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Abstract: Droughts have significantly damaged the environment of the Inner Mongolia Autonomous
Region, China. In this study, the region was divided into two subregions. Soil moisture was used as
the basic parameter to analyze the characteristics of agricultural droughts. Based on a geographical
detector, the spatial stratified heterogeneity in different seasons was discussed. Moreover, the copula
joint functions of characteristics and dominant factors of agricultural droughts were constructed.
Based on the Soil Moisture Anomaly Percentage Index (SMAPI), the results demonstrate that the
climate tendency rate of droughts in the summer and in spring in Subregion I shows an increasing
trend, while it decreases in the autumn and winter. In Subregion II, the climate tendency rate of
droughts in different seasons has no significant change. Through geographical detection, the single
factor detection illustrates that temperature and Precipitation Conversion Efficiency (PCE) show
the highest explanatory power in different subregions. The interactive detection also demonstrates
the explanatory powers of the combination of the PCE and temperature, respectively. The t-copula
function describes the correlation coefficients of the SMAPI with the PCE and temperature, with
the optimal tail dependence. In short, agricultural droughts are most significantly affected by
temperature and the PCE, and their balance has a significant impact on agricultural droughts.

Keywords: Inner Mongolia Autonomous Region; soil moisture anomaly percentage index; geographical
detector; copula; precipitation conversion efficiency

1. Introduction

Drought is one of the most serious natural disasters that human beings encounter [1].
The Inner Mongolia Autonomous Region, located in the farming-pastoral ecotone, is
one of the regions suffering from frequent meteorological disasters in China. In the
context of global warming, the average amount of drought days in China is increasing
overall, and the temperature in the Inner Mongolia Autonomous Region also continues
to increase. Although it is a prosperous agricultural region, the Inner Mongolia Au-
tonomous Region suffers from drought, which is at the top of the list of disasters there,
causing significant economic losses. In 2018, the area suffering from droughts in China
spanned 7.7118 × 106 hectares, and it reached 1.427 × 106 hectares in the Inner Mongolia
Autonomous Region alone, accounting for 18.50% of the affected area of the whole coun-
try [2]. Therefore, by adopting agricultural droughts as main research objects, the effective
evaluation of the characteristics of agricultural droughts and correlation analysis can be
conducted; this is crucial for daily life and economic development.

Previous studies have determined that droughts have a strong response to hydro-
logical elements [3]. Droughts are mainly caused by natural changes in the weather [4].
Based on NOAA/NCEP’s Climate Forecast System Version 2 (CFSv2) data and Dynamic
Recycling Model (DRM), Tirthankar Roy analyzed the roles of moisture transport and
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water cycles in two drought events (Texas (2011) and Upper Midwest (2012)) and found
that precipitation and evapotranspiration were the strongest signals reflecting drought,
and that water from land is conducive to alleviating this drought intensity [5]. The precipi-
tation change caused by atmospheric circulation will have a positive feedback to the soil
moisture anomaly, thus prolonging the drought time [6]. The interaction of soil moisture,
atmospheric moisture flux, and precipitation is complex. The reduction in precipitation
cycles is related to the reduction in water from upwind regions, since droughts in a region
can reduce the local atmospheric moisture content [7]. Soil moisture exerts a positive
influence on precipitation in semi-arid and semi-humid areas, and a negative impact on
humid areas [8]. Therefore, it is not feasible to attribute the change of one variable to
another. These studies show that the soil moisture and water cycles have important effects
on the droughts in specific regions. The soil moisture is a comprehensive variable of
various climate, vegetation, and soil characteristics, and plays a regulatory role in the crop
water supply [9]. The amount of the soil moisture affects the speed of the water supply
through the atmospheric water cycle, and it is of great significance for studying agricultural
droughts based on the soil moisture [10].

The structure of this research is arranged as follows: The research data and methods
are described in Section 2. Section 3.1 discusses the identification of the characteristics of
agricultural droughts and the role of soil moisture in droughts. In Section 3.2, by using
a geographical detector, agricultural droughts are studied, and dominant factors and
interactive factors are quantitatively identified. The drivers and explanatory power are
revealed accurately. In Section 3.3, the dependence structures of agricultural droughts
with the precipitation conversion efficiency (PCE) and temperature are investigated based
on a nonlinear copula function in order to find a balance between influence factors and
droughts. The research results are discussed in Section 4. The conclusions are made in
Section 5. Clarifying the characteristics and dominant factors of agricultural droughts can
provide a scientific basis for combating droughts.

2. Materials and Methods
2.1. Study Region

The Inner Mongolia Autonomous Region is located in the northern part of China
(97◦12′~126◦04′ E, 37◦24′~53◦23′ N), with a total area of approximately 1.18 × 106 km2,
which is 12.3% of the total area of the country. The region extends obliquely from the
northeast to the southwest in a strip-like shape with complex terrain, and has an altitude
of 89~3343 m. From the coast to the inland, with the continuous reduction in precipitation,
the natural belt also changes from forest to grassland, and finally becomes desert. The
mean annual temperature and mean annual precipitation are −4.5~9.8 ◦C and 50~450 mm,
respectively, with uneven interannual distribution and obvious spatial east-west differ-
ences. The multi-year mean annual precipitation shows an upward trend in the west,
a downward trend in the east, and a significant upward trend in select regions in the
northeast. The precipitation decreases from the east to the west. On the basis of the zoning
of four ecological regions in China [11], the Inner Mongolia Autonomous Region was
divided according to its boundary. In Figure 1, there is a depiction of Subregion I, an arid
and semi-arid ecological region in the north (an ecological region of the Inner Mongolia
Plateau), and Subregion II, a humid and semi-humid ecological region in the northeast (a
northeast ecological region). Subregion I comprises the main arid, semi-arid, and livestock
production areas in China, while Subregion II belongs to the main grain producing and
primary forest distribution areas in China. The changes in the trend of the standardized
precipitation evapotranspiration index (SPEI) at 32 stations in the Inner Mongolia Au-
tonomous Region were analyzed through Man-Kendall test. ∆ indicates that the test value
is positive and shows an uptrend; ∇ indicates that the test value is negative and shows a
downtrend. The presence of “·” in the center of the symbols represents significant uptrend
or downtrend. Significant uptrend is found at four stations and significant downtrend is
shown at three stations.
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2.2. Data
2.2.1. Meteorological Data

The basic meteorological data in the research were obtained from the China Meteoro-
logical Data Sharing Service System (http://data.cma.cn/, accessed on 30 August 2021),
and data including monthly precipitation and temperature from 2000 to 2019 were col-
lected from a total of 32 meteorological stations in the Inner Mongolia Autonomous Region.
Spatial distribution data based on a Digital Elevation Model (DEM), Land Use and Cover
Change (LUCC), Normalized Difference Vegetation Index (NDVI), Gross Domestic Product
(GDP), and Population Grid China (POP) data were derived from the Resource and Envi-
ronment Science and Data Center, Chinese Academy of Sciences (http://www.resdc.cn/,
accessed on 30 August 2021). The soil moisture data came from the second layer (7~28 cm)
of the European Center for Medium-Range Weather Forecasts (ECMWF) fifth-generation
global atmospheric reanalysis (ERA5) dataset. All data were strictly checked to ensure
the accuracy.

2.2.2. Precipitation Conversion Efficiency

The data of specific humidity in the Inner Mongolia Autonomous Region at four
atmosphere layers (500, 700, 850 and 1000 hPa) from 2000 to 2019 with a spatial resolution
of 0.25◦ × 0.25◦ were obtained from the ERA5 dataset. The atmospheric precipitable water
vapor (W) can be calculated through Formula (1).

W =
1
g

∫ Ps

Pt
qdp (1)

where W and q represent the atmospheric precipitable water vapor (mm) and specific
humidity (kg/kg), respectively; Ps and Pt separately indicate the upper and lower atmo-
spheric pressures (hPa). The ability to convert the atmospheric precipitable water vapor
into the actual precipitation is the PCE, which can be deemed as the conversion efficiency
from water vapor to precipitation in a certain period. The PCE can be calculated according
to Formula (2).

PCE =
P(Month)
W(Month)

× 100% (2)

http://data.cma.cn/
http://www.resdc.cn/
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where P and W denote the actual precipitation (mm) per unit area and atmospheric precip-
itable water vapor (mm), respectively.

2.3. Methods
2.3.1. Geographical Detector

The geographical detector method is a statistical approach proposed by Jinfeng Wang
et al. [12] to detect spatial stratified heterogeneity and reveal the underlying driver by
using explanatory power q (http://www.geodetector.org, accessed on 30 August 2021).
The core idea is that if an independent variable has an important impact on a dependent
variable, they are similar in spatial distribution. Therefore, the geographical detector can
be used to find the dominant spatial driver of a certain element [13]. It can be classified as
single factor detection, interactive detection, ecological detection, and risk area detection.

The single factor detection reveals the explanatory degree of an independent variable
X for spatial stratified heterogeneity of the dependent variable Y. The explanatory power q
of a single factor is used to represent the explanatory power of the independent X for Y.

q = 1− 1
nσ2

L

∑
h=1

nhσ
2
h (3)

where nh indicates the type of the single factor, in which h represents the sample size in
one or more subregions, and n denotes the total sample size in the study region; σ2 and
σh

2 represent the dispersion variances in the whole study region and discrete variance of
the classification h, respectively; L denotes the classification value of the single factor and q
is 0 ≤ q ≤ 1.

Interactive detection explores the interaction between any two factors Xi. In space,
there are three results; namely, their explanatory power for Y is enhanced, weakened,
or mutually independent. Ecological detection aims to analyze the action mechanism
between two different drivers; this will reveal the leading role of the main influence
factors on the dependent variable Y. Risk area detection is used to judge whether there is a
significant difference between the mean values of attributes of two subregions, checked
using a t statistics test. In this study, the agricultural drought indexes were used as the
dependent variables Y and the PCE, Ta, DEM, LUCC, NDVI, GDP, and POP were taken
as independent variables X. Based on this, the dominant factors and interaction factors of
agricultural drought indexes were quantitatively identified.

2.3.2. Copula Function

The copula function theory was proposed by Sklar in 1959 [14], which is a multivariate
joint distribution function composed of a univariate marginal distribution function and a
contiguous function. The density functions of marginal distribution functions of different
variables are fX(x) and fY(y), so the density function of joint distribution of X and Y is
f(x, y) = c(u, v) fX(x), fY(y), in which C represents the copula function of two variables. The
probability density function (PDF) of C is c(u, v) = ∂2C(u, v)/∂u ∂v. The joint distribution
function between different variables is F(x, y). The continuous marginal distribution
functions are FX(x) and FY(y), and the joint distribution function is F(x, y) = C(FX(x), FY(y)).

The generally used parametric copula functions are usually classified into three types,
namely elliptic (Gaussian copula and t-copula), Archimedes (Clayton copula, Gumbel
copula and Frank copula), and extreme copula functions [15]. The dependence of variables
is fitted by the copula function, with no need to assume that the variables conform to some
established distributions. The joint PDF between variables can be obtained to better analyze
the interaction between variables. The correlation coefficients (Pearson’s ρ, Kendall’s τ, and
Spearman’s ρ) are used as measures for the linear dependence between random variables.

http://www.geodetector.org
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2.3.3. Identification of Characteristics of Agricultural Droughts

The indexes usually used to study agricultural droughts include the Soil Moisture
Index, Crop Drought Index, Crop Water Index, and Soil Moisture Anomaly Percentage
Index (SMAPI) [16]. The soil moisture, as a basic parameter, can improve the understanding
of agricultural droughts and drought monitoring. The soil moisture data in ERA5 cover the
whole world and include underground data, with a high relative accuracy [17], which is
very suitable for evaluating agricultural droughts. Bergman et al. [18] proposed the SMAPI
in 1988, which can effectively solve problems in the inconsistent identification standards of
agricultural droughts in different climate regions. It is calculated by dividing the difference
between the actual soil moisture and the multi-year average in the same period by the
multi-year average of the same period [19]. The roots of crops mainly act in the soil layer
with a thickness of 0~20 cm, where the water content usually determines the growth of
crops. The calculation formula is shown as follows:

SMAPI =
θ− α

α
×100% (4)

where θ and α indicate the soil moisture at the current time and average soil moisture in
this period over years, respectively. The drought degrees are listed in Table 1.

Table 1. Drought degrees based on SMAPI.

Description Mild Drought Moderate Drought Severe Drought Extreme Drought

SMAPI Range (−15%~−5%) (−25%~−15%) (−35%~−25%) ≤35%

The frequency and influence range of droughts were taken as the drought indexes
for the Inner Mongolia Autonomous Region. The frequency of droughts refers to the
frequency of droughts exceeding a certain threshold in a period of time, that is, the ratio
of the total number of months of droughts to the total number of months in computation.
The frequency of different degrees of droughts is calculated according to the number of
corresponding droughts in drought indexes. The frequency of mild droughts indicates the
frequency of mild droughts or above, and the frequency of moderate droughts refers to
the frequency of moderate and more serious droughts. The range of droughts implies the
percentage of drought area in a region in the total area of the region within the specified
time period. The calculation formula is expressed as follows:

θ =
m
M
× 100% (5)

where θ, m, and M indicate the range of droughts, number of stations with droughts, and
total number of meteorological stations, respectively.

3. Results
3.1. Spatial-Temporal Distribution of Agricultural Droughts

A drought is a meteorological disaster occurring most frequently and widely in the
Inner Mongolia Autonomous Region. In each season, the sensitivity to water shortage
in each stage of the crop growth period easily causes droughts of varying degrees. The
soil moisture is the most direct and appropriate variable to reflect soil droughts. Based on
the data of the soil moisture recorded in 32 meteorological stations in the Inner Mongolia
Autonomous Region, the monthly SMAPI was calculated. Through analysis, it was found
that the frequency of droughts (mild and above) in Subregion I in Figure 2 ranges from
29.17% to 52.50%, with an average of 42.85%. The probability of mild droughts is high,
with an average of 19.6%, while that of extreme droughts is low, with an average of 4.31%.
In Subregion II, the frequency of mild and severe droughts is similar to that in Subregion
I, with an average of 43.75%, while the probability of mild droughts is slightly higher
than that in Subregion I, with an average of 21.01%. Due to abundant precipitation, the
subregion is found to have a low probability of extreme droughts, 3.51% on average. In
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terms of regional distribution, Bayan Nur City and Hohhot City suffer from high- and
low-frequency mild droughts, respectively. Moderate droughts occur at a high frequency
in Baotou City and Tongliao City, but at a low frequency in Hulunbuir City. Furthermore,
Tongliao City, Hinggan League, and Chifeng City have a high frequency of severe droughts,
while the low frequency is found in the middle of Hulunbuir City and Bayan Nur City.
Extreme droughts frequently occur in Hohhot City, but less frequently in Bayan Nur City
and Ordos City [20]. On the whole, droughts are mainly intensified in the central and
western parts of the Inner Mongolia Autonomous Region, and the west suffers from more
droughts than the east of the region.
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Figure 2. Distribution of the SMAPI at different drought frequencies in the Inner Mongolia
Autonomous Region.

From the perspective of land–atmosphere feedback, there is a close relationship be-
tween meteorological and agricultural droughts. Meteorological droughts are the cause
of, and occur earlier than, agricultural droughts [21]. On this basis, by comparing SPEI-1
with the standardized SMAPI of the Inner Mongolia Autonomous Region, it is found that
they are similar to a great extent, reflecting the same drought change trend, which can
well characterize droughts in this region. In most cases, SPEI-1 changes earlier than the
standardized SMAPI [22]. However, this study was carried out on a monthly scale, while
the propagation between meteorological and agricultural droughts was not described more
accurately on a daily scale.

Figure 3 demonstrates the ranges of mild and more serious droughts in different
seasons in the Inner Mongolia Autonomous Region from 2000 to 2019 [23]. In the last
20 years, the average annual range of droughts in Subregion I fluctuated in the range
of 3.33%~95.00% [24]; the range of agricultural droughts is ≥50%. The whole subregion
suffered from droughts in the springs of 2000, 2012, 2013, and 2018; the summers of 2001,
2010, 2015, 2017, and 2019; autumn of 2002 and summer and autumn of 2005. A large range
of droughts occurred in the whole year of 2006. Moreover, these droughts occurred in the
springs and summers of 2008, 2009, and 2014. Except for autumn in 2007 and winter in
2011, drought occurred across the subregion in other seasons. In Subregion II, the average
annual range of droughts changed to 2.78%~97.22%. The whole subregion suffered from
droughts in the summers of 2000, 2016, and 2017, autumn and winter of 2001, the springs
and winters of 2008 and 2018, and summer and winter of 2010. In addition, these droughts
occurred in 2003, 2006, and 2019 (except summer), autumn of 2005 and 2011, winter of
2012, and the whole year of 2007 and 2009.
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The climate tendency rates of droughts exhibit obvious spatial differences over differ-
ent seasons. In Subregion I, the climate tendency rate of droughts in summer is 0.073/10 a,
which is significant, followed by the spring with a climate tendency rate of 0.034/10 a,
while droughts are alleviated in autumn and winter. A large scale of serious agricultural
droughts occurred for the first time in June 2005. By using statistics, it was found that
compared to other years, June is a high-incidence period of agricultural droughts, and mild
or more serious droughts occur at a frequency of more than 50% at most stations. Therefore,
it is necessary to prevent droughts in advance. In Subregion II, the climate tendency rates
in different seasons have no significant change. A large range of droughts easily take place
in spring and winter. It is obvious that more than 80% of the Inner Mongolia Autonomous
Region suffered from spring droughts in 2006, especially in the northern and middle to
north regions. There were continuous droughts in the winter and spring from September
2007 to April 2008, which is consistent with the other research results [25,26]. The low
soil moisture in agricultural and pastoral areas has led to great losses in agriculture and
animal husbandry.

3.2. Identification of a Synergistic Relationship between Ecosystem Variables and
Agricultural Droughts
3.2.1. Attribution Analysis of Single Dominant Factors

In addition to the influences of meteorological variables, agricultural droughts char-
acterized by the soil moisture are also affected by other factors, which was mentioned
in previous studies [16]. These factors include elevation, terrain, land cover type, and
vegetation; vegetation roots affect the runoff, infiltration, and evapotranspiration of sur-
face water through water absorption. Human activities can transform and regulate the
local environment. To expound the mechanism of agricultural droughts, the synergistic
relationship between the SMAPI and different variables was analyzed by the geographical
detector. Firstly, factors with good correlations in different subregions were preliminarily
evaluated through the Pearson correlation analysis. Finally, Subregion I was quantitatively
identified by selecting PCE, Ta, DEM, LUCC, and NDVI. The PCE, Ta, NDVI, GDP, and
POP were used for geographical detector based analysis in Subregion II. A factor detector
was used to quantitatively identify dominant factors of the synergistic relationship between
ecosystem variables and agricultural droughts in different seasons [13], so as to test the
spatial stratified heterogeneity of single variables.

The influences of dominant factors in the synergistic relationship between different
ecosystem variables and agricultural droughts on spatial heterogeneity were evaluated
(Figure 4). By doing so, it was found that the synergetic relationship between different
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ecosystem variables and SMAPI has different dominant factors containing explanatory
powers varying over different seasons. The results demonstrate that temperature has
the highest explanatory power, indicating that among these variables, temperature is the
most important ecological factor of the SMAPI. The explanatory power of temperature
in autumn in Subregion I is the highest at 51%, while those in spring and summer in
Subregion II reach 52% and 54%, respectively. The PCE and DEM are ranked directly
following temperature in terms of their explanatory powers of 32% and 12% in the spring
in Subregion I, respectively. Moreover, the explanatory powers of PCE in summer and
winter occupy 33% and 34%, respectively. On the whole, the other ecosystem variables PCE,
DEM, NDVI, and LUCC are ranked in a descending order according to their explanatory
power q in Subregion I. In each season, the explanatory power of LUCC is less than 10%,
suggesting that LUCC has the weakest explanatory power for the spatial distribution of
the SMAPI among these ecosystem variables. The DEM characterizes the background of
climate types, an important factor affecting the SMAPI. In Subregion II, the other factors
PCE, NDVI, POP, and GDP are ranked in the descending order in accordance with their
explanatory power for the SMAPI. The explanatory powers of the PCE in autumn and
winter in Subregion II account for 35% and 39%, respectively. The explanatory powers of
POP and GDP for SMAPI are mostly below 10%, and GDP has no significant explanatory
power for the spatial distribution of the SMAPI. The temperature (q = 0.9470 in autumn
in Subregion I, and q = 0.9208 in autumn in Subregion II) and precipitation conversion
efficiency (PCE) (q = 0.7074 in winter in Subregion I and q = 0.8750 in autumn in Subregion
II) show the highest explanatory power in different subregions. The LUCC, GDP, and
POP are mainly determined by human activities, which regulate the local soil moisture
and affect the water cycle process. The national macro-policies and measures also have a
significant role in the regulation of soil moisture.
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Figure 4. Statistics of q values of single factors influencing the soil moisture in spring, summer, autumn, and winter.

3.2.2. Quantitative Attribution of Interaction Factors

An interaction detector can identify the interaction between different factors and eval-
uate whether the interaction between different factors enhances or weakens the explanatory
power of the SMAPI. In different seasons, the explanatory power of multi-factor interaction
is greater than that of a single factor, indicating that the interaction of different factors
significantly improves the explanatory power of the SMAPI, and that there is a significant
difference among drivers. Figure 5 illustrates the first three ecosystem variables with the
best interaction in different seasons in the two subregions.
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In Subregion I, the superposition of the PCE and Ta has the strongest explanatory
power for the spatial distribution of the SMAPI. The explanatory power of the interaction of
the PCE, Ta, and DEM with other factors is dominant, showing a two-factor enhancement
or nonlinear enhancement. The interactions of the PCE, Ta, and DEM are ranked as the
first three in summer, while those in other seasons are the combination of the PCE and
Ta, superposition of DEM and Ta, and interaction between NDVI and Ta. In Subregion II,
similarly, the PCE ∩ Ta still plays a dominant role in the explanation of the spatial distribu-
tion of the SMAPI. The first three dominant interactions are the combinations of Ta with
other influence factors. The LUCC has no significant interaction with other environmental
factors. The interaction of different factors has no direct relationship with seasons. Overall,
it was found that the combination of the PCE and Ta shows the highest explanatory power
in different seasons in each subregion, and their explanatory power significantly increases
with their superposition. The ecosystem variables affecting agricultural drought indexes
were quantitatively analyzed by utilizing the geographical detector. Based on this, the
explanatory power of various drivers for agricultural drought indexes was obtained, and
the optimal explanatory variable for agricultural drought indexes was found. Moreover, the
possible correlation between variables was measured. Furthermore, the characteristics of
agricultural droughts and dependence structure of dominant factors were further explored,
so as to make it more meaningful in mathematical statistics.

3.3. Dependence Structures of Agricultural Drought Indexes and Dominant Factors

Based on the above research, it was concluded that agricultural droughts show solid
correlations with the PCE and Ta, so a copula joint function was constructed to characterize
the dependence structure. By constructing copula functions for correlations of the SMAPI
with the PCE and Ta, the joint probability distribution obtained can thereby describe the
interaction process of the two meteorological variables, rather than unidirectional influ-
ences [27]. Through the frequency histograms of the SMAPI, PCE, and Ta, the distribution
is asymmetrical. The skewness and kurtosis of each of the three was calculated, as listed in
Table 2. The skewness and kurtosis deviate from those for the normal distribution, so it
is preliminarily determined that the SMAPI, PCE, and Ta data of the Inner Mongolia Au-
tonomous Region do not obey the normal distribution. To further verify distribution forms
of the three groups of data, a Jarque-Bera test, Kolmogorov-Smirnov test, and Lilliefors
test were carried out, thus confirming the assumption that the three groups of data do not
accord with the normal distribution.

The marginal distribution functions were solved. Due to the randomness of the
SMAPI, PCE, and Ta, the marginal distributions of the SMAPI, PCE, and Ta were estimated
by utilizing a Gaussian kernel function. In accordance with kernel density functions, kernel
distribution estimations of the SMAPI and PCE could be obtained in Figure 6. From the
shape of the graphs, the empirical distribution functions and kernel distribution estimations
of the SMAPI, PCE, and Ta in different subregions almost coincide, indicating that they
have uniform distribution in (0, 1).
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Table 2. Skewness and kurtosis of SMAPI, PCE, and Ta.

Subregion Variable Skewness Kurtosis

I
SMAPI −0.2784 2.5113

PCE 0.3906 2.3498
Ta −0.1965 1.6105

II
SMAPI 0.0398 2.7068

PCE 0.6023 2.9008
Ta −13.2243 196.8308
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According to the SMAPI and PCE data, three correlation coefficients, namely Pear-
son, Kendall, and Spearman coefficients, were calculated by using routine methods; the
calculation results are listed in Table 3. It can be seen from the table that the SMAPI and Ta
in Subregion I have a weak negative correlation, while others show a positive correlation.
By choosing from five copula functions, the copula function that could best describe the
dependence between the SMAPI and PCE, and the SMAPI and Ta was found. Based on the
empirical copula function, the goodness of fit of different copula functions was evaluated
by using the least square Euclidean distance. The square Euclidean distance reflects the
fitting of different copulas. The smaller the square Euclidean distance is, the better the
fitting effects. Compared with other four copula functions, the t-copula function can better
quantitatively describe joint distribution between them.
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Table 3. Correlation coefficients of the SMAPI, PCE and Ta.

Subregion Correlation
Coefficient Pearson’s ρ Kendall’s τ Spearman’s ρ

I
SMAPI and PCE 0.1012 0.0287 0.0499
SMAPI and Ta −0.2541 −0.1710 −0.2601

II
SMAPI and PCE 0.4580 0.2937 0.4338
SMAPI and Ta 0.1935 0.1390 0.2004

As shown in Figure 7, the SMAPI and PCE, and the SMAPI and Ta dependencies
are revealed by t-copula joint distribution function. The correlation functions of marginal
variables in the PCE and Ta in the figure are represented by u, and the SMAPI is represented
by v. The correlation coefficients and tail dependence of the SMAPI with the PCE and Ta
were obtained. They show obvious tail dependence and symmetry, especially between the
SMAPI and PCE in Subregion II. Due to different correlations between the SMAPI and
different factors, the ranges of their joint PDFs are different. Therefore, the joint return
periods between the SMAPI and PCE as well as the SMAPI and TA at different frequencies
can be explored, and hydrological events under the joint action of the PCE and Ta factors
were considered.
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Figure 7. Joint PDFs for correlations between the SMAPI and PCE (a) as well as the SMAPI and Ta
(b) in Subregion I and between the SMAPI and PCE (c) as well as the SMAPI and Ta (d) in Subregion II.

4. Discussion

There are great differences in precipitation during different seasons in the Inner Mon-
golia Autonomous Region. There is less precipitation in the spring, and the precipitation
variability in the summer is more than half of that in the spring. The probability of droughts
in the summer is also only half of that in the spring, and droughts in autumn are slightly
more than those in the summer. The two subregions show large precipitation variability
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and high drought and flood frequency, so the utility of water resources is low. Due to the
uneven distribution of water resources, droughts have become an important factor restrict-
ing the agricultural development of the Inner Mongolia Autonomous Region. When other
climatic conditions are the same, the atmospheric moisture content affects the precipitation.
The soil moisture mainly affects precipitation by changing the PCE [28]. In terms of spatial
distribution, the PCE in Subregion II is higher than that in Subregion I. The monthly PCE
in Subregion I changes from 1.77% to 36.25%, while that in Subregion II varies in the range
of 1.81%~57.93%. Except for in the winter, the linear tendency rates of the PCE in other
seasons do not rise significantly, indicating the potential of increasing precipitation. The
PCE in the winter is the lowest, and there is little difference in other seasons. The PCE is
positively correlated with droughts, and its cycle is similar to agricultural droughts, about
12~15 days. Water shortage is the main cause of droughts. The demand for water in the
natural ecological balance system of the Inner Mongolia Autonomous Region matches with
its PCE. The regions with the lower PCE are more prone to droughts.

In the Inner Mongolia Autonomous Region, an important ecological defense in north-
ern China, a series of key ecological projects have been constructed since the beginning of
this century, so as to realize the sustainable development of the ecological environment.
These projects include returning the grain plots to forestry, projects concerning pastoral
areas, animal husbandry and herdsmen, natural forest resources protection, and western
development strategy. The ecosystem and variables are not independent of each other;
on the contrary, they show a complex interaction [13]. Under the joint effects of human
activities and the natural ecological environment, the single factor detection with the geo-
graphical detector shows that among various influence factors, the temperatures, PCEs, and
elevations in different seasons are the main explanatory variables for the spatial stratified
heterogeneity of agricultural droughts. The natural ecosystem is the basis for agricultural
droughts. The interactive detection demonstrates that the combination of the PCE and
temperature significantly enhances the explanatory power for agricultural droughts in
different seasons in different subregions. Therefore, it can be concluded that the PCE and
temperature affect and restrict each other. In addition, in the two subregions, the effects
of temperature on soil moisture are greater than those of the PCE [29]. Due to climate
evolution and human modification, warming increases the surface temperature of land and
ocean and accelerates the hydrological cycle. Similarly, the atmospheric moisture content
also increases, which has a feedback effect on the PCE and increases the intensity of the
water cycle. If there is no precipitation, agricultural droughts will occur.

Based on the geographical detector, it was determined that the PCE and temperature
are factors with the largest explanatory power for agricultural drought indexes in the Inner
Mongolia Autonomous Region. Furthermore, the t-copula PDFs of agricultural droughts
with the PCE and temperature and their upper and lower tail dependence coefficients were
analyzed. This more clearly defines the physical and mathematical statistical significance
of the three. In terms of extremes, the three have an obvious positive dependence, and
the highest temperature point matches with the maximum precipitation period in time
sequences. Through actual distribution of arid regions, it is further verified that droughts
are not only affected by precipitation, but also the interaction between the temperature
and PCE. When the two meet certain conditions, they will have an impact on agricultural
droughts. Therefore, the copula joint probability distribution between the temperature and
PCE obtained in this study can provide a mathematical basis for comprehensive evaluation
of droughts by two meteorological factors in the future. In the future, more detailed
studies will be carried out to determine the balance between the PCE, temperature, and
agricultural droughts.

5. Conclusions

This study firstly identified agricultural droughts from 2000 to 2019 in the Inner
Mongolia Autonomous Region according to drought frequency and range based on the
SMAPI. The dominant factors and interaction factors were quantitatively identified by
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the geographical detector, so as to accurately reveal drivers and their explanatory power.
The joint distribution functions of agricultural droughts with the PCE and temperature
were constructed with copula function, thus characterizing the dependence structure.
The reasons for agricultural droughts were considered from the perspectives of local
meteorological and social factors. The conclusions are made as follows: The SMAPI of
the Inner Mongolia Autonomous Region changes insignificantly over four seasons. The
mild and moderate droughts are dominant, and the SMAPI decreases in the west and
increases in the east. In different seasons, continuous droughts in the spring and summer
tend to appear in Subregion I, while droughts easily occur in the winter in Subregion II.
The frequency of droughts in Subregion I is higher than that in Subregion II, which is
consistent with the spatial distribution characteristics of the PCE. With the increase of the
number of hydrologic cycles every year, the number of days in each cycle in Subregion I is
decreasing, so the probability of droughts increases constantly. The subregion shows high
precipitation variability, and droughts and floods occur frequently, resulting in a low utility
of water resources.

From the perspective of spatial distribution, based on the SMAPI, the occurrence of
agricultural droughts is mainly mild and severe, and the frequency of extreme droughts
is high. The droughts are mainly aggravated in some central and western regions of the
Inner Mongolia Autonomous Region, and the west suffers from more droughts than the
east. A trend of droughts alleviated in the west while aggravated in the east is shown, and
local and global droughts are prone to appear.

Of all the ecosystem variables, including the PCE, Ta, DEM, LUCC, NDVI, GDP, and
POP, single factor detection shows that the temperature and PCE are the most important
dominant factors of the SMAPI in Subregions I and II, especially in the spring and winter.
When different environmental factors are combined, their explanatory power for agricul-
tural droughts and different ecosystem variables is enhanced. Similarly, in the interactive
detection, the explanatory powers of the combination of the PCE and temperature in au-
tumn in Subregions I and II are 0.9735 and 0.9835, respectively. They are interactive factors
with the best explanatory power for agricultural drought indexes in different seasons in
the two subregions.

In terms of correlation, the t-copula function is the best. The interactions between the
SMAPI and PCE in Subregion I, between the SMAPI and PCE in Subregion II, and between
the SMAPI and Ta in Subregion II show obvious positive tail dependences, while the
interaction between the SMAPI and Ta in Subregion I presents a negative tail dependence.
Quantifying the correlations of agricultural droughts with the PCE and temperature can
provide a theoretical basis for the further studying of hydrological events and related
natural disasters under different frequencies and joint return periods.
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