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Abstract: Turbulent cascade transferring the free energy contained within the large scale fluctuations
of the magnetic field, velocity and density into the smaller ones is probably one of the most important
mechanisms responsible for heating of the solar corona and solar wind, thus the turbulent behavior
of these quantities is intensively studied. The temperature is also highly fluctuating quantity but its
variations are studied only rarely. There are probably two reasons, first the temperature is tensor
and, second, an experimental determination of temperature variations requires knowledge of the
full velocity distribution with an appropriate time resolution but such measurements are scarce. To
overcome this problem, the Bright Monitor of the Solar Wind (BMSW) on board Spektr-R used the
Maxwellian approximation and provided the thermal velocity with a 32 ms resolution, investigating
factors influencing the temperature power spectral density shape. We discuss the question whether
the temperature spectra determined from Faraday cups are real or apparent and analyze mutual
relations of power spectral densities of parameters like the density, parallel and perpendicular
components of the velocity and magnetic field fluctuations. Finally, we compare their spectral slopes
with the slopes of the thermal velocity in both inertial and kinetic ranges and their evolution in
course of solar wind expansion.

Keywords: solar wind; turbulence; Faraday cups; temperature determination; temperature fluctua-
tions; power spectral densities

1. Introduction

As a super-Alfvénic solar wind expands into space, a particle motion in the magnetic
field and their collisions as well as plasma instabilities change the shape of a velocity
distribution. If the particle motion is adiabatic and collisionless, the plasma ions become
anisotropic, i.e., T > T [1] where Ty (T, ) is the ion temperature parallel (perpendicular)
to the background magnetic field. However, Coulomb collisions and pressure-anisotropy in-
stabilities contribute to pitch-angle scattering that pushes plasma back towards isotropy [2].
According to the large statistics of Bale et al. [3], the most probable value of the ion tem-
perature anisotropy measured by Wind is T, /T| &~ 0.89 at 1 AU. The collisional age is
largest around this value and it suggests that isotropy results predominantly from Coulomb
collisions. The authors [3] also present histograms of the magnetic fluctuation amplitude
squared | /B \2 in bins of collisional age because it organizes solar wind instabilities better
than traditional distinction on fast and slow winds [4]. The overall magnetic fluctuation
power 4B is a function of the collisional age, with the magnetic power weaker by a factor
of ~100 for more collisional plasma. This effect is a proxy for the temperature anisotropy;
collisional plasma is more isotropic and farther from the instability thresholds.

Safrankovd et al. [5,6] analyzed solar wind power spectra of bulk and thermal speed
fluctuations computed with a time resolution of 32 ms in the frequency range of 0.001-2 Hz
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using the BMSW instrument (equipped with Faraday cups) on board the Spektr-R space-
craft. They reported that spectra of proton thermal speed and proton bulk speed variations
exhibit similar values and follow the same trends in the inertial range whereas the bulk
speed spectra are in a systematic manner steeper in the kinetic range of frequencies. Since
the authors compared the results of both bulk and thermal velocity fluctuations with a
similar analysis of density fluctuations [7] that are compressive, they applied the bulk
velocity magnitude as a comparable quantity.

Based on theoretical considerations, Gogoberidze et al. [8] studied Alfvénic turbulent
fluctuations and their spectral properties from MHD to kinetic scales and discussed the
results of Safrankova et al. [6] in view of these considerations. The authors [8] argue that
the authentic thermal velocity spectra should be similar to the density spectra. However,
the temperature in the solar wind is usually anisotropic and the temperature determined
in a particular direction is somewhere between T and T, . Consequently, the fluctuations
derived from these measurements are pseudo-temperature fluctuations and not the true
temperature fluctuations. They assume that these pseudo-temperature fluctuations are
driven by the high-amplitude magnetic fluctuations in Alfvén waves rather than the
fluctuations of temperature or thermal velocity itself. Therefore, the frequency spectrum
of the thermal speed reported by Safrénkova et al. [6] would be mainly produced by an
incompressible part of magnetic field perturbations which explains its similarity with the
proton velocity spectrum.

As noted, an anisotropic magnetized plasma has different thermal speeds parallel
and perpendicular to the local magnetic field and because an Faraday cup (FC) usually
measures the reduced velocity distribution function (VDF) due to a very uniform angular
response, the FC instrument reports an effective thermal speed that is a function of the
orientation between the FC looking window direction and ambient magnetic field [9,10].
Kasper et al. [10] analyzed measurements of FC onboard Wind and presented the first
uncertainty estimations for both T and T with a technique that is independent of the
method used to extract an estimate of the anisotropy from the raw data. They found that
maximum T uncertainty occurs predominantly when the magnetic field is out of the
ecliptic plane or perpendicular to the Sun-Earth line and T is poorly constrained when
the magnetic field is radial.

Stansby et al. [11] performed a novel fitting of bi-Maxwellian VDF to the raw He-
lios data and extracted the proton core number density, velocity, and T and T, . Since
their T) and T are not a function the magnetic field direction, we can believe that their
parameters are good estimates of real T and T of the proton core. Furthermore, also
Durovcova et al. [12] reprocessed the VDFs measured by Helios and discussed evolutions
of relative drifts between three dominant components—the proton core, proton beam, and
a-particle core at different distances from the Sun. The processing is based on assumptions
that partial VDFs of all these components can be approximated by a bi-Maxwellian distri-
bution. The authors compared their newly processed dataset with a previous study of the
proton core population from Helios [11] and found a good agreement between them.

D’Amicis et al. [13] focused on a relation observed between angular displacements
of the local magnetic field orientation from the radial direction and values of the proton
temperature. They reported observations by Helios and Wind with a positive correla-
tion between proton temperature and magnetic field orientation, also within Alfvénic
wind characterized by large-amplitude fluctuations of the background field direction. In
Wind, they found a dependence of T; on the magnetic field angular displacement and
interpreted this signature as due to a physical mechanism related to the proton cyclotron
resonance. Finally, they simulated the sampling procedure of the VDF measured by an
electrostatic analyzer (EA) and showed that the observed temperature anisotropy is not
due to instrumental effects.

De Marco et al. [14] performed a numerical test to understand the origin of the
enhanced spectral flattening of proton density and proton temperature spectra observed
by Helios in fast and Alfvénic solar winds. This spectral feature has been interpreted
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as a signature of sound-like perturbations generated locally by the parametric decay of
large-amplitude Alfvénic fluctuations [15]. However, it has recently been shown [16-18]
that large-amplitude Alfvénic fluctuations are able to move around the particle VDF
in phase space, and this phenomenon can be important for an EA with sampling time
comparable to the period of the fluctuations. They have shown that the motion of the VDF
has an unpredictable influence on the moment computations as a result of the Alfvénic
fluctuations.

Roberts et al. [19] discussed anisotropy of the spectral indexes in ion-scale compressible
turbulence using MMS observations in the magnetosheath. They investigated the typical
1D Fourier spectra for the magnetic field, ion velocity density and ion T| and T, . They also
reduced the 3D spectra to spectra along one direction to investigate how the spectral index
in the dissipation/dispersion range varies with the angle from the magnetic field.

Huang et al. [20] presented a technique for deriving the temperature anisotropy of
solar wind protons observed by the Parker Solar Probe (PSP) mission in the near-Sun
solar wind. The radial proton temperature from combined instruments is compared with
the orientation of local magnetic field, and proton T} and T, are extracted. Their results
suggest that they see stronger anisotropic heating as PSP moves closer to the Sun, but
they note that a careful treatment of the shape of a VDF is needed to correctly describe the
temperature.

This short and incomplete survey reveals possible instrumental effects on the solar
wind proton temperature determination and on clear interpretation of measured data.
For this reason, we briefly discuss the problem of temperature(s) in solar wind plasma
and methods of their determination from the experimental data with an emphasis on the
measuring technique used in Safrénkova et al. [6]. Questions to be answered in this part are:
(i) what the temperature actually is, (ii) variations of temperature(s) in multi-component
plasma, and (iii) could we determine the temperature spectrum from the FC experimental
data? Then, the core part of the paper deals with a comparison of the spectral slopes of
fluctuations of plasma parameters and magnetic field in the inertial and kinetic ranges and
with their dependence on different characteristic plasma quantities.

The manuscript is organized as follows. In Section 2, the methods of determination
of the temperature using Faraday cups or electrostatic analyzers and peculiarities of such
estimations are discussed. Section 3 describes a fast determination of the temperature in the
BMSW (Bright Monitor of the Solar Wind) instrument. The spectral indices of fluctuations
of the proton density, N, both perpendicular and parallel components of the proton velocity
vV, VH and magnetic field, B, BH and trace thermal velocity, V, at frequencies covering
the transition from the inertial to kinetic range are introduced in Section 4. In a large
statistical study, we address spectral slopes in relation to the properties of the solar wind
represented by proton f, collisional age, temperature anisotropy, and a standard deviation
of fluctuations of the magnetic field perpendicular component. The results of their mutual
comparison are discussed in Section 5.

2. Temperature Determination

The problem of a temperature determination from the experimental data is not new,
this topic has been discussed from different point of view in various papers. Space missions
use Faraday cups (FCs) or electrostatic analyzers (EAs) to measure solar wind particles and
to determine their bulk parameters but each of them has its advantages and drawbacks.
EAs are designed to measure the full 3D VDF of the plasma particles with remarkably
high-energy and angular resolutions and with time resolution that can be sufficient for
study of fluctuations in the inertial range but they suffer with a limited geometrical factor
and short exposition time at particular energy resulting in a large statistical noise. EAs are
usually counting individual particles passing through the analyzer using detectors based
on secondary emission (channeltrons, microchannel plates) and their detection efficiency
depends on many factors like the particle type and energy, count rate, time of operation,
etc. and all these effects should be taken into account in the data processing. Moreover,
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EA designers should undergo a complex game between the number of parallel channels,
energy, angular and time resolution, and statistical noise (e.g., Helios 1, 2 [21]; ACE [22];
THEMIS [23]; MMS [24]). The last points are of a great importance because the solar wind
is a highly turbulent medium in which the most energy is carried by Alfvénic fluctuations
that exhibit a wide range of scales.

The second type of detectors is based on Faraday cups that directly measure the
current of incoming charged particles falling onto their collector. FCs are relatively simple,
reliable, and steady devices and their geometrical factor is large because they integrate ion
flux over large spatial angles to reach a measurable collector current. To achieve an angular
resolution, collectors divided into several segments or cups oriented in different directions
(or combination of both) are used. The energy distribution is measured by application
of the sweeping voltage on a control grid. This voltage can be either DC or DC with an
AC component. The integral energy distribution is thus measured in the first case and its
derivative in the second case (e.g., Voyager 1, 2 [25]; Wind [26]; INTERBALL-1 [27]; Parker
Solar Probe [28]).

In general, the temperature is a scaling parameter of the Maxwellian VDEF. It is a
scalar quantity and the thermal speed can be determined as a second order moment of the
distribution and it can be interpreted as a measure of the internal energy of the medium. If
the distribution of the particle velocities is non-Maxwellian but isotropic, the second order
moment remains scalar and can be still used as a measure of the internal energy.

The second order moment of the non-isotropic distribution is a tensor, scalar temper-
ature is usually defined as the mean of the elements on the diagonal of tensor matrix. If
there is a preferred (magnetic field) direction and the distribution is symmetric around it,
T and T, can be determined. If the medium is composed of a set of weakly interacting
species, each of them has its own VDF, velocity(ies) and temperature(s). Figure 1 shows an
example of the cut of ion energy distribution that demonstrates difficulties in estimations
of different ion populations and their parameters. EAs as well as FCs differentiate particles
according to their energy per unit charge and thus the horizontal axis is in these units. The
crosses are measured data and the colored curves show the energy distribution achieved
by the fit to full 3D distribution. One can see that it is not easy to separate three basic
populations—proton core (red), proton beam (orange) and alpha particles (blue)—due to
their overlap.

Figure 2 demonstrates the proton beam effect on the temperature determination. The
left-hand panel shows 2D cut through the fit of Helios measurements [12] on 11 March
1976 at 0302 UT. The velocities of the proton core (615 km/s) and beam (665 km/s) are
distinguished by a small diamond and a large rectangle, respectively. The plot is made
under an assumption that all particles are protons and, by design, a particles exhibit
an artificially high velocity due to their mass-per-charge ratio (M/Q); their real velocity
(656 km/s) is shown by the asterisk. The left-hand panel shows that fitting of the proton
core and beam as bi-Maxwellian distributions leads to larger T, than Tj; the values of
thermal velocities (parallel, V| and perpendicular, Vj;,; are 30-48 km/s for the core and
26-56 km/s for the beam. On the other hand, & particles were fitted as one population
and they exhibit larger Vin| than Vy;,, thermal velocity (39 vs. 33 km/s). However, if
the beam-core structure of the VDF is not considered and all protons are fitted as one
population, the bulk speed increases to 638 km/s and V};| becomes larger than Vi, (56 vs.
54 km/s) as the right-hand panel illustrates. It is important to note that application of this
fitting leads to increase of the trace temperature of protons by a factor of two with respect
to the proton core-beam fit. The reason is that the energy connected with a relatively large
relative drift velocity of the beam with respect to the core is considered as thermal energy.
As a result, the condition with only one proton population would lead to an apparent
increase of the trace temperature and to a prevalence of T that can be seen for example
in [4].
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Figure 1. An example of the cut along the magnetic field direction through 3D Helios ion en-
ergy distribution. Data measured on 11 March 1976 at 0302 UT are shown by crosses, the fit-
ted distributions of different species (proton core—red, proton beam—orange and « particles—
blue) by full lines. Note that the whole 3D distribution was fitted. The parameters of fits are:
The proton core—N =5 em~3; V = 614.7 km/s, VthH = 30.0 km/s, Vy,, = 47.8 km/s; proton
beam—N = 0.94 cm—3; V = 665 km/s, VthH = 25.6 km/s, V;,; = 56.3 km/s; and a particles—
N =015em3; V = 655.6 km/s, VthH =39.2km/s, Vy, | =33.2km/s.

200F E 200f _

Proton beam

v, [kmvs]

) 300 E_ 1 1 1 1 1 L E -3()0 E- 1 1 1 1 1 L -E
500 600 700 800 900 1000 1100 500 600 700 8OO 900 1000 1100
vV, [km/s] V, [km/s]

Figure 2. A demonstration of the proton beam effect on the temperature determination. The
background isocontours are fit to ion energy distribution from Figure 1, the magnetic field direction
is shown by the dotted line, the ellipses distinguish identified ion populations and their temperature
anisotropy. The left-hand panel reflects proton core-beam structure, the right-hand panel treats all
protons as one population. The parameters of the fit under one proton population are: N = 2.88 cm™~3;
V =638km/s, Vi, = 56.18 km/s, Vi, | = 54.67 km/s.
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To quantify the effect of the proton beam in a statistical way, Figure 3 presents a
comparison of the results of two ways of Wind data processing. Wind FC data was fitted
by: (1) the proton-alpha (PA) code using a bi-Maxwellian VDF to a single proton and
a single « particle population [9,29] and (2) the proton-proton-alpha (PPA) code with a
bi-Maxwellian VDF to the proton core and a Maxwellian VDF to each of the proton beam
and « particles [30]. This new fitting algorithm expects fifteen parameters for three solar
wind ion populations: alpha particles (¢), proton core (p1l), and proton beam (p2). Six
parameters describe proton population p1 (number density, vector velocity, and Tj and T, )
and p2 is described by three parameters (number density, differential flow, and isotropic
thermal speed).

The algorithms developed by Kasper et al. [9] and Alterman et al. [30] utilize magnetic
field measurements [31,32] to determine each VDF orientation relative to the local magnetic
field and it assumes that the extracted parameters are approximately constant over the mea-
surement time. Figure 3 plots the ratio of anisotropy of the PPA (procedure 2) to anisotropy
of the proton fit PA (procedure 1) as a function of the ratio of beam/core densities, 1,2 /1,71.
We use only measurements in the young solar wind (collisional age < 0.1) where the
beam effect would be more pronounced. The figure shows that the anisotropy can be
underestimated by a factor of 2 if the beam-core structure is not considered. Moreover,
1D histogram at the top reveals that the most probable relative beam density is 0.2 and
the ratio of anisotropies corresponding to this abundance varies in a broad range with the
median value of 1.2 (see black full line in 2D histogram).

log,,(collisional age) < -1

g 10000 a
=z
0
e 2.5
-3.0
3_ L
3.5

|0910(Pobs)
IN
o

2x10*1x10* 0 0 20 40 60 80 100
Nobs r']p2/np1 [OAJ]

Figure 3. A comparison of results of two ways of Wind data processing. The 2D probability
distribution of the ratio of T, /T determined by the PPA procedure and T, /T| determined by
the PA (procedure 1) as a function of the ratio of proton beam and proton core densities, 115 /1,1
determined by the PPA is shown by a color scale. The probability of observations of mentioned ratios
are shown by 1D histograms. See text for a detailed description.

The most important message following from the discussion above is that each evalua-
tion of experimental results should always take into account peculiarities of the measuring
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methods and data processing. For this reason, we discuss the determination of the plasma
parameters and namely the temperature using BMSW in the next section.

3. Fast Determination of the Temperature Using FCs in BMSW

A determination of the ion moments with high-temporal resolution measured by
BMSW onboard Spektr-R is based on simultaneous readouts of collector currents of 6 FCs
and two grid voltages. The complete procedure of the data processing can be found in
Safrankova et al. [33], here we concentrate predominantly on the temperature determination.

Figure 4 shows the computer model of the normalized FC response to the change
of the voltage U applied on the control grid under assumptions that the solar wind bulk
velocity is oriented along the FC axis, the energy, E of incoming particles corresponds to
the bulk speed, V and the thermal speed, V};, is expressed as a fraction of the bulk speed, V.
Note that the FC response depends only on this ratio [34]. The model of particle trajectories
inside the cup takes into account problems discussed in [33] like real FC dimensions as
well as the diameters of the grid wires and their spacing.

The velocity distributions of protons falling into the FC were gyrotropic and bi-
Maxwellian with the symmetry axis (magnetic field direction) inclined by 45° to the FC
axis. This configuration approximates the solar wind with IMF directed along the Parker

spiral. We kept constant the value of the trace temperature, Vi, = , /VchH + 2Vt2hL /3 =KV,

where Vi, and Vyy,, are parallel and perpendicular components of Vjy,, V' is the solar wind
speed and K is the thermal to bulk speed ratio that was put 0.05 or 0.1 (blue and red colors
in the figure). The anisotropy, A = T /T| was chosen as 0.1, 1 and 10 (dotted, full and
dashed lines in the figure). In simulations, the input ions were protons with an addition
of 3% of alpha particles with a thermal speed equal to the trace speed of protons. The
characteristics were computed using the ion trajectory tracing within a FC by the SIMION
software package.

FC 34/34, a=0°, B=45°

1.0f==

0.8

0.6

I,

0.4

0.2

0.0

0.0 0.5 1.0 1.5 2.0 25 3.0
eU/E

Figure 4. FC energetic characteristics-normalized FC current, [/ JO as a function of the normalized
grid potential, ell/E for the incidence angle, « = 0° and the angle between the IMF and z-axis,
B = 45°.
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The measurements of a temperature use three identical FCs oriented toward the
Sun. First of them is without a control grid voltage and measures the current J0, the grid
voltages of other two FC are set by the feed-back loops to decrease the collector current
approximately to 0.5 and 0.3 JO. The data transmitted to the ground are exact values of
three currents and two voltages. V};, is determined as a derivative from two points in plots
like those in Figure 4.

The difference between currents used for temperature determination seems to be rather
small (see shadowed area in Figure 4) but there are several reasons for our choice. First, the
voltage corresponding to 0.5 JO does not depend on the temperature or its anisotropy and
it is given by the bulk speed only, second, it takes into account the influence of low-energy
plasma and effects of grid imprecisions that affect the current at low voltages and, third,
the sum of currents caused by the proton beam and « particles could exceptionally exceed
0.25 JO [12].

As it can be seen from the figure, the influence of the input temperature anisotropy on
the determined thermal speed is rather weak. The red and blue curves differ by a factor of
4 in the temperature whereas the difference between dashed and dotted lines represents
a change of anisotropy by two orders of magnitude. By contrast, the difference between
dashed and dotted lines of the same color is much smaller than that between red and blue
lines. Consequently, we can conclude that the temperature determined from FC data is a
good approximation of the trace temperature of a proton core and is only slightly modified
by the magnetic field rotations called pseudo-temperature effects by Gogoberidze et al. [8].

This conclusion is supported in Figure 5 that presents 20-min averages of V};, measured
by BMSW as a function of the IMF cone angle (dots). Note that we computed the cone angle
as the angle between bulk velocity and magnetic field vectors. The top left panel shows
all events that will be used later in the statistical study. The rest of panels shows subsets
selected according to the anisotropy determined from the Wind data. The red bars stand
for medians of V};, red dots are first and third quartiles. Looking at the medians, we can
conclude that the median temperature does not depend on the magnetic field direction in
the cone angle range of 60-120° (17 km/s) and it is slightly larger at lower (higher) angles.
The median value of V}, for isotropic cases and for cases with T, / Ty >12 (right panels) is
nearly constant and also equal to about 17 km/s, thus the dependence on the cone angle
is dominantly caused by events with T | / TH < 0.8. The reasons can be twofold-first, the
effects of the pseudo-temperature and, second, intensive proton and/or alpha particle
beams that can exceed 30% of the proton core current. The analysis of effects of temperature
anisotropy determined from measurements of the FC onboard Wind spacecraft [35] shows
a slight enhancement of T for cone angles around 90°. This trend is consistent with our
observations but applicability of their results to our measurements is limited because the
Wind FC uses different principle for a temperature determination and, as they show, the
uncertainty of TH determination is as large as 30-40% under this condition. Nevertheless,
the number of such cases in our data-set is relatively small and thus it cannot spoil large
statistics presented in the next section.
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Figure 5. The dependence of the thermal speed, V};, as a function of the cone angle in different ranges of temperature
anisotropy: all analyzed events (top left); 0.95 < T, / T <105 (top right); T, / T <08 (bottom left); and T / T >12

(bottom right).

4. Statistical Analysis of Spectral Slopes

The analysis focuses on solar wind (proton density, N, both perpendicular and parallel
components (V and V|) of the proton velocity and trace thermal velocity, V};,) fluctuations
at frequencies covering the transition from the inertial range to the kinetic range. We
have selected high cadency Spektr-R observations in the solar wind, divided them into
35,937 20-min basic subintervals with the overlapping duration 19 min and the fast Fourier
transform (FFT) is computed on each subinterval [7]. Although the time resolution of
measurements is 32 ms, we have limited our analysis to 2 Hz to guarantee that the power
spectral densities (PSDs) are well above a noise level in the high-frequency part of the
spectra, and even during intervals of low velocity variations [6].

These data were complemented with Wind measurements of the high-time resolution
magnetic field [31] and plasma parameters (SWE [26]) propagated to the Spektr-R location.
Since Wind and Spektr-R are not necessarily in the same solar wind stream, we analyze
only the intervals when the difference between both solar wind speeds is lower than 5%
(more details in [36]). The average magnetic field direction was used for a determination of
the field-aligned coordinate system and the Spektr-R plasma velocity was transformed into
this system in order to determine V|, V| and Vj,.

The magnetic field and plasma parameters vary in broad ranges and the same do
characteristic plasma frequencies. In order to facilitate a statistical processing of the spectra
calculated in the spacecraft frame frequency, we apply the Taylor hypothesis and normalize
the spacecraft frame frequency f to the frequency that corresponds to typical dimensions
of solar wind structures, f; defined in [6] using the solar wind speed, V, proton thermal
gyroradius, Rt (= Vy,/w. where w, is proton cyclotron frequency) and proton inertial
length, L as
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1%
fa= 27t(Rr + L)

Such a normalization allows us to calculate average (median) spectrum of each quan-
tity. Although the original spectra are calculated at identical frequencies determined by
the length of an interval, the normalization shifts each of them along the frequency axis.
We divided the whole range of f/ f; into several hundreds of subintervals and calculated
medians of all PSD values falling into this subinterval. As an example of this procedure,
Figure 6 shows median spectra of analyzed quantities computed for the full set of intervals.
The median spectra were fitted with two (three for the density and parallel magnetic field
component) straight lines in the range of 0.05-3. The fits are shown in the figure by straight
lines of a corresponding color and one can note that the slopes of spectra are well defined
because the fits can be distinguished from the spectrum itself only around the spectral
breaks that are defined as their intersection.

102

10°

PSD (a.u.)

10%F

0% e,

0.001 0.010 0.100 1.000
f/1y

Figure 6. Median spectra of V| (thick black), 4 (thin black), B, (thick green), B (thin green), N

(blue) and V, (red) fluctuations. The straight thin lines of corresponding colors show the fits (note

that they are distinguishable only around the spectral break). The slopes of linear fits in both inertial
and kinetic ranges are given in the last row of Table 1.

A full set of spectra was sorted according to different characteristic quantities, namely
proton f (the ratio of proton kinetic and magnetic pressures), collisional age, Ac, tem-
perature anisotropy, A and a standard deviation of fluctuations of the magnetic field
perpendicular component normalized to mean magnetic field, (B, /Bg). We computed
the collisional age according to Kasper et al. [4] as Ac = R/(V1.) where 7, is the time
scale for @ — p energy exchange due to small-angle Coulomb scattering, V is the solar
wind speed and R is the distance from the Sun to Spektr-R. The spectral parameters in the
subsets were determined as described above. It should be noted that we use temperature
anisotropy determined from Wind SWE energy spectra under an assumption of one proton
population. The results of our analysis are summarized in Table 1.

As noted, the table shows both inertial and kinetic slopes of median spectra in all
analyzed subsets. A quick look to numbers reveals that V};, exhibits shallowest spectrum
in the inertial range. On the other hand, there is a clear similarity between V};, and N in
the kinetic range. Since this presentation is complex but not too illustrative, we show the
results in a series of panels in Figure 7.
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Table 1. Overview of median spectral slopes of different parameters in inertial and kinetic ranges for four groups of quantities.

Slope (Inertial Range)

Slope (Kinetic Range)

Quantity N B B” Vi V” Vi N B B” Vi V” Vin
A <08 1.61 1.64 1.56 1.51 1.57 142 2.20 2.87 2.24 342 2.79 244
095 < A <1.05 1.68 1.66 1.61 1.57 1.66 1.51 2.16 2.45 2.02 3.14 2.63 2.12
A>12 1.70 1.65 1.58 1.52 1.62 147 2.12 2.66 2.07 3.35 2.67 2.24
o> 0.164 1.62 1.73 1.68 1.56 1.62 1.46 2.24 2.93 2.55 3.50 3.09 2.51
0.09 < 0 < 0.134 1.65 1.65 1.55 1.50 1.58 143 2.18 2.82 2.20 3.45 2.80 2.37
o < 0.066 1.68 1.60 1.68 1.51 1.65 1.51 2.04 2.30 1.57 3.01 2.46 2.06
Ac > 15 1.72 1.70 1.70 1.60 1.67 1.56 213 2.32 1.82 3.02 2.75 2.01
22 < Ac <92 1.65 1.64 1.64 1.50 1.58 143 2.15 2.75 2.18 3.25 2.62 2.36
Ac < 1.11 1.55 1.64 1.64 1.48 1.57 1.45 2.26 2.98 2.52 3.74 3.11 2.66
B>07 1.65 1.71 1.63 1.65 1.62 1.55 2.28 2.74 2.28 3.26 2.95 2.55
02<p<04 1.63 1.67 1.58 1.55 1.60 1.48 2.27 2.80 2.25 3.54 3.02 2.44
B <01 1.68 1.62 1.68 1.50 1.64 1.48 2.01 2.59 1.79 3.19 2.42 2.10
All 1.64 1.66 1.58 1.52 1.61 1.46 2.16 2.72 2.16 3.34 2.75 2.33
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Figure 7. The slopes of fluctuation spectra in inertial (middle panels) and kinetic (right-hand panels) ranges of frequencies

as a function of temperature anisotropy (top row), collisional age (second row), level of magnetic field fluctuations (third

row) and ion beta (last row). The distributions of particular parameters in the analyzed set are in the first column, the ranges

used for averaging are indicated by color bars in each histogram and are also introduced in Table 1. Color and symbol

codings in all panels of spectral slopes are: N—blue ¢; B —red [J; Bj—light green AA; V, —violet x; V| —light blue x; and

Vi,—orange e.
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From the point of view of the discussion on the temperature/pseudo-temperature,
the analysis presented in the top row of the panels would be probably the most interesting
because it shows the dependence on the temperature anisotropy, A. The color bars indicate
the anisotropy ranges used for calculations of median spectra. The slopes of the median
spectra of different parameters are depicted as color dots in the middle panel for the inertial
range, the analysis of kinetic range slopes is shown in the right-hand panel. However, the
slopes of analyzed quantities change with the temperature anisotropy roughly in the same
way. The steepest slopes are observed for the isotropic temperature in the inertial range
but they are shallowest in the kinetic range. Note that differences between groups with
A <0.8and A > 1.2 and are small.

The second row of panels confirms the conclusions following from the top row because
one would expect the isotropic temperature at largest collisional ages (e.g., [3]) and the
middle panel indeed shows steepest slopes of the quantities in the inertial range at such
collisional ages. A similar conclusion follows from the right-hand panel because we observe
shallowest slopes for largest collisional age.

A selection of intervals according to the standard deviation of the magnetic field is
shown in the third row. The results are surprising because one would expect steepening of
slopes with increasing fluctuation level but it is observed only in the kinetic range, about the
same steepness of slopes in the inertial range was found for small (¢(B_ /By) < 0.066) and
large (c(B /By) > 0.164) fluctuations, moderate fluctuations with o(B, /Bj) = 0.1 exhibit
shallowest slopes. The only exception is the slope of B . The shallow slopes in the kinetic
range observed for all quantities (and especially for B) when the level of fluctuations is
small are probably affected by the instrumental and data processing noise. The noise effect
is comprehensively studied in Pitfa et al. [37] and the authors suggest that the slope can be
reliably determined if the signal-to-noise ratio exceeds 30. Since the topic of this study is
a comparison of a behavior of temperature fluctuations with other quantities and noise
effects would be similar for all of them, we will return to this problem in a follow-up study.

The bottom panels present three proton  subsets, the boundaries are marked in the
first panel. The histogram in this panel shows that there are no really large or small  events
in the analyzed set. Concentrating on the changes of the V};, slopes, we can note a similar
behavior as slopes of V| and B, all these slopes exhibit steepening with increasing f in
the inertial range. On the other hand, the slopes of the density and parallel components of
the magnetic field and velocity are shallowest in the intermediate beta range and the same
effect can be seen in the thermal velocity spectra. The kinetic fluctuations of quantities
exhibit a slight steepening with increasing beta.

Figure 7 shows that trends of changes of spectral slopes of all quantities are similar but
not identical. To quantify the degree of similarities, we made the plots like those shown in
Figure 8 and computed the Spearmann correlation coefficients. The plot compares trends
of median slopes of V};, in the inertial (left column) and kinetic (right-hand column) ranges
with the slopes of N (top panels) and V| (bottom panels); the correlation coefficients are
given at the top of each panel. Larger correlations and a better organization of the bottom
plots would suggest that the fluctuations of V};, and V| are probably driven by the same
processes. However, the spread of the points is rather large for an ultimate conclusion.
For this reason, we present correlations of spectral slopes of analyzed parameters with the
slopes of V}, in Table 2.

The table shows that the best correlation with Vj;, in the inertial range exhibits V),
fluctuations. Since the V};, fluctuations would be compressive in nature and the same is
true for V), this result is consistent with expectations and it is further supported by the
fact that the second largest correlation coefficient exhibits B|. Moreover, the fluctuations of
parallel components are often replaced with the fluctuations of magnitudes for the sake of
compressibility determination (e.g., [36] and references therein) and thus, this conclusion
is consistent with Safrankova et al. [6]. A lower correlation of V, slopes with the slope
of density spectra can be caused by their flattening at the end of the inertial range that is
often observed [7] but its origin is still under debate [38]. In the kinetic range, variations
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of median slopes of studied parameters with the temperature spectra are well correlated,
the largest coefficient was found for B|| fluctuations and this is again consistent with the
compressive nature of these fluctuations.
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Figure 8. A comparison of median slopes of V};, and N (top panels) and V};, and v (bottom panels), respectively in inertial
(left panels) and kinetic (right panels) ranges. Red points in particular panels mark values of slopes for the full set of events.

Table 2. Correlations between the median slopes of V};, and the slopes of other solar wind parameters
and magnetic field determined for different subsets in inertial and kinetic ranges. The greatest

correlation in each range is bolded.

Correlations of Different Slopes with the Slope of V,
Inertial Range Kinetic Range
N By ol Vi Vi N B, By Vi Vi
0.69 0.39 0.74 0.72 0.80 0.86 0.87 0.95 0.83 0.81

5. Discussion and Conclusions

Although the original aim of this study is to check a suggestion of Gogoberidze et al. [8]
that the spectra of the thermal speed would be similar to spectra of the density, it brings a
lot of new information. Our discussion of measuring methods used for a determination of
solar wind parameters illustrates effects that are often neglected and emphasizes the fact
that measurement methods and spatial, energetic and temporal resolutions of a particular
instrument should be taken into account in processing and presentation of the experimental
data as discussed also by many authors (see Section 1). When reading an article, we often
do not know how the plasma parameters were determined and thus what they mean.
For example, the density or velocity can be related to the proton core, the proton core
plus proton beam or it can include also somehow weighted contribution of heavier ions.
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As we illustrate in Figures 2 and 3, the tensor nature of the temperature in anisotropic
multicomponent plasma complicates a situation even more.

Our deeper analysis of measurements of the BMSW instrument that are used for an
estimation of the plasma parameters in the present contribution (Figures 4 and 5) revealed
that the present study deals with the velocity and the trace temperature of the proton core
and this conclusion should be considered in the interpretation of analyzed results.

We started with a simple check of the pseudo-temperature effect. In order to avoid
problems with the anisotropy of the ion distribution, we selected intervals with (1) a large
collisional age and (2) with a negligible temperature anisotropy and checked slopes of
spectra of Vi, Vi, Vi, B, By, and N in the inertial and kinetic ranges and found that V},
exhibits shallowest slopes in both ranges (see corresponding rows in Table 1). Under these
conditions, the temperature would be scalar and a contribution of pseudo-temperature
can be neglected but even in these cases, we did not find similarity of the density and
temperature spectra; the density spectra were always steeper. We think that it is connected
with the influence of kinetic Alfvén waves/fluctuations that form the density spectrum
and cause its flattening [7]. Since the flattened part is excluded in the slope determination,
the resulting density slope is steeper. Note that any trend to such flattening was not
observed in the spectra of the thermal speed. However, the differences between slopes
were small and thus the results were not too conclusive. For this reason, we carried out
a deeper analysis and sorted more than 30,000 of analyzed time intervals into groups
according to the collisional age, temperature anisotropy, ion beta and a level of magnetic
field fluctuations and determined median spectral slopes for each of these subsets.

The result of the presented analysis can be summarized as it follows:

1.  Modeling of the response of the Faraday cup has shown that the temperature deter-
mined from the fast measurements of BMSW [33] can be considered as the proton core
trace temperature and the effect of the pseudo-temperature discussed in [8] exists but
it is very small (Figures 4 and 5) in the BMSW case.

2. The values of slopes of Vy;, in subsets differing by the collisional age, temperature
anisotropy, proton beta, and a level of the magnetic field fluctuations vary from —1.42
to —1.56 in the inertial range and from —2.01 to —2.66 in the kinetic range.

3. We did not find a clear similarity between spectra of N and V};, fluctuations in the
inertial range of frequencies, the N spectra are always steeper.

4. Spectral slopes of all analyzed parameters (N, B, V| and B, V| components of the
magnetic field and velocity, and V};,) depend on background parameters in a similar
way; the correlation coefficients are in a range of 0.7 to 0.95. However, the quantities
used for bining of our set are not fully independent. For example, larger magnetic
field fluctuation level is typical for collisionally younger plasma (e.g., [3]).

5. The largest correlation coefficients were found between slopes of Vy, and B, V|, in
agreement with a compressive nature of these fluctuations.

6.  The values of slopes of all parameters in the kinetic range are similar and well
correlated.

We should note that our study combines all solar wind types regardless of their origin.
The turbulent spectra are formed close to the Sun and their spectral shapes probably differ
in streams emanating from various sources but mutual interactions of particular streams in
course of its expansion excite waves of different kinds and form interplanetary shocks [39]
that further shape the spectra of all parameters. We think that these interactions lead to
the observed similarities of power spectral densities of analyzed fluctuations at 1 AU. A
deeper study of power spectra measured closer to the Sun or a careful separation of scarce
intervals that are not affected by stream interactions can further elucidate the problem of
similarities of spectral shapes of different quantities. Another way can be also applications
of advanced techniques of the data analysis like the cross-wavelet transform technique [40]
that can provide instantaneous frequency information along with phase differences in the
time—frequency domain.
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The following abbreviations are used in this manuscript:

MMS Magnetospheric Multiscale (MMS) mission
PSP Parker Solar Probe (PSP) mission
BMSW Bright Monitor of the Solar Wind (BMSW) on board the Spektr-R spacecraft
ACE Advanced Composition Explorer (ACE) mission
THEMIS The Time History of Events and Macroscale Interactions during
Substorms (THEMIS) mission
AU Astronomical Unit
FCs Faraday Cups
EAs Electrostatic Analyzers
VDF Velocity Distribution Function
FFT Fast Fourier Transform
PSD Power Spectral Densities
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