation from an input sequence
x = (x1, . . . , xT; x is PM2.5, temperature and humidity by low-cost sensor) to an output
sequence y = (yT; y is PM2.5 by gravimetric instrument) by considering the historical trend
using the following equations iteratively from t = 1 to T [16,17]:

it = σ(wixxt + wimmt−1 + wicct−1 + bi) (1)

ft = σ
(

w f xxt + w f mmt−1 + wicct−1 + b f

)
(2)

ct = ft × ct−1 + it × g(wcxxt + wcmmt−1 + bc) (3)

ot = σ(woxxt + wommt−1 + wocct + bo) (4)

mt = ot × h(ct) (5)

x̂t = ϕ(wmmt + bx) (6)

where T represents the labeled time, W terms denote learning parameter matrices (e.g.,
Wix is the matrix of weights from the input gate to the inputs), Wic, Wfc, Woc are diagonal
learning parameter matrices for peephole connections, the b terms represents bias vectors
(bi is the input gate bias vector), σ is the sigmoid function, and i, f, o and c are respectively
the input gate, forget gate, output gate and cell activation vectors, all of which are the same
size as the cell output activation vector m, × is the element-wise product of the vectors, h
and ϕ are tanh and linear activation function, and x̂t has the new inputs with the historical
trend. The predicted vectors are fed into a deep neural network model (DNN).

(Step 2) The time-dependent values are passed to the DNN architecture, and the neural
network parameters are trained to minimize the differences between the values of the target
variables (TEOM PM2.5) and results predicted by the model. The key to the HybridLSTM
algorithm is to approach the calibration problem differently from the application of the
conventional LSTM approach. For example, the HybridLSTM algorithm is to make the
time series of the target variable (TEOM PM2.5) the same as the last time series of the input
variables (low cost PM2.5, temperature and humidity).

The DNN algorithm minimizes the loss between DNN results predicted by the new
input design variables (x̂t) and the output variable (yT) by the target data. The structure of
the neural network consists of several hidden layers between input and output variables.
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The layer consists of various nodes, and the node converts the linear combination of input
variables into a sigmoid nonlinear form, as shown in Equations (7) and (8).

y(k)j = b0 +
n

∑
i=1

wixi (7)

y(k)j_out
=

1

1 + exp
(
−y(k)j

) (8)

where k is layer number, j is node number and wi is weight. The input variables are
transferred to the hidden layer and calculated until the end of the output. Then, the weights
of all nodes are updated repeatedly so that the error with the true value is minimized.
This is called the backpropagation process. That is, parameters such as learning rate,
epoch, batch size and number of hidden layers, etc., must be optimized to make the
minimum difference value between the true value and prediction value. In other words,
HybridLSTM not only has a historical trend for PM2.5 by low-cost sensors with humidity
and temperature, but also optimizes the loss between results with the historical trend and
PM2.5 by gravimetric devices as gold standard. In this study, we used Tensorflow and
Python 3.6 to model the HybridLSTM.

2.3. Benchmark Method

The multi-linear regression (MLR) method and deep neural network model, which
showed high correction performance in previous studies [12], were used as benchmark
models to evaluate the performance of the hybridLSTM model proposed in this study.
MLR is the same as the equation below;

y =
3

∑
i=1

wi · xi + b (9)

where x1, x2 and x3 are SPS30 PM2.5, temperature and humidity, y is the result from TEOM
equipment PM2.5, and w and b are parameters optimized by the dataset described above.

The DNN model method was explained in Section 2.2. The hyper-parameters of
DNN were transferred in previous research [12], which showed reasonable calibration
performance. DNN and MLR models are developed using the same training data used to
develop the HybridLSTM model, and the model performance is evaluated using the same
test data.

The metrics used for model development and evaluation were R2 and root mean
square error (RMSE). In general, many performance metrics are used to evaluate regression
models, but in evaluating sensor calibration performance, two indicators can be sufficiently
explained [11]. The metrics for R2 and RMSE are expressed as follows;

R2 = 1 −
n

∑
i=1

(ti − yi)
2(

ti − t
)2 (10)

RMSE =

√
1
n

n

∑
i=1

(
yi − t̂i

)2 (11)

where ti, yi, t and n represent the i-th TEOM sample, the predicted result by the model, the
average of the TEOM samples, and the total number of samples, respectively.

3. Results
3.1. Data Sampling to Develop Machine Learning Model

The sampled data of time-series type (PM2.5 of SPS 30, temperature and humidity
of SHT 85 and PM2.5 of TEOM) are shown in Figure 4. The data sampling period was
measured over 110 days. Seventy-seven days were designated as the training set and
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thirty-three days were designated as the test set. The maximum PM2.5 concentrations in
the training set and test set were sampled for a sufficiently long time to include PM2.5 data
higher than 50 µg/m3(±10 µg/m3) at least, which is the scenario of high concentration
determined by the World Health Organization (WHO). Maximum PM2.5 concentration
measured by the gravimetric method was 115 µg/m3 . Therefore, the concentration of
PM2.5 sampled in this work is high enough to validate the model calibration performance.
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Table 1 represents the statistical information (maximum, minimum, average and
standard deviation for the collected dataset) of the corresponding dataset. We correlate the
complexity between input variables (data of low-cost sensors) and target variables (data of
high accuracy device) through ML methods based on the data-set.

Table 1. Results of statistical information for dataset sampled from low-cost sensor and gravimetric
instruments (units of temperature, humidity and PM2.5 concentration:°C, % and µg/m3). The dataset
is used to validate the accuracy performance of calibrated results.

Variables Minimum Maximum Average Standard Deviation

Temperature −4.713 34.76 13.96 6.96
Humidity 8.55 99.99 43.51 19.45

Low-cost PM2.5 0.39 165.56 27.11 19.45
Gravimetric PM2.5 1 115 22.15 14.21
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3.2. Hyper-Parameter Optimization of HybridLSTM

The calibration accuracy by the ML model is affected depending on the combination
of hyper-parameters (such as learning rate, network architecture, batch size, optimiza-
tion function, etc.). Therefore, it is very important to find an optimized hyper-parameter.
However, there is a limit to comparing a huge number of combinations. Therefore, many
studies determine the hyper-parameter by trial and error methods [18,19]. In this study,
hyper-parameters with optimal ML calibration performance were determined by chang-
ing various hyper-parameter combinations. Hyper-parameters with optimal calibration
performance were evaluated based on R2. Various variables, such as the number of nodes
and layers, batch size, etc., were randomly combined into 100 and evaluated, as shown
in Figure 5. The R2 for the optimal combination is about 93%, and the hyper-parameter
optimization information is summarized in Table 2.
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Table 2. Results of hyper-parameter optimization for HybridLSTM.

Optimized Parameters Values

Callback 24

Number of layers 5

DNN Node 8/12/24/12/4

Learning rate 0.0065

Batch size 15

Epoch 100

Optimization algorithm Adam

Callback is a parameter for how long the LSTM cell gives time-dependency, and the
number of DNN layers and nodes are parameters that determine the degree of nonlinearity
between the input variable and the output variable. Too many layers cause overfitting and
deteriorate the calibration performance of the new input data. The learning rate is that
the neural network reduces the loss between the input and output. A learning rate being
too large prevents the solution from convergence. Batch size represents the size divided
among the entire training set for training the neural network. Epoch refers to the number
of iterations to train a neural network. The Adam algorithm was used to optimize the
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neural network because the Adam method showed high convergence and accuracy among
many algorithms in regression problems [17].

Figure 6 shows the learning process of the HybridLSTM model with the optimized
hyper-parameters during 10 training experiments. The validation set determines whether
the model have an overfitting problem for new PM2.5 data. The training/validation
loss was sufficiently converged during the 10 repeated experiments of HybridLSTM,
as shown Figure 6. In other words, the developed model represents a robust model
without overfitting. Therefore, researchers can develop and use a model with consistent
calibration performance.
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iments to validate that the ML model has a consistent calibration performance. The y label is the
root-mean-square error (RMSE).

3.3. Comparison of Accuracy among Proposed Model, Benchmark and Low-Cost Sensor

Figure 7 shows the RMSE as a result of calibrating the test set at 1-week intervals using
the optimized model, benchmark, and SPS30 sensor. The error (RMSE) was calculated
based on a gold-standard device (TEOM). The proposed model with time-dependent
characteristics showed higher calibration performance for all periods than the benchmark
model and raw data. The quantitative error reduction rate for each of the periods is shown
in Table 3. The proposed model reduced 41–60% of error compared to the raw data (low-
cost sensor), reduced 30–51% of error compared to the calibration results by the MLR model
and reduced 8–40% of error compared to the calibration results by the DNN model.
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Figure 7. Results of error comparison of HybridLSTM, benchmark and raw data at 1-week intervals
based on the aforementioned test set. The error (RMSE) was calculated based on gold standard
device (TEOM). We tested the calibration performance using datasets collected at weekly intervals. A
total of five sections were used (1, 2, 3, 4 and 5 weeks).

Table 3. Results of comparison of calibration results of HybridLSTM with benchmark (MLR) and
a low-cost sensor (RAW). DNN, MLR and raw data were evaluated based on HybridLSTM. The
decrease rate of RMSE from each of models was calculated.

Decrease Rate of RMSE 1 Week 2 Week 3 Week 4 Week 5 Week
DNN − HybridLSTM

DNN 29.77% 26.28% 20.74% 7.77% 40.55%

MLR − HybridLSTM
MLR 37.33% 47.27% 29.88% 43.33% 50.86%

RAW − HybridLSTM
RAW 58.45% 41.4% 60.46% 58.05% 52.76%

Figure 8 represents the comparison results of the developed model, benchmark model,
and raw sensor against all samples of TEOM. Raw data by low-cost PM2.5 sensors showed
a significant overestimation in concentrations higher than 50 µg/m3. The incorrect mon-
itoring in high-concentration situations not only leads to incorrect exposure assessment,
but also leads to errors in determining government regulations. The benchmark method
underestimated compared to the gravimetric method. On the other hand, the proposed
model showed small variation results when compared to the TEOM results in the high con-
centration as well as in the low concentration section. HybridLSTM had the most similar
results to TEOM, and the R2 was about 93%. In other words, we showed superior calibra-
tion performance of the state-of-the-art machine learning model when compared with the
benchmark method (DNN) that is considered to be state of the art in previous literature.



Atmosphere 2021, 12, 1306 11 of 14

Atmosphere 2021, 12, 1306 11 of 14 
 

 

Figure 8 represents the comparison results of the developed model, benchmark 
model, and raw sensor against all samples of TEOM. Raw data by low-cost PM2.5 sensors 
showed a significant overestimation in concentrations higher than 50 μg/m3. The incorrect 
monitoring in high-concentration situations not only leads to incorrect exposure assess-
ment, but also leads to errors in determining government regulations. The benchmark 
method underestimated compared to the gravimetric method. On the other hand, the pro-
posed model showed small variation results when compared to the TEOM results in the 
high concentration as well as in the low concentration section. HybridLSTM had the most 
similar results to TEOM, and the R2 was about 93%. In other words, we showed superior 
calibration performance of the state-of-the-art machine learning model when compared 
with the benchmark method (DNN) that is considered to be state of the art in previous 
literature. 

 
Figure 8. Results of scatter plot for the HybridLSTM (a), benchmark (b) and raw data (c) versus 
gravimetric measurements (d). 

Figure 9 shows the time-series comparison results of the developed model, bench-
mark model, and raw sensor against TEOM at 1-week intervals. The dotted line represents 
the high PM2.5 concentrations (>50 μg/m3). The raw data from the low-cost sensor were 
higher than data from the gravimetric measurement above the dotted line (overestima-
tion). Additionally, the benchmark method represents underestimation compared to the 
gravimetric instrument under the dotted line. However, the calibration algorithm pro-
posed in this work can calibrate not only the PM2.5 of high concentrations, but also the 
PM2.5 of low concentrations in terms of high accuracy. 

Figure 8. Results of scatter plot for the HybridLSTM (a), benchmark (b) and raw data (c) versus
gravimetric measurements (d).

Figure 9 shows the time-series comparison results of the developed model, benchmark
model, and raw sensor against TEOM at 1-week intervals. The dotted line represents the
high PM2.5 concentrations (>50 µg/m3). The raw data from the low-cost sensor were higher
than data from the gravimetric measurement above the dotted line (overestimation). Addi-
tionally, the benchmark method represents underestimation compared to the gravimetric
instrument under the dotted line. However, the calibration algorithm proposed in this
work can calibrate not only the PM2.5 of high concentrations, but also the PM2.5 of low
concentrations in terms of high accuracy.
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Figure 9. Results of time-series comparison results for the HybridLSTM, DNN, MLR and raw data
versus gravimetric measurements at 1-week intervals; (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5 weeks. The
dotted line represents the high PM2.5 concentrations. We tested the calibration performance using
datasets collected at 1-week intervals. A total of five sections were used (1, 2, 3, 4 and 5 weeks).

4. Discussion and Conclusions

In this study, a new PM2.5 machine learning calibration model (HybridLSTM) was
developed, and the calibration performance was compared with the raw data, MLR model
and DNN model, which has shown a superior calibration performance. Additionally, a
generalized performance test was performed for validating the possibility of establishing a
sensor monitoring network. The results performed are summarized as follows.



Atmosphere 2021, 12, 1306 13 of 14

(1) The HybridLSTM PM2.5 calibration model with time-dependent characteristics
showed optimal performance in improving the accuracy of low-cost PM2.5 sensors. For
RMSE, the proposed model reduced 41–60% of errors compared to the raw data of the
low-cost sensor, reduced 30–51% of errors compared to the MLR model and reduced
8–40% of errors compared to the DNN model. Raw data by low-cost PM2.5 sensors
showed a significant overestimation compared to the gravimetric method in samples of
high PM2.5 concentrations. The slope of fitting curve for the raw data and gold standard
data was 1.2. The MLR method showed the underestimated calibration results compared
to the measurement results by the gravimetric method. HybridLSTM showed a superior
calibration performance when compared with ML models (DNN) that are considered to be
state of the art in previous literature [12]. HybridLSTM can provide outstanding calibration
results for low-cost sensors. Incorrect monitoring in high-concentration situations not only
leads to incorrect exposure assessment, but also leads to errors in determining government
regulation. The proposed model showed little variation with the NRM method.

The proposed model solves the existing accuracy limitations of low-cost sensors and
can provide results with high reliability, not only for monitoring, but also for research
in various environmental fields. Although outstanding performance was shown in this
study, the method proposed in this study needs to be verified in more locations to build
a more reliable sensor monitoring network. Therefore, in future work, we plan to test
whether low-cost PM2.5 sensors combined with machine learning at various locations and
times, including different seasons, can be applied to sensor network construction. When
constructing a sensor network with high resolution based on high accuracy, we will test
the possibility of providing air quality information to areas where sensors are not installed
through the interpolation method.
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