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Abstract: Understanding the spatiotemporal trends of temperature in the context of global warming
is significant for public health. Although many studies have examined changes in temperature and
the impacts on human health over the past few decades in many regions, they have often been carried
out in data-rich regions and have rarely considered acclimatization explicitly. The most frequent
temperature (MFT) indicator provides us with the ability to solve this problem. MFT is defined as
the longest period of temperature throughout the year to which a human is exposed and therefore
acclimates. In this study, we propose a new method to estimate the number of heat exposure days
from the perspective of temperature distribution and MFT, based on the daily mean temperature
readings of 2142 weather stations in eight major climate zones in China over the past 20 years. This
method can be used to calculate the number of heat exposure days in terms of heat-related mortality
risk without the need for mortality data. We estimated the distribution and changes of annual mean
temperature (AMT), minimum mortality temperature (MMT), and the number of heat exposure
days in different climate zones in China. The AMT, MMT, and number of heat exposure days vary
considerably across China. They all tend to decrease gradually from low to high latitudes. Heat
exposure days are closely related to the risk of heat-related mortality. In addition, we utilized multiple
linear regression (MLR) to analyze the association between the risk of heat-related mortality and the
city and its climatic characteristics. Results showed that the number of heat exposure days, GDP per
capita, urban population ratio, proportion of elderly population, and climate zone were found to
modify the estimate on heat effect, with an R2 of 0.71. These findings will be helpful for the creation
of public policies protecting against high-temperature-induced mortalities.

Keywords: heat exposure days; most frequency temperature; climate change; temperature distribu-
tion; climate zone

1. Introduction

Global climate change not only causes ambient temperature to increase, but also
changes the intensity, frequency, and duration of extreme weather events, such as heat
waves, and temperature distribution [1–3]. The IPCC (2018) reported that, if the current
greenhouse gas emission rate continues, by 2040, global mean temperatures may increase
as much as 1.5 ◦C higher than mean temperatures before the industrial revolution [4].
Importantly, changes in temperature vary considerably across regions. In recent years,
temperature change in China as a result of climate change has attracted a great deal of
attention. Many studies revealed changes in temperature and extreme weather events
over the past few decades [5–8]. Their choice of heat threshold has generally followed
two approaches: (1) exceedance of fixed absolute values (e.g., 35 ◦C) or (2) deviation from
normal. These approaches have a limitation in that they are based on statistical associations
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without explicit physical meaning. A population’s adaptation to temperature is rarely
explicitly considered.

Ambient temperature and human health are closely related. Many studies have
revealed that the associations between temperature and human mortality account for
non-external causes. They exhibit U-shaped, V-shaped, or J-shaped curves [9–11], with the
minimum mortality temperature (MMT) reflecting the most optimum temperature. Outside
the MMT, a higher or lower temperature may lead to higher morbidity and mortality rates.
Although many studies have investigated the effects of climate change on health based
on the relationship between temperature and mortality, these studies have usually been
based on case studies in very few data-rich regions [12–16]. Likely due to the validity of
the data, there is limited evidence regarding the distribution of heat exposure on a national
or global scale in terms of heat-related mortality risk under climate change.

The most frequent temperature (MFT) indicator provides us with the ability to solve
these problems. Temperature distribution over a full year in any region is characterized
by moderate temperatures occurring more frequently than extreme temperatures (such as
heat waves or cold waves). Specifically, the temperature distribution histogram shows a
peak or two peaks at a certain moderate temperature; MFT is the temperature of this peak.
By analyzing the MMTs in 420 locations covering six continents (excluding Antarctica)
around the world, our previous study found that although the MMT varies considerably
across regions, it is very close to the local MFT in the same period [17]. The association
between MFT and MMT did not change when we adjusted for GDP/capita, latitude, and
study year. Darwin’s theory of evolution states that “species have evolved principally via
natural selection, and living forms evolved to improve themselves to better fit with the
environment”. Human biological evolution is a process of pursuing self-advantage [18].
MFT is defined as the longest period of temperature to which a human is exposed and
therefore acclimates. Adapting to MFT can be considered pursuant to self-advantage
maximization in terms of temperature.

Therefore, in this study, we proposed a new method based on MFT from the per-
spective of temperature distribution throughout the year to estimate the number of heat
exposure days. This method allowed us to calculate heat exposure days in terms of heat-
related mortality risk without the need for mortality data. In addition, we estimated its
impact on the risk of heat-related mortality. Our research has important implications for
the development of more comprehensive and more accurate policies on heat warning.

2. Materials and Methods
2.1. Meteorological Data

The daily mean temperatures in 2142 locations in China from 2000–2019 were obtained
from the National Meteorological Science Data Center [19,20]. These stations fall into three
categories: baseline, basic, and general stations. From 2000 to 2019, all these stations
adopted automatic observation 24 times a day on the hour. For more detailed observation
stations information, please refer to the Surface Meteorological Observation Criterion [21].
All 2142 surface weather stations used the same thermometer type: Celsius. The accuracy
is 0.1 ◦C. The daily mean temperature was calculated by averaging the hourly temperature
readings that occurred throughout the day. The 2142 monitoring points cover 8 major
climate types, as well as urban and rural areas.

The climatic regionalization of China released by the China Meteorological Admin-
istration was provided by the National Earth System Science Data Center [22]. In our
research, according to their temperature value, temperature distribution (Figure S1), and
humidity, the original 12 subgroups were reclassified into 8 groups [23]: frigid temperate
zone, middle temperate zone, warm temperate zone, Tibetan Plateau area, north subtrop-
ical zone, middle subtropical zone, south subtropical zone, and marginal tropical zone.
Within the same climatic zone, the temperature distribution is effectively the same.
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2.2. Statistical Methods

First, we drew a histogram with a 1 ◦C bin based on the time series of daily mean tem-
perature for each location. The MFT is the temperature with the most bin in the 54th–92nd
range of the daily mean temperature during a given year, which is the 95% confidence
interval of the minimum mortality percentile (MMP) [17]. Based on the association between
MMT and MFT, MMT is approximately equal to MFT [17].

Second, the number of heat exposure days was obtained by calculating the number of
days in a year when the daily mean temperature exceeded MMT.

Third, from prior publications [9,24], we obtained the percentage increase in mortality
effect of heat (RR) per 1 ◦C increment in daily mean temperature in 24 typical cities covering
all six major climate zones in China (Figure 1).
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Figure 1. Locations of 24 Chinese cities in different climate zones.

Lastly, we utilised multiple linear regression (MLR) to explore the city heterogeneity.
We chose 24 typical cites to investigate the associations between the percentage increase
in mortality effect of heat (RR) per 1 ◦C increment in daily mean temperature and seven
independent variables of city and climatic characteristics in Table 1. These variables
represent potential effect modifiers.

Table 1. Independent variables considered in the statistical analysis.

Variable Description

x1 The number of heat exposure days
x2 GDP per capita
x3 Proportion of elderly population (≥65 years of age)
x4 Urban population ratio
x5 Latitude
x6 Climate zone
x7 Study year

The model is defined below (Equation (1)):

y = α +
7

∑
i=1

βixi (1)

where y is the percentage increase, α is the intercept, x1, . . . x7 are the independent variables
in Table 1, and β1, . . . β7 are the regression coefficients.
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The 20-year changes in AMT, MFT, and the number of heat exposure days were
obtained based on a linear trend analysis. Using R software, we performed a linear
regression to fit the trend of AMT, MFT, and heat exposure days for each station and then
calculated the average of all stations.

The 24 locations in the present study covered six of the eight major climatic zones,
including middle temperate zone, warm temperate zone, north subtropical zone, middle
subtropical zone, south subtropical, and marginal tropical zone, excluding frigid temperate
zone and the Tibetan Plateau area.

3. Results
3.1. Temperature Distribution in China

Figure 2 and Table 2 show the mean values of annual mean temperature (AMT),
minimum mortality temperature (MMT), and heat exposure days of 2142 Chinese stations
in the eight major climatic zones, respectively, during 2000–2019. Figure S1 shows the
histogram of the daily mean temperature distributions and MFTs in the eight climate zones
throughout the year. The abscissa is the daily mean temperature, and the ordinate is the
percentage of the number of days that the temperature occurs in a year. In the same climatic
zones, the temperature distribution is effectively the same. Among the 2142 stations, the
AMT ranged from −5 ◦C to 26.5 ◦C (Figure 2a), the MMT ranged from 11 ◦C to 33 ◦C
(Figure 2b), and the number of heat exposure days ranged from 40 to 120 days (Figure 2c).
The maximum number of heat exposure days occurred in areas with high temperature, such
as the marginal tropical zone and south subtropical zone, with the largest values at 120 days
(Figure 2c). Meanwhile, the minimum days occurred in areas with low temperature, such
as the frigid temperate zone and the middle temperature zone, with the lowest value at
40 days.

Table 2. The AMT, MMT, and heat exposure days ranges (95% CI) in eight major climatic zones in China during 2000–2019.

Climate Zone Number of Stations AMT (◦C) MMT (◦C) Heat Exposure Days (Days)

Frigid temperate zone 4 −3.5 (−3.8, −3.2) 15.9 (15.1, 16.9) 54 (52, 55)
Middle temperate zone 439 6.2 (1.1, 10.2) 20.6 (16.5, 23.8) 65 (55, 80)
Warm temperate zone 620 13.3 (9.7, 15.6) 24.6 (20.9, 26.7) 69 (55, 84)
North subtropical zone 258 16.7(14.9,18) 25.6 (22.8, 27.3) 78 (62, 95)

Middle subtropical zone 497 17.5 (14.2, 20.2) 25.1 (19.7, 28.5) 78 (63, 99)
South subtropical zone 195 21.2 (16.8,23.5) 26.6 (21, 28.9) 85 (66, 102)
Marginal tropical zone 26 23 (18.2,25.4) 26.3 (21.4, 29.1) 97 (81, 113)

Tibetan Plateau area 103 6.9 (−0.8, 15.8) 14.5 (8.2,22.1) 77 (58, 95)

3.2. Multiple Linear Regression Analysis

Table 3 shows the descriptive data on annual mean temperature at the 24 typical cities
included in the analysis. The annual mean temperature ranged from 5.1 ◦C in Harbin to
24.2 ◦C in Haikou.

The heterogeneity across cities suggested that there would be some modifiers for heat-
related mortality. Spearman correlations between the percentage increase in heat-related
mortality and seven independent variables were calculated (Table 4). In Table 4, we can
see that among the following seven independent variables, the number of heat exposure
days, GDP per capita, urban population ratio, proportion of elderly population, and study
year had stronger correlations with the percentage increase in heat-related mortality. The
correlation coefficients between them are 0.37, 0.55, 0.55, 0.45, and −0.43, respectively.
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Table 3. The descriptive data on annual mean temperature at the 24 typical cities in China.

Locations (Province) (Longitude, Latitude) Study Period AMT (◦C) Climate Zone

Harbin (Heilongjiang) (127.9◦, 45.6◦) 2008–2013 5.1 1
Changchun (Jilin) (125.2◦, 43.9◦) 2008–2013 5.9 1
Urumqi (Xinjiang) (88.3◦, 43.4◦) 2006–2007 8.5 1

Shenyang (Liaoning) (123.5◦, 41.7◦) 2005–2008 6.4 1
Hohhot (Inner Mongolia) (111.7◦, 40.8◦) 2008–2013 7.6 1

Anshan (Liaoning) (123.3◦, 40.3◦) 2004–2006 10.7 1
Beijing (Beijing) (116.5◦, 39.8◦) 2007–2008 10.5 2
Tianjin (Tianjin) (117.1◦, 39.1◦) 2005–2008 11.8 2

Yinchuan (Ningxia) (106.2◦, 38.5◦) 2008–2013 10.3 1
Taiyuan (Shanxi) (112.6◦, 37.8◦) 2004–2008 10.1 2
Jinan (Shandong) (117◦, 36.7◦) 2008–2013 14.5 2
Lanzhou (Gansu) (105.8◦, 34.6◦) 2004–2008 10.4 1

Zhengzhou(Henan) (113.3◦, 34.6◦) 2008–2013 15.6 2
Xi’an (Shaanxi) (107.1◦, 34.4◦) 2004–2008 11.3 2

Nanjing (Jiangsu) (118.8◦, 32◦) 2008–2013 16.3 3
Hefei (Anhui) (117.2◦, 31.9◦) 2008–2013 16.6 3

Shanghai (Shanghai) (121.4◦, 31.2◦) 2008–2012 17.4 3
Wuhan (Hubei) (114.1◦, 30.6◦) 2003–2005 16.4 3
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Table 3. Cont.

Locations (Province) (Longitude, Latitude) Study Period AMT (◦C) Climate Zone

Hangzhou (Zhejiang) (120.2◦, 30.2◦) 2002–2004 18.5 3
Changsha (Hunan) (112.9◦, 28.2◦) 2008–2013 18.3 4
Guiyang (Guizhou) (106.4◦, 26.4◦) 2008–2013 14.4 4

Fuzhou (Fujian) (119.3◦, 26.1◦) 2004–2006 19.8 4
Guangzhou (Guangdong) (113.3◦, 23.2◦) 2007–2008 21.2 5

Haikou (Hainan) (110.3◦, 19.7◦) 2008–2013 24.2 6

Climate zones: 1: Middle temperate zone; 2: Warm temperate zone; 3: North subtropical zone; 4: Middle subtropical zone; 5: South
subtropical zone; 6: Marginal tropical zone.

Table 4. Spearman correlations between increased RR and socioeconomic factors.

Percentage Increase p-Value

x1 (The number of heat exposure days) 0.37 0.08
x2 (GDP per capita) 0.55 0.005

x3 (Urban population ratio) 0.55 0.005
x4 (Proportion of elderly population)

(≥65 years of age) 0.45 0.03

x5 (Study year) −0.43 0.03
x6 (Latitude) −0.21 0.33

x7 (Climate zone) / /
Dependent variable is the percentage increase in heat-related mortality. Study year: the mean year of the
study period.

We introduced city and climatic characteristics in the MLR analysis. The results of
the optimal model are shown in Table 5, with an R2 of 0.71. Results showed that the
number of heat exposure days, GDP per capita, urban population ratio, proportion of
elderly population, and climate zone were found to modify the estimate on heat effect.
For example, the RR increased 0.11% for a one-day increment in the number of heat
exposure days.

Table 5. Coefficients for multiple linear regression model.

Parameters Estimate Std. Error p-Value

Intercept −28.1 7.48 0.002 **
x1 (The number of heat exposure days) 0.11 0.04 0.01 **

x2 (GDP per capita) 7.25 × 10−5 3.96 × 10−5 0.09 ˙

x3 (Urban population ratio) 0.16 0.062 0.02 *
x4 (Proportion of elderly population)

(≥65 years of age) 1.18 0.59 0.06 ˙

x7 (Climate zone) Dummy variable *
** p-Value < 0.01; * p-Value < 0.05; ˙ p-Value < 0.1.

3.3. Changes in Temperature over the Past 20 Years

Based on the time series of daily mean temperature at 2142 observation stations in
China and using a linear trend analysis method, we calculated the changes of AMT, MFT,
and heat exposure days at all observation stations and eight major climatic zones from
2000 to 2019. Table 6 shows the changes of AMT, MFT, and heat exposure days in different
climatic zones.

As is demonstrated in Table 6, we found that in the past 20 years, AMT has increased
in most parts (95%) of China, with the values increasing by 0.98 ◦C (95% CI: 0, 1.9) across
the country. The highest increase in AMT mainly occurred in areas with low temperatures,
such as the frigid and middle temperate zones, with the highest values reaching 1.43 ◦C
and 1.12 ◦C. Conversely, the lowest increase in AMT mainly occurred in areas with high
temperature (marginal tropical zone) and the Tibetan Plateau area, with the lowest value
reaching 0.84◦C and 0.76◦C. In contrast to AMT, the increase in MMT mainly occurred in
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the south of China (the marginal subtropical zone) and the Tibetan Plateau area, with the
largest value reaching 0.8 ◦C and 1 ◦C, and the decrease in MMT mainly occurred in the
north of China (the frigid and middle temperate zones), with the lowest values reaching as
low as –1.3 ◦C and –0.9 ◦C. The change has no significant impact on the number of heat
exposure days. That is, in the same climate zone, stations with increased or decreased heat
exposure days exist simultaneously. Figure 3 shows the distribution histogram of AMT
and MMT changes at 2142 observation points.

Table 6. The AMT, MFT, and heat exposure days changes (95% CI) in eight major climatic zones from 2000 to 2019.

Climate Zone
AMT MMT Heat Exposure Days

Changes/20a
(◦C)

Increased
Proportion *

Changes/20a
(◦C)

Increased
Proportion *

Changes/20a
(Days)

Increased
Proportion *

Frigid temperate zone 1.43 (1.2, 1.6) 100% −1.3 (−2.4,
−0.1) 0% 3 (−24, 30) 75%

Middle temperate zone 1.12 (−0.1, 2.2) 93% −0.9 (−3.6, 2.5) 33% −12 (−49, 26) 31%

Warm temperate zone 1.1 (0, 2.0) 95% −0.4 (−2.4, 1.6) 34% −9 (−56, 36) 38%

North subtropical zone 0.96 (0.2, 1.9) 96% −0.5 (−3.4, 3.2) 39% −10 (−63, 36) 38%

Middle subtropical zone 0.9 (0, 1.6) 95% 0.8 (−1.5, 3.6) 69% 0 (−47, 50) 50%

South subtropical zone 0.89 (−0.1, 1.6) 93% 0.6 (−0.8, 2.2) 67% −8 (−51, 35) 36%

Marginal tropical zone 0.84 (0.2, 1.4) 96% 0.8 (−0.5, 1.5) 81% −1 (−32, 34) 50%

Tibetan Plateau area 0.76 (−0.2, 1.6) 88% 1 (−0.7, 3.2) 74% 1 (−40, 40) 55%

Overall 0.98 (0, 1.9) 95% 0.1 (−4.1, 4) 54% −7 (−53, 37) 40%

* is the percentage of stations with rising temperature in all stations.
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4. Discussion

Although many studies have analyzed changes in temperature due to global warming
in many different regions [8,25–27], they are based on statistical associations without
explicit physical meaning and do not consider the physiological adaptations of humans
to the local temperature. The most frequent temperature (MFT) indicator provides us
with the ability to solve this problem [17]. On the one hand, MFT is the longest period of
temperature to which a human is exposed and therefore acclimates. As such, it can reflect
human adaptation to temperature. On the other hand, different temperature distributions
reflect different climatic and exposure characteristics. These exposure characteristics are
closely related to the risk of heat-related mortality. However, previous studies investigating
heat exposure were usually based on case studies in very few data-rich regions [12–16].
Therefore, in this study, we proposed a new method from the perspective of temperature
distribution (Figure S1) to estimate the number of heat exposure days in terms of heat-
related mortality risk, without the need for mortality data, and then estimated its impact
on the risk of heat-related mortality.

Humans adapt to ambient temperature in several ways, including physiologically,
behaviorally, and technologically [18,28,29]. Our previous study found that the MFT is the
temperature to which humans are most exposed and, therefore, physiologically acclima-
tized [17]. Accordingly, the MFT is a good indicator for fitting the MMT or most optimum
temperature [17]. Based on this theory and the association between MFT and MMT, we
proposed a new method from the perspective of temperature distribution throughout the
year to estimate heat exposure days in terms of heat-related mortality risk. We estimated
the distribution of the MMT and heat exposure days at 2412 stations in China. The MMT
and heat exposure days vary considerably across the country; they both tend to decrease
gradually from low latitudes to high latitudes. To the best of our knowledge, this is the first
study to estimate the distribution of MMT and heat exposure days in terms of heat-related
mortality risk on a national scale.

The number of heat exposure days is associated with the risk of heat-related mortal-
ity [30,31]. In the present study, we found the risk of heat-related mortality varied greatly
across the 24 China cities studied. The percentage increase in heat-related mortality (RR)
per 1 ◦C increment in daily mean temperature can be impacted by city-level characteristics
and climatic characteristics, such as the number of heat exposure days, proportion of
elderly population, urban population ratio, GDP per capita, and climate zone. The greater
the number of days of heat exposure, the higher the RR. Additionally, older people may be
more vulnerable to heat exposure. A similar pattern was observed in the previous study
occurring on a global scale [31]. During hot weather, the elderly may become dehydrated,
hypernatraemic, and experience renal failure, with resultant complications of the cardio-
vascular system. In addition, older people may be more vulnerable because they are more
likely to live alone and have limited mobility. A previous study of 50 U.S. cities found
that heat effects were associated with population density [32]. This pattern is consistent
with our findings. Higher urban population ratio may reflect greater thermal storage
capacity [33–35]; this process is termed the urban heat island effect. It may also cause
greater thermal stress by increasing night temperature [36]. In our study, we found that
higher GDP per capita was associated with higher heat risk. This result is inconsistent with
some previous studies [32]. In part, GDP per capita may reflect technological protection
measures, such as access to home air-conditioning. However, higher GDP per capita is also
accompanied by higher population density.

With global warming, the change in temperature varies considerably across regions [37–39].
Our results show that the distribution of AMT and MFT have changed over the past
20 years. Although the mean value of their increases is similar, the distribution (Table 6)
and the range of their changes (Figure 3) are significantly different. The biggest rise in
AMT occurred in areas with low temperatures, and the lowest rise mainly occurred in
areas with high temperatures. In contrast to AMT, the highest increase in MFT mainly
occurred in areas with high temperatures and the Tibetan Plateau area, and the decrease
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mainly occurred in areas with low temperatures (such as frigid temperate zone and middle
temperature zone). This result is consistent with those of certain extant studies [39–44].
The IPCC (2007) pointed out that warming was more obvious at high latitudes in the
northern hemisphere due to global warming [39]. Guan (2015) found that the warming rate
increased with an increase in latitude [40]. Qiao (2015) found that over the past 50 years, the
surface temperature increased significantly in most areas of China, especially in Northern
China, where the temperature increased at a rate of (0.2 ◦C–0.6 ◦C)/10a [43]. This change
may be due to the combined effects of climate change and recent urbanization. On the one
hand, from 2005 to 2016, air pollution in China showed an upward trend in the north, and
a downward trend in the south [44]. Increased air pollution in northern China accelerates
climate warming. On the other hand, from 1992–2015, the urbanization of southern China
was faster than that of northern China [45]. Reducing vegetation cover and increasing
anthropogenic heat emissions caused by rapid urbanization exacerbated climate warming.
Climate change can be affected by many factors. The complicated geography of China
has caused complex climate change within its borders. Temperature change shows that
significant zonal differences in China may be related to the comprehensive influences of
atmospheric circulation, humidity concentrations, solar irradiance, and topography [46].

In addition, in this study, we estimated the change in number of heat exposure days
at 2412 stations in China for the first time. As expected, there were more heat exposure
days in the south than in the north. However, unexpectedly, we did not find significant
geographic patterns in the change of the number of heat exposure days (Table 6) in the past
20 years.

Based on these findings, this study promotes a more comprehensive understanding of
temperature changes in the context of climate change. The heterogeneous characteristics
of change across China indicate the need for location-specific and longer-term prevention
strategies to help promote the sustainable development of cities. Northern areas of China
with cold temperatures should be given more attention regarding heat-related mortality
risk in the future. Those with sensitive diseases, including cardiovascular disease, CHD,
and stroke, as well as the elderly, are identified as susceptible subpopulations. This
study will be helpful in informing public policies to protect against high temperature-
induced mortalities.

There are some limitations present in this study. Firstly, the time span is short, and
could not have the optimal climatological representativeness of at least 30 years. Therefore,
the statistical trends may be sensitive to the selected years. Secondly, some socio-economic
and individual behavior factors require further consideration. For example, the use of air
conditioning [47], which is a strong protective factor against extreme heat events, was not
considered in this study.

5. Conclusions

Health effects attributed to heat exposure in China are a significant issue requiring
more attention and allocation of existing resources. Based on MFT and temperature
distribution throughout the year, this study proposed a new method to estimate the number
of heat exposure days in terms of heat-related mortality risk without the need for mortality
data, and then analyzed its spatiotemporal variation and impacts on heat-related mortality.
The number of heat exposure days tends to decrease gradually from low latitudes to high
latitudes. Heat exposure days, GDP per capita, urban population ratio, proportion of
elderly population, and climate zone were found to modify the estimate on heat effect. The
percentage of heat-related mortality increased 0.11% for each one-day increment in the
number of heat exposure days. Our study will be beneficial in understanding the potential
health effects of future climate change in different climate zones.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/atmos12101294/s1, Figure S1. The histograms of the daily mean temperature distribution and
MFTs throughout the year in the eight climate zones (a–h).

https://www.mdpi.com/article/10.3390/atmos12101294/s1
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