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Abstract: In this paper, we propose a novel method to remove haze from a single hazy input image
based on the sparse representation. In our method, the sparse representation is proposed to be used
as a contextual regularization tool, which can reduce the block artifacts and halos produced by only
using dark channel prior without soft matting as the transmission is not always constant in a local
patch. A novel way to use dictionary is proposed to smooth an image and generate the sharp dehazed
result. Experimental results demonstrate that our proposed method performs favorably against the
state-of-the-art dehazing methods and produces high-quality dehazed and vivid color results.

Keywords: image dehazing; sparse representation; contextual regularization; transmission estimation

1. Introduction

Natural images captured outdoors are often degraded by bad weather [1], which
greatly reduces the quality of captured images. Figure 1 shows an example of hazy
images—the hazy input loses some color and contrast information, which makes it hard to
distinguish the distant objects from the hazy image. The reason for this phenomena is that
the degradation is spatially variant [1].

Haze removal or image dehazing is urgently needed in computer vision applications.
First of all, removing fog from a hazy image can significantly improve the visibility in the
image and greatly rectify the color shift caused by the air-light. In addition, the quality
of the images will affect the results of the related computer vision algorithms to some
extent, from the low-level image analysis (e.g., edge detection or line segmentation) to the
high-level image understanding (e.g., object detection or scene parsing).

However, image dehazing is an ill-posed problem as the physical formulation has at
least four unknowns per pixel and only three equations. To solve this problem, numerous
single image dehazing approaches have been proposed by using multiple inputs [2,3] or
sharp image priors [1,4,5]. Fattal [4] proposed removing haze by explaining an image via a
model that accounts for the surface shading and the scene transmission. The assumption
that the surface shading and the medium transmission functions are locally statistically
uncorrelated solved a constant albedo and the atmospheric-albedo ambiguity to generate
haze-free images. However, it cannot process heavily hazy images and grayscale images
well. He et al. [1] proposed the dark channel’s statistical observation known as dark
channel prior (DCP). With this prior, He at el. estimated the thickness of fog locally from
the dark-channel pixels within a local patch. However, it should be noted that the images,
as well as the haze, could be affected by uncertainties and inaccuracies. Therefore, the
need arises to pre-treat images with soft computing techniques based on fuzzy logic [6,7].
Gibson and Nguyen [8] proposed an improved DCP for haze removal from the input.
Unlike the DCP in [1], Gibson and Nguyen [8] proposed an improved DCP by assuming a
zero minimal value, which improves DCP searches for the darkest pixel average inside of
each ellipsoid. Fattal [9] proposed another haze removal method based on the characteristic
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of small image patches, which form a line in a small image patch of the RGB color space.
Based on this distribution, Fattal [9] proposed a color-lines model and recovered the scene
by considering the color-lines’ offset from the sharp image. Zhu et al. [10] proposed a color
attenuation prior (CAP) according to sharp image statistics. They introduced a linear
model for the fog image’s scene depth with the CAP to compute the parameters of the
linear model by a supervised learning approach. Li and Zheng [11] decomposed the hazy
input’s dark channel into two layers (i.e., a detail layer and a base layer) based on edge-
preserving decomposition. Then, the base layer was used to estimate the transmission map
for haze removal.

In addition to image priors-based methods, another line of research tries to remove
haze based on multi-image fusion. Ancuti et al. [12,13] illustrated the effectiveness of
fusion-based methods for removing haze from a single input image. In [13], two original
hazy inputs are first pre-processed by contrast enhancing and white balance. Then, these
two derived inputs are blended to generate the dehazed result by computing three weight
maps. To remove some halo artifacts, this method employs a multiscale scheme to produce
dehazed results.

Figure 1. An illustration of our proposed single image dehazing method on a real-world image.
From left to right: the hazy input, the estimated transmission map by the proposed algorithm, and
the dehazed image.

Following these existing methods, we further develop a new dehazing method based
on a sparse contextual representation. Sparse representation has been commonly used for
image denoising, super-resolution, deblurring, and other restoration tasks [14,15]. In this
work, we propose a new sparse contextual representation to reduce the halo and block
artifacts in the image dehazing task. Our proposed method is based on two observations.
The first one is that the depth or transmission map keeps the main structure of the original
input image. Another one is that the depth or transmission map is locally smooth. There-
fore, we use the sparse representation to smooth the boundary-constrained map. In the
proposed method, we obtain two different transmission maps—one of them provides the
main structure while the other retains the image details. We fuse these two transmission
maps using the sparse contextual representation and obtain the refined transmission map.
Figure 2 illustrates an example of our proposed algorithm using sparse representation,
from which we observe that our proposed method can recover a smooth transmission map
and generate a high-quality haze-free image.
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Figure 2. An example of our proposed sparse contextual representation-based dehazing method.
From left to right—the hazy input, the estimated transmission map by the proposed algorithm, and
the dehazed image.

2. Hazy Image Formulation

The commonly used hazy image model is presented in [16] as

I(x) = t(x)J(x) + (1− t(x))A, (1)

where the vectors I(x) and J(x) denote the intensities for the three RGB channels of the
pixel at x of the observed hazy input and the corresponding haze-free image, respectively,
A is the atmospheric light of the hazy input. In addition, t is the transmission map, which
defines the probability of the light reaching the camera sensor from the object, x is the
position of a pixel in image. Recovering a haze-free image J from the observed haze
image I is equal to solve for the A and the t from the I. The two terms J(x)t(x) and
(1− t(x))A in Equation (1) are regarded as direct attenuation and the contribution of the
air light A, respectively.

3. Our Method

In this paper, we propose a novel method to estimate the transmission map using
sparse representation. We employ the sparse representation to fuse the multiscale transmis-
sion maps. Firstly, we obtain the pixel-wise and patch-wise transmission maps. Secondly,
we obtain the structure from the patch-wise transmission map and details from the pixel-
wise one via sparse representation. Finally, we add the details to its structure, which
produces the final transmission map.

3.1. Piecewise-Smooth Assumption

As indicated in [1], only using dark channel prior without soft matting would generate
some halos and block artifacts in dehazing as the transmission coefficients are not always
constant in a local patch. To address this problem, we assume that the pixels in the same
object share similar transmission coefficients. This assumption is widely adopted [5,9].
Fattal [9] expected that the scene depth existing in an image would be piece-wise-smooth,
which in turn leads to smooth scattering coefficients. This assumption implies that the
resulting transmission coefficients {t(x)}x∈I are also piece-wise smoothed in the whole
scene and are smooth at neighboring pixels in some local region corresponding to the
same object. Based on this assumption, we propose a new sparse contextual representation
network for haze removal in this paper.

3.2. The Lower Bound of Transmission Map

To yield an initial transmission map of a hazy input, we can reformulate (1) as:

J(x) =
I(x)− (1− t(x))A

max(t(x), t0)
, (2)
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which implies that we can produce a dehazed image from a hazy input based on A and t, a
typical value of t0 is 0.1, as shown in [1]. To facilitate the calculation, we normalize the
intensities of the hazy input in the RGB color space and obtain

t1(x) ≥
Ic(x)−Ac

1−Ac and t2(x) ≥ 1− Ic(x)
Ac , (3)

where ‘c’ is the channel index in the color space. Then, the minimum transmission can be
written as:

t̂1(x) = max

(
Ir(x)−Ar

1−Ar ,
Ig(x)−Ag

1−Ag ,
Ib(x)−Ab

1−Ab

)
(4)

t̂2(x) = max

(
1− Ir(x)

Ar , 1− Ig(x)
Ag , 1− Ib(x)

Ab

)
. (5)

From (4) and (5), we can obtain the lower bound of the transmission map as:

tb(x) = max
(
t̂1(x), t̂2(x)

)
. (6)

Equation (6) can be regarded as a special case of the lower bound of the transmission
map [17] with the parameters C0 = 0 and C1 = 255:

tb(x) = min
(

max
(

Ac − Ic(x)
Ac − C0

,
Ac − Ic(x)

Ac − C1

)
, 1
)

. (7)

According to our proposed piece-wise smooth assumption, we apply the maximum-
minimum filter (7) on the lower bounds of the transmission coefficients for all the pixels in
an image to generate a patch-wise transmission as:

t̃(x) = min
y∈N (x)

max
z∈N (y)

tb(z), (8)

where N denotes the local patch centered at a point.

3.3. Contextual Regularization Using Sparse Representation

To smooth an image, we propose to use sparse representation to obtain a smooth
transmission map. First we define an under-complete dictionary D ∈ Rn×K with K
atoms (K < n). We learn such a dictionary from the original image. Figure 3 illustrates
some smooth results on a boundary-constrained transmission map consisting of the lower
bounds of transmission coefficients with a 10× 10 patch and 1 atom, 5 atoms and 15 atoms,
respectively. From Figure 3, we can observe that the details are gradually lack in the local
regions with the reduction of the number of the used atoms. In Figure 3d, only the main
structure was maintained. In this paper, we use 5 atoms to construct the dictionary.

(a) boundary-constrained map (b) 15 atoms (c) 5 atoms (d) 1 atom

Figure 3. An illustration of smoothing a piece-wise transmission map (a) with 15 atoms (b), 5 atoms
(c) and 1 atom (d), respectively.

In our problem, we have input images—one is from the lower bounds {tb(x)}x∈I of
transmission coefficients, which is called as the boundary-constrained transmission map
and another one is from the filtered image {t̃(x)}x∈I by using the maximum–minimum
filter on the boundary-constrained map. In this case, our problem can be regarded as an
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inverse problem of image super resolution, which is different from image denoising, which
uses only one single input by considering the noise as white Gaussian noise.

In this paper, we propose the sparse contextual representation to predict the final
transmission map. According to [9], we find that the final transmission map loses a lot
of local details of the original image. Thus, we can use an under-complete dictionary to
represent the transmission map, which will maintain the main structure of the image but
lose some local details. Figure 4 shows the whole framework recovering the transmission
map using sparse representation. First we apply a mean subtraction on the boundary-
constrained transmission map to get a variation image, which accounts for the local
details in the transmission map. This variation image is further smoothed using sparse
representation as described above. To keep the main structure of the original input image
in the final transmission map, we apply a mean filter (3× 3) on the patch-wise transmission
map to get a mean image, which keeps the main structure. Finally, we recover the final
transmission map by adding this mean image and the smoothed variation image, as shown
in Figure 4. In this way, the final transmission map can maintain the main structure of
the original image and lose a lot of local details due to the sparse-representation-based
smooth operation.

= +
Sparse 

Representation

Boundary!Constrained
M I V i ti I

Boundary Constrained 

Transmission Map
Mean Image Variation Image

+

= +

Patch!wise 

Transmission Map
Variation Image Mean Image

Recovered 

Transmission Map

Figure 4. The framework for our proposed method recovering the transmission map using
sparse representation.

3.4. Atmospheric Light Estimation

To estimate the atmospheric light [1], we first estimate the dark channel of a hazy
input. Then we select the top 0.1% pixels in the dark channel and choose the brightest pixel
from these pixels as the final atmospheric light. Based on the estimated atmospheric light
and the recovered transmission map, the final dehazed image can be produced from an
input hazy image I using Equation (2).

4. Experimental Results

To evaluate the effectiveness of the proposed dehazing method, we compared our
algorithm with some state-of-the-art methods. The patch size of 50× 50 with 35 atoms was
used in Figure 2 and the patch size of 20× 20 with 25 atoms for the learned dictionary in
all the experiments.
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4.1. Tests on Real-World Images

In this section we show some results on several typical examples using the proposed
algorithm. Figures 1 and 2 show the recovered transmission maps and the dehazed images
by using our method on a short-range natural outdoor image and a large-range one,
respectively. The satisfied results were generated. In addition, the fog in the image of
“Tiananmen” is inhomogeneous, as it often happens in real cases. Therefore, we also show
that our proposed algorithm is able to remove inhomogeneous fog in Figure 5. Then, we
show three dehazed examples with homogeneous fog in Figure 6. From Figures 5 and 6, we
can observe that the recovered transmission maps from different haze images are realistic,
which is coherent with human perception.

Figure 5. Visual results on a real-world hazy image. For left to right, the hazy input, the estimated
transmission map, and the dehazed result.

Figure 6. The dehazing results on three typical images: (Top) the input haze images; (Middle) the
recovered transmission maps; (Bottom) the dehazed images.

4.2. Visual Comparison

Almost all the defogging methods are able to produce a really good dehazed result
by removing fog from a general outdoor image. Visual comparison is a common way to
evaluate the performance of defogging methods. We compared some real-world images to
ones obtained by some with the state-of-the-art dehazing methods.

First, we compared our proposed method with Meng et al.’s method [17] on the
“Mountain” image suffering from a light fog. As shown in Figure 7, we can observe that
our dehazed image is comparable with one produced by [17]. Then, we tested our method
and eight state-of-the-art methods [1,4,9,10,13,18–22] on two real-world images of “ny12”
and “ny17”, with smooth-depth scenes, as shown in Figures 8 and 9. As shown, the results
by Tan [18] have some over-enhanced regions. The methods of [4] cannot remove the haze
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completely, Nishino et al.’s method produces some color distortions, and the other results
are relatively acceptable.

Figure 7. Visual comparison with the Meng et al.’s method on the “Mountain” image: (Left) the
input haze image; (Middle) Meng et al.’s result; (Right) our result.

Input Tan [18] Fattal [4] He et al. [1] Kopf et al [3]

Tarel [19] Ancuti et al [13] Fattal [9] Choi et al [22] Ours

Figure 8. Visual comparisons on a real-world hazy image of “ny12”.

Input Tan [18] Fattal [4] He et al. [1] Kopf [3]

Tarel [19] Ancuti et al [13] Fattal [9] Choi et al [22] Ours

Figure 9. Visual comparisons on a real-world hazy image of “ny17”.

Second, we compare the proposed method with recent state-of-the-art
methods [10,23–30]. From Figure 10, we can see that the results of RF [23] and CAP [10]
tend to retain haze. The results of learning-based methods [28–30] also retain haze. The
reason for learning based methods can not remove haze from real haze images is that they
have a problem of domain shirt. The learning-based methods are trained on synthesized
data, which are different form real hazy images. The proposed method improves the
dehazed quality via multi-scale information.

We highlight the advantage of the proposed method in Figure 11. The BCCR [17]
removes halos via contextual regularization. Our method removes halos via sparse coding,
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which is much faster than contextual regularization. As shown in Figure 11, we can see
that the proposed method obtains a more natural result and avoids the halo artifact well.
We also show a night hazy image dehazing in Figure 12. As we can see from Figure 12, the
proposed method can keep more details than the DCP. The results of restoration by the
proposed method are brighter than the results of using DCP [1].

Hazy input DCP [1] FVR [19] BCCR [17] RF [23] CAP [10] ATM [24]

DehazeNet [25] MSCNN [26] NLD [27] AOD-Net [28] DCPDN [29] GFN [30] Ours

Figure 10. The dehazing result of the proposed method and state-of-the art methods on the real hazy
images. The proposed method generates much clearer images with clearer structures and characters.

(a) Hazy input (b) BCCR [17] (c) Ours

Figure 11. The dehazing result of the proposed method and state-of-the art methods on the real hazy
images. The proposed method generates much clearer images with clearer structures and characters.
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(a) Hazy input (b) DCP [1] (c) Ours

Figure 12. The dehazing result of the proposed method and state-of-the art methods on the real
night hazy images. The proposed method generates much clearer images with clearer structures
and characters.

4.3. Quantitative Comparison

In this section, we conduct some quantitative comparisons for the real-world images
in Figures 8 and 9 by the non-reference metrics of [31].

Three metrics are from [31], which are “e”, “∑”, and “r̄”. “e” is defined as

e =
nr − no

no
, (9)

where no and nr denote respectively the cardinality of the set of visible edges in the original
image and in the contrast-restored image. “∑” is defined as:

∑ =
ns

dimx ∗ dimy
, (10)

where dimx and dimy denote respectively the width and the height of the image, the number
ns of pixels which are saturated (black or white) after applying the contrast restoration but
were not before. “r̄” is defined as

r̄ = exp[
1
nr

∑ log ri], (11)

where ri is the rate of gradients between the input image and the output image. Specifically,
the indicator “e” represents the newly visible edges ratio after restoration, the indicator “∑”
represents the percentage of pixels which are completely white or dark after restoration,
and “r̄” expresses the quality of the recovered contrast. Higher values of “e” and “r̄” are
better, while a lower value of “∑” is better.

As shown in Table 1, the compared methods cannot achieve better results according to
the indicator ‘e’, only our method, DCP [1], Kopf et al.’s approach, Tarel et al.’s approach,
Choi et al.’s approach and Ancuti et al.’s approach [13] produced positive values for this
metric. The proposed method achieves the highest value of ‘e’, which indicates that the
proposed method achieves better visibility enhancement. The result of Tan, Ancuti, and
Tarel was due to oversaturation, while Kopf, DCP, and the proposed method achieve a
reasonable enhancement. In addition, our results obtain small values of the non-reference
metric of ‘∑’, which means that our algorithm generates less oversaturated regions.

Table 1. Quantitative comparisons on the real-world images of “ny12” and “ny17” using e, ∑ and r̄ in [31].

Image Tan Fatta Kopf et al. He et al. Tarrel et al. Ancuti et al. Choi et al. Ours

e ∑ r̄ e ∑ r̄ e ∑ r̄ e ∑ r̄ e ∑ r̄ e ∑ r̄ e ∑ r̄ e ∑ r̄

ny12 −0.14 0.02 2.34 −0.06 0.09 1.32 0.05 0.00 1.42 0.06 0.00 1.42 0.07 0.0 1.88 0.02 0.00 1.49 0.09 0.00 1.56 0.26 0.00 1.42
ny17 −0.06 0.01 2.22 −0.12 0.02 1.56 0.01 0.01 1.62 0.01 0.00 1.65 −0.01 0.0 1.87 0.12 0.00 1.54 0.03 0.00 1.49 0.15 0.00 1.59
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5. Conclusions

In this paper, we proposed a novel method to remove haze from a single hazy image
using sparse representation for contextual regularization, which can greatly reduce the
halos and block artifacts in the dehazed results. Comparing with a series of the state-of-
the-art dehazing methods, extensive experimental results on the hazy images illustrate
that our method can generate high-quality dehazed results with vivid color, finer image
structures, and local details.
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